JPS62206772A - Circuit connection structure - Google Patents

Circuit connection structure

Info

Publication number
JPS62206772A
JPS62206772A JP4946586A JP4946586A JPS62206772A JP S62206772 A JPS62206772 A JP S62206772A JP 4946586 A JP4946586 A JP 4946586A JP 4946586 A JP4946586 A JP 4946586A JP S62206772 A JPS62206772 A JP S62206772A
Authority
JP
Japan
Prior art keywords
particles
circuit
connection
conductive
conductive particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4946586A
Other languages
Japanese (ja)
Other versions
JPH0340899B2 (en
Inventor
功 塚越
豊 山口
中島 敦夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP4946586A priority Critical patent/JPS62206772A/en
Priority to US07/013,904 priority patent/US4740657A/en
Priority to EP87301263A priority patent/EP0242025B1/en
Priority to DE8787301263T priority patent/DE3770318D1/en
Publication of JPS62206772A publication Critical patent/JPS62206772A/en
Publication of JPH0340899B2 publication Critical patent/JPH0340899B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Combinations Of Printed Boards (AREA)
  • Wire Bonding (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は回路の接続構造体に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a circuit connection structure.

(従来の技術) 従来より集積回路類の配線基板への接続1表示素子類と
配a基板への接続、電気回路とリードとの接続などのよ
うに接続端子が相対峙して細かいピッチで並んでいる場
合の接続力法として、ハンダ付や導電性接着剤などの接
続部材による方法が広(用いられている。しかしながら
、これらの方法においては導電回路部のみに限定して接
続部材を形成しなげればならないのて。
(Prior art) Connecting terminals have traditionally been lined up facing each other at fine pitches, such as connecting integrated circuits to wiring boards, connecting display elements to printed circuit boards, and connecting electrical circuits to leads. As a connection force method in cases where the connection material is connected, methods using connection members such as soldering or conductive adhesive are widely used. However, in these methods, the connection member is formed only in the conductive circuit area. I have to throw it away.

高密度、高精細化の進む微細回路の接続に困難をきたし
ていた。
Connecting microcircuits, which are becoming increasingly dense and precise, has been difficult.

最近回路の接続材料について検討が加えもn、例えば特
開昭51−20941号公報1%開昭51−21192
号公報、’l?開昭51−135938号公報、特開昭
55−104007号公報9%開昭56−122193
号公報、特開昭57−111366、特開昭58−11
1202号公報などによれば、相対峙する回路間に金属
粒子等の導電性粒子と接着剤成分χ含む異方導電性の接
続部材層を設け、加圧または加熱加圧手段を桐じること
によっ1回路間の電気的接続と同時に隣接回路間に絶縁
性を付与し、相対峙する回路?接着固定することが提案
されている。
Recently, studies have been added to connection materials for circuits, for example, Japanese Patent Application Laid-open No. 51-20941 (1983)
Publication, 'l? 1982-135938, JP-A-55-104007 9% 1982-122193
Publication No. 57-111366, JP-A No. 58-11
According to Publication No. 1202, etc., an anisotropically conductive connecting member layer containing conductive particles such as metal particles and an adhesive component χ is provided between opposing circuits, and a pressurizing or heating pressurizing means is applied. By providing electrical connection between one circuit and at the same time providing insulation between adjacent circuits, the circuits face each other? Adhesive fixation is proposed.

しかしながらこれらの方法においては、回路間の導通は
主として複数個の導電材料、多(の場合には金属粒子の
接触によって得られるものであり、金属粒子が剛直であ
る之め粒子/粒子間あるいは粒子/回路間の接触面積が
充分でなくさらに接着剤成分と金属粒子の熱膨張係数の
異ることから、温度変化に対する抵抗値変化が大きく接
続部の信頼性に劣る欠点を有してい几。
However, in these methods, conduction between circuits is mainly obtained by contact between multiple conductive materials, or metal particles (in the case of metal particles), and because the metal particles are rigid, the conduction between the particles or between particles is obtained. / Since the contact area between the circuits is not sufficient and the coefficient of thermal expansion of the adhesive component and the metal particles are different, the resistance value changes greatly due to temperature changes and the reliability of the connection part is poor.

温度係数を小さくするには、接続部の接触抵抗を少なく
することが有効であるが1例えば特開昭60−1407
90号公報に見られるように、絶縁性接着剤中に分散さ
れ交熱溶融性金属粒子を回路間で溶融して接続すること
で良好な接続を得ようとする試みもある。しかしながら
このものは金属粒子が熱溶融性である為に接続作業時の
条件中が狭いという欠点を有していた。
In order to reduce the temperature coefficient, it is effective to reduce the contact resistance of the connection part.
As seen in Japanese Patent No. 90, there has been an attempt to obtain a good connection by melting and connecting heat-exchangeable metal particles dispersed in an insulating adhesive between circuits. However, since the metal particles are heat-fusible, this method has the disadvantage that the conditions for connection work are narrow.

すなわち融点以上では従来のハンダ付と同様に金属粒子
が溶融して流れ微小な@接口路間にまたがり絶縁性が保
持されない、すなわちリークという現象が生じるので細
かなピップの回路接続に対応できず、ま几金属の融点以
下においては粒子の溶融が起らないために剛直な金属粒
子が回路間に存在するだけであり、前記し友ように接続
部の抵抗変化が雰囲気温度の変化に対して大きくなる。
In other words, above the melting point, the metal particles melt and flow across the tiny @ contact paths, causing a phenomenon called leakage, which makes it impossible to support circuit connections with fine pips. Below the melting point of the metal, particles do not melt, so only rigid metal particles exist between the circuits, and as mentioned above, the resistance change of the connection part is large due to changes in ambient temperature. Become.

いわゆる温度係数が大きいという欠点を有してい友。It has the drawback of having a large so-called temperature coefficient.

またこれらの異方導電性の接続材料の主要な適用分野の
一つであるディスプレイ用の回路接続においては、ガラ
ス、プラスチックスなどの透明基板上に酸化錫あるいは
酸化インジウム。
In circuit connections for displays, which is one of the main application fields for these anisotropic conductive connection materials, tin oxide or indium oxide is used on transparent substrates such as glass and plastics.

酸化チタンなどの酸化物やアルミニウム、クロムなどの
薄膜により4を性の回路を形成した透明導電膜が多用さ
れるが、これらの回路面に対してハンダに代表される熱
溶融性金属粒子は。
Transparent conductive films with 4-dimensional circuits formed from oxides such as titanium oxide, aluminum, chromium, etc. are often used, but heat-fusible metal particles such as solder are used for these circuits.

その表面張力がきわめて大きいことから回路面に対する
濡れ性がないことや、アルミニウム等の酸化面あるいは
酸化物回路とは合金化しないこと等から1回路面との濡
れ性が不十分てありやはり接続部の温度変化に対する抵
抗の変化率が大きいという欠点を有していた。
Since its surface tension is extremely high, it has no wettability to the circuit surface, and it does not alloy with the oxidized surface of aluminum or other oxide circuits, so its wettability with the circuit surface is insufficient. The disadvantage is that the rate of change in resistance with respect to temperature changes is large.

そのために液晶(LCD )やエレクトロルミネッセン
ス(EL)プラズマ、あるいは蛍光表示管などのディス
プレイ用途においては、高温下における表示が不鮮明と
なったり1表示が出来な(なる等σ)実用上の問題点を
有してhた。
For this reason, in display applications such as liquid crystal display (LCD), electroluminescent (EL) plasma, or fluorescent display tubes, there are practical problems such as blurred display or inability to display a single display at high temperatures (such as σ). I had it.

この改良方法としては、透明導電膜上にAuやNj な
どの薄層をメッキやスパッタリングなどで形成し1回路
の表面張力を上げることで対処してき九が、この方法は
工程の繁雑さと高度な処理技術を必要とし、結果的に製
品のコスト高を紹く等の欠点を有していた。
A method to improve this problem has been to increase the surface tension of one circuit by forming a thin layer of Au or Nj on the transparent conductive film by plating or sputtering, but this method requires complicated processes and advanced processing. This method has drawbacks such as requiring high technology and resulting in high product costs.

(発明が解決しようとする問題点) 本発明は上記従来技術の欠点に鑑みてなされたものであ
り1回路接続部の抵抗温度係数の少ない微細回路の接続
構造体音提供するものである。
(Problems to be Solved by the Invention) The present invention has been made in view of the above-mentioned drawbacks of the prior art, and provides a connected structure of fine circuits with a small resistance temperature coefficient of a single circuit connection.

(問題点を解決する之めの手段] すなわち本発明は複数の導電パターンと相対峙する回路
とが接続部材により電気的に接続された回路の接続構造
体において、接続すべき回路相互間に高分子重合体から
なる核材のほゞ全表面が導電性の金属薄層により実質的
に被接された導電性粒子と絶縁性接着剤よりなる接続部
材層を介在させるとともに前記核材は核回路面に押しつ
けられるように変形させ友状態で固定してなることを特
長とし、更に複数の導電パターンと相対峙する回路とが
接続部材により電気的に接続された回路の接続構造体に
おいて、接続すべき回路相互間に高分子重合体からなる
核材のほゞ全表面が導を性の金属薄層により実質的に被
覆された導電性粒子と、高剛性のスペーサ粒子および絶
縁性接着剤よりなる接続部材層を介在させるとともに、
前記核材は該回路面に押しつけられるように変形させた
状態で固定され、かつ相対峙する回路相互間の厚みがス
ペーサ粒子径とはg等しいことを特長とする回路の接続
構造体に関する。
(Means for Solving the Problems) That is, the present invention provides a circuit connection structure in which a plurality of conductive patterns and opposing circuits are electrically connected by a connection member, in which the height between the circuits to be connected is reduced. Almost the entire surface of the core material made of a molecular polymer is substantially covered with a thin conductive metal layer, and a connecting member layer made of conductive particles and an insulating adhesive is interposed, and the core material is connected to a nuclear circuit. It is characterized by being deformed so as to be pressed against a surface and fixed in a flat state, and furthermore, in a circuit connection structure in which a plurality of conductive patterns and a circuit facing each other are electrically connected by a connection member, it is possible to Between the circuits to be connected, a core material made of a high molecular weight polymer is made of conductive particles, the entire surface of which is substantially covered with a conductive metal thin layer, highly rigid spacer particles, and an insulating adhesive. While interposing a connecting member layer,
The present invention relates to a circuit connection structure characterized in that the core material is fixed in a deformed state so as to be pressed against the circuit surface, and the thickness between opposing circuits is equal to the spacer particle diameter g.

本発明にかかる回路の接続構造体を実施例を示し次■面
を用いて以下に説明する。第1図および第2図は回路接
続部の構造体を示す断面模式図である。
Embodiments of the circuit connection structure according to the present invention will be described below with reference to the next page. FIGS. 1 and 2 are schematic cross-sectional views showing the structure of the circuit connection portion.

第1〜2因において導電性粒子1は絶縁性接着剤2の中
に分散されて基1i27に形成された回路3および基板
8に形成された回路40間に介在し回路接続時の加圧あ
るいは加熱加圧により回路表面に沿って押しつげられる
ように適度に変形され導電性粒子相互あるいは4を性粒
子と回路面との間で面接触するようになっている。
In the first and second causes, the conductive particles 1 are dispersed in the insulating adhesive 2 and are interposed between the circuit 3 formed on the base 1i 27 and the circuit 40 formed on the substrate 8, and are The conductive particles are appropriately deformed so as to be pressed along the circuit surface by heating and pressurizing, and the conductive particles 4 are brought into surface contact with each other or between the conductive particles and the circuit surface.

一方弁回路部5および60間においては1回路間の粒子
はどには圧力がかからないために変形することがなく、
従って導電性粒子の粒径や象加量を選択することと合せ
て隣接回路との絶縁性が充分に保たれる。
On the other hand, between the valve circuit parts 5 and 60, no pressure is applied to the particles between one circuit, so they do not deform.
Therefore, by selecting the particle size and quadrature of the conductive particles, sufficient insulation from adjacent circuits can be maintained.

本発明にかかる構成材料について以下に詳しく説明する
The constituent materials according to the present invention will be explained in detail below.

まず導電性粒子1については第3〜4図に代表例を示す
ように高分子重合体からなる核材9(以下高分子核材と
称す)上のほゞ全面に金属薄層10を有するものとする
。高分子核材9の構造としては完全な充冥体、内部が気
体からなる中空体(第4■)、内部°に気泡部を有する
発泡体、小粒子の集りである凝集体などのいずれでも良
く、これらを単独あるいは複合して用いることが可能で
ある。
First, regarding the conductive particles 1, as shown in typical examples in FIGS. 3 and 4, there is a thin metal layer 10 on almost the entire surface of a core material 9 made of a polymer (hereinafter referred to as polymer core material). shall be. The structure of the polymeric core material 9 may be a completely filled body, a hollow body whose interior is made of gas (No. 4), a foam body with air bubbles inside, or an aggregate that is a collection of small particles. It is possible to use these alone or in combination.

高分子核材9の形状はは2球状が代表的であるがその形
状については特に問わない。
The shape of the polymer core material 9 is typically bispherical, but the shape is not particularly limited.

その材質としては各種プラスチック@またはゴム類や天
然高分子類があり、これらを主成分として必要に応じて
架橋剤、硬化剤等の添加剤を用いることができる。・ これらの高分子類を例示すると、ポリエチレン、ポリプ
ロピレン、ポリスチレン、アクリロニトリルースチレン
共重合体、アクリロニトリル−ブタジェン−スチレン共
重合体、ポリカーボネート、ポリメデルメタアクリレー
ト等の各種アクリレート、ポリビニルブチラール、ポリ
ビニルホルマール、ポリイミド、ポリアミド。
The materials include various plastics, rubbers, and natural polymers, and these are the main ingredients, and additives such as crosslinking agents and curing agents can be used as necessary. - Examples of these polymers include polyethylene, polypropylene, polystyrene, acrylonitrile-styrene copolymer, acrylonitrile-butadiene-styrene copolymer, polycarbonate, various acrylates such as polymedel methacrylate, polyvinyl butyral, polyvinyl formal, and polyimide. ,polyamide.

ポリエステル、ポリ塩化ビニル、ポリ塩化ビニリデン、
フッ素樹脂、ポリフェニレンオキナト2ポリフエニレン
サルフアイド、ボ゛リメチルベンテン、尿素樹脂、メラ
ミン樹脂、ベンゾグアナミン樹脂、フェノール−ホルマ
リン樹脂、キン2フ8 ト樹脂、エポキシ樹脂,ポリイソシアネート樹脂,フェ
ノキシ樹脂,シリコーン樹脂などがあり、これらを適宜
変性してもよい。
polyester, polyvinyl chloride, polyvinylidene chloride,
Fluororesin, polyphenylene quinato 2 polyphenylene sulfide, polymethylbentene, urea resin, melamine resin, benzoguanamine resin, phenol-formalin resin, quin 2 fluorine resin, epoxy resin, polyisocyanate resin, phenoxy resin, There are silicone resins and the like, and these may be modified as appropriate.

ま次これらは単体あるいは2種以上の複合物であっても
良い。ここで熱硬化性の物にあっては,接着剤成分との
混合等に支障のない範囲であればその硬化度合は問わな
いものとする。
These may be used alone or in a composite of two or more types. In the case of thermosetting materials, the degree of curing does not matter as long as it does not interfere with mixing with adhesive components.

これらの高分子核材は1回路接続時の加圧あるいは加熱
加圧により軟化ある杓は変形可能である要件が必要であ
る。
These polymer core materials must be able to be softened or deformed by pressure when one circuit is connected or by heating and pressure.

ここで接続時の加圧あるいは加熱加圧により軟化あるい
は変形を必要とする理由は1回路接続時に導電性粒子同
士あるいは導電性粒子と回路との接触面積を増加するた
めに必要であり。
Here, the reason why softening or deformation is required by applying pressure or heating and pressing during connection is to increase the contact area between conductive particles or between conductive particles and a circuit when one circuit is connected.

常温においてのいわゆる感圧接着剤による感圧接続ある
いは400℃迄の加熱を併用しt感熱接続によることも
可能である。400℃以上では回路基板に対して熱損傷
ン与える恐れがあり、また常温貼付の場合には回路の実
装上耐熱性が問題となる場合がある之めに,好ましくは
高分子核材は100へ250℃で軟化あるいは変形可能
であることがよい。
It is also possible to use a pressure-sensitive connection using a so-called pressure-sensitive adhesive at room temperature, or a heat-sensitive connection using heating up to 400°C. If the temperature exceeds 400°C, there is a risk of thermal damage to the circuit board, and if it is attached at room temperature, heat resistance may become a problem when mounting the circuit, so preferably the polymer core material is 100°C. It is preferable that it can be softened or deformed at 250°C.

圧力は接続を要する回路部に悪影響を及ぼさぬように,
出来れば低圧が望ましく通常は100 kg/aI!以
下(望ましくは50kg/a111以下)でおこなわれ
る。゛ 抜根に用いられる金属10としては導電性を有する各種
の金属、金属酸化物、合金等が用いられる。
The pressure should be controlled so as not to adversely affect the circuit parts that require connection.
Low pressure is desirable if possible, usually 100 kg/aI! or less (preferably 50 kg/a111 or less). As the metal 10 used for root removal, various conductive metals, metal oxides, alloys, etc. are used.

金属元素の例としては、Zn、 All、 Sb、 U
、 Cd。
Examples of metal elements include Zn, All, Sb, and U.
, Cd.

Ga、 Ca、 Au、 Ag、 Co、 Sn、 S
e、 Fe、 Cu、 Th、 Pb。
Ga, Ca, Au, Ag, Co, Sn, S
e, Fe, Cu, Th, Pb.

Ni、 Pd、 Be、 Mg、 Mn などがあり、
これらを単独もしくは複合して用いることが出来、さら
に特殊な目的たとえば硬度や表面張力改良などの几めに
他の元素あるいは化合物なども添加できる。
There are Ni, Pd, Be, Mg, Mn, etc.
These can be used alone or in combination, and other elements or compounds can also be added for special purposes, such as improving hardness or surface tension.

高分子核材9の表面上に金属10を形成する方法として
は、たとえば蒸着法、スパッタリング法、イオンブレー
ティング法、メツ牟法浴射法などの物理化学的方法や、
高分子核材の合成時に少量の金属をモノマー中に分散さ
せ1重合後のポリマー粒子表面に金属粉を吸着させたり
、官能基Y有する核材と金f4ヲ化学結合させ之り。
As a method for forming the metal 10 on the surface of the polymer core material 9, for example, a physicochemical method such as a vapor deposition method, a sputtering method, an ion blasting method, or a metal irradiation method,
When synthesizing a polymer core material, a small amount of metal is dispersed in a monomer and metal powder is adsorbed onto the surface of a polymer particle after one polymerization, or gold f4 is chemically bonded to a core material having a functional group Y.

果面活性剤やカップリング剤などにより吸着させるなど
の化学的手法による等の方法が採用できる。
Chemical methods such as adsorption with fruit surface active agents, coupling agents, etc. can be employed.

金属被覆層の厚みは0.0F〜5μm程度が望筐しくa
05〜1μmがさらに良好であるが、この厚みは回路接
続前の導電性粒子の粒径の1/;5〜’/1000に入
るようにすることが望ましい。ここで金属薄層の厚みが
薄いと導電性が低下し、厚みが増すと回路接続時におけ
る高分子核材の軟化変形時における追随性が無くなるた
めである。ま之金属は薄層であることから光分に変形に
対して追随性を有するが、九とえは伸び性の良い展延性
の材料があることが好ましい。
The thickness of the metal coating layer is preferably about 0.0F to 5μm.
A thickness of 0.05 to 1 μm is more preferable, but it is desirable that the thickness falls within 1/5 to 1/1000 of the particle diameter of the conductive particles before circuit connection. This is because if the metal thin layer is thin, the conductivity will be reduced, and if the metal thin layer is thick, it will lose its ability to follow the softening and deformation of the polymer core material during circuit connection. Since the metal is a thin layer, it has the ability to follow the deformation of light, but it is preferable that the material be made of a malleable material with good stretchability.

従来このような導電性粒子として、ガラス球(ビーズ)
あるいはガラス中空球(バルーン)にAg等の薄層を形
成したものもあるが、こnらは加熱加圧時に軟化変形す
ることが出来ない為に本発明の実施には不適である。
Conventionally, glass spheres (beads) were used as such conductive particles.
Alternatively, there are glass hollow spheres (balloons) on which a thin layer of Ag or the like is formed, but these are not suitable for carrying out the present invention because they cannot be softened and deformed when heated and pressed.

上記により得られ次導電性粒子は平均粒径がCL5〜3
00μm、a子径の最小径に対する最大径の比が105
−1.−0であるものが好ましい。
The secondary conductive particles obtained above have an average particle size of CL5 to 3.
00 μm, the ratio of the maximum diameter to the minimum diameter of the a particle diameter is 105
-1. -0 is preferred.

粒子径が[L5μm以下では多量の導電性粒子を必要と
し、ま几結果的に充填粒子数が多くなるので回路との接
着性が低下し、300μm以上になると粒子が大きい之
めに同一基板の隣接回路間が導通されるようになり(リ
ーク)、好ましくない。
If the particle size is less than 5 μm, a large amount of conductive particles will be required, and as a result, the number of packed particles will increase, resulting in poor adhesion to the circuit. This is undesirable because it causes conduction between adjacent circuits (leakage).

リークの発生を防止する几めには、接続すべき回路の間
隙よりも粒径の小さい導電性粒子を選択することが必要
であり安全率馨考瀘して最大粒径が回路量間隙の1/2
〜1/4の導電性粒子を用いることが好ましい。
To prevent leakage, it is necessary to select conductive particles whose particle size is smaller than the gap between the circuits to be connected. /2
It is preferred to use ~1/4 of the conductive particles.

導電性粒子の形状は最小径に対する最大径の比(以下粒
径比〕が0.05〜1.0が好ましい。
The shape of the conductive particles preferably has a ratio of the maximum diameter to the minimum diameter (hereinafter referred to as particle size ratio) of 0.05 to 1.0.

この範囲外では粒子が余りにも偏平状となり本発明の目
的とする回路間の導通性と隣接回路間の絶縁性を得るに
は不向きであり、また回路との接着性も低下する傾向が
強(なる。
Outside this range, the particles will be too flat, making them unsuitable for achieving the electrical conductivity between circuits and the insulation between adjacent circuits, which are the objectives of the present invention, and there is also a strong tendency for adhesiveness with circuits to decrease ( Become.

この範囲ン満たす例としては、はy球状であるものが代
表的である。が上記条件を満たすものであれは特に限定
されない。1fC,8子表面に多少の突起物や凹凸があ
っても良(、また単一粒子に限らず微小粒子の凝集体か
らなる粒子であっても良い。
A typical example that satisfies this range is a y-spherical shape. is not particularly limited as long as it satisfies the above conditions. There may be some protrusions or irregularities on the surface of the 1fC, 8 particles (also, the particles may be not limited to single particles but may be composed of aggregates of microparticles).

粒子径は全体的な平均粒径tとるものとし。The particle size shall be the overall average particle size t.

粒子の形状や粒子径の測定は、tとえは走査形電子顕微
鏡などによる方法が便利である。平均粒径りは次式で求
めるものとする。
It is convenient to measure the shape and diameter of particles using a scanning electron microscope or the like. The average particle size shall be determined by the following formula.

D=Σnd/Σn ここに、nはdなる粒径の粒子の数を示す。D=Σnd/Σn Here, n indicates the number of particles having a particle size of d.

導電性粒子が球状であると、接続時の加熱加圧により粒
子相互ある−は粒子と回路面との接触を得やすく高導電
性を得やすい。
When the conductive particles are spherical, it is easy to obtain contact between the particles and the circuit surface by heating and pressurizing them during connection, and it is easy to obtain high conductivity.

導電性粒子は接続部材の厚み方向に単層で存在しても良
いし、複数個配列あるいは凝集し九構造であっても良い
The conductive particles may exist in a single layer in the thickness direction of the connection member, or may be arranged in plurality or aggregated to form a nine-layer structure.

第5図は接続部材の断面模式図であるが、接着剤2中に
占める導電性粒子1はα1〜15体積%が適当である。
FIG. 5 is a schematic cross-sectional view of the connecting member, and it is appropriate that the conductive particles 1 occupy in the adhesive 2 in an amount α1 to 15% by volume.

α1体積%以下では満足する導電性が得られず、15体
積弊以上では横(幅)方向において粒子が連結する機会
が増し隣接回路との絶縁性が低下し透明性も悪くなる。
If α is less than 1% by volume, satisfactory conductivity cannot be obtained, and if it is more than 15% by volume, the chances of particles connecting in the lateral (width) direction increase, resulting in a decrease in insulation with adjacent circuits and poor transparency.

上記理由からより好ましい添加量は0.5〜10体槓%
積弊る。
For the above reasons, the more preferable addition amount is 0.5 to 10%
I'm having a hard time.

本発明で用いられる接着剤としては、基本的には絶縁性
を示す通常のvc漕性シート類に用いられている配合が
適用可能である。通常の接着シート類に用いられる配合
は凝集力を付与する友めの合成樹脂やゴム等からなるポ
リマー類と、その他必要に応じて用いる粘着付与剤、粘
着性調整剤、架橋剤、老化防止剤、分散剤等からなって
いる。
As the adhesive used in the present invention, basically the formulations used for ordinary VC rowing sheets exhibiting insulation properties can be used. The composition used for ordinary adhesive sheets is a polymer consisting of a synthetic resin or rubber that provides cohesive force, and other additives such as tackifiers, tackiness modifiers, crosslinking agents, and anti-aging agents used as necessary. , dispersant, etc.

本発明にか〜る接続部材の製造方法としては。As a method for manufacturing a connecting member according to the present invention.

ポリマおよびその他必要に応じて使用する添加剤からな
る接着剤組成物を溶剤に溶解するか懸濁状に媒体中に分
散しあるいは熱溶融させて液状とじ九後に導電性粒子を
ボールミルや攪拌装置などの通常の分散方法により混合
し、導電性粒子混合接着剤組成物を得る。
An adhesive composition consisting of a polymer and other additives used as necessary is dissolved in a solvent, dispersed in a suspension state in a medium, or melted with heat to form a liquid.After binding, the conductive particles are processed using a ball mill or stirring device. The conductive particles are mixed by a conventional dispersion method to obtain a conductive particle-mixed adhesive composition.

溶剤を用いる場合については、高分子核材上に金属層の
形成されt導電性粒子は溶剤に対する溶解性がほとんど
ないため溶剤を用いることも可能であるが、接着剤を浴
解し高分子核材を溶解しない溶剤を選択することがさら
に好デしい。この手段としては、たとえば接着剤をエマ
ルシ璽ン化して水媒体中に導電性粒子を分散することも
よい方法である。
When using a solvent, it is possible to form a metal layer on the polymer core material because the conductive particles have almost no solubility in solvents, but it is possible to use a solvent to dissolve the adhesive and dissolve the polymer core. It is further preferred to select a solvent that does not dissolve the material. A good method for this purpose is, for example, to form an adhesive into an emulsion and disperse the conductive particles in an aqueous medium.

上記導電性粒子混合接着剤組成物は、接続を要する一方
あるいは双方の回路上にスクリーン印刷やa−ルコータ
等の手段1用いて直接回路上に接着剤層を形成しても良
く、まtフィルム状の連続長尺体としてもよい。連続長
尺体としての接着剤フィルムを得るには紙やプラスチッ
クフィルム等に必要に応じて剥離処理を行なりたセパレ
ータ上に前記手段により接続部材膚を形成後連続的に巻
重しても良いし、接着層の粘着性が無い場合においては
セパレータを用いずに巻重することも可能であり、さら
に接着剤の補強用とじ℃、九とえは不織布等の芯材を用
いることも可能である。
The above-mentioned conductive particle mixed adhesive composition may be used to form an adhesive layer directly on one or both of the circuits requiring connection using means 1 such as screen printing or a coater, or a t-film. It may also be a continuous elongated body. To obtain an adhesive film as a continuous elongated body, a connecting member skin may be formed by the above method on a separator that has been subjected to peeling treatment as necessary on paper, plastic film, etc., and then continuously rolled up. However, if the adhesive layer does not have tackiness, it is possible to roll the layers without using a separator, and it is also possible to use a core material such as non-woven fabric for reinforcing the adhesive. be.

得られ几接続部材を用いて回路を接続する方法としては
、たとえば回路にフィルム状接続部材を仮貼付した状態
でセパレータのある場合にはセパレータを剥離し、ある
いは接着剤組成物を回路上に塗布し必要に応じて溶剤除
去後の状態で、その面に他の接続すべき回路な熱プレス
あるいは加熱ロール等で貼付ければよ一0接続時の加熱
加圧に際し、被覆金属は薄titであるために高分子核
材の変形に光分追随可能であり、もし変形に追随できず
罠金属層にヒビ割れ等の欠陥が生じても1回路あるいは
、他の粒子との接触により導電路は保持できる。
A method for connecting a circuit using the obtained connection member is, for example, by temporarily attaching a film-like connection member to the circuit and peeling off the separator if there is a separator, or by applying an adhesive composition onto the circuit. If necessary, after removing the solvent, attach it to other circuits to be connected using a heat press or heating roll. Therefore, it is possible to optically follow the deformation of the polymer core material, and even if defects such as cracks occur in the trap metal layer due to the deformation being unable to follow, the conductive path will be maintained due to contact with one circuit or other particles. can.

最適な接続状態を得るには、接続後の回路間隔(t) 
K対する接続前の接続部材の厚み■の比を、t々=α0
2〜α95の範囲内にすることが好ましい。このとき接
続前の粒径りなる導電性粒子が厚み方向に単粒子状で存
在している場合においては接続後の粒径’kdとしてd
/Dの比tt々と同様に用いることが出来る。t々が1
02以下では導電性粒子が破壊して金属薄片が脱落し易
くなり、またこの比がα95以上では回路あるいは導電
性粒子との充分な面接触が得られないことから、満足す
べき接続構造体とすることが出来ないので本発明の実施
には好ましくない。
To obtain the optimum connection condition, the circuit interval after connection (t)
The ratio of the thickness ■ of the connecting member before connection to K is t=α0
It is preferable to set it within the range of 2 to α95. At this time, if the conductive particles exist in the form of a single particle in the thickness direction, the particle size after connection is 'kd', and d
It can be used in the same way as the ratio tt of /D. t is 1
If the ratio is less than α95, the conductive particles will break and the metal flakes will easily fall off, and if this ratio is more than α95, sufficient surface contact with the circuit or the conductive particles cannot be obtained. Therefore, it is not preferable for implementing the present invention.

上記理由から t/Tのさらに好ましい範囲はα1a〜
α9aである。
For the above reasons, a more preferable range of t/T is α1a~
It is α9a.

この最適な接続状態を簡単に得る方法としては接続操作
時に回路間に所望厚みの剛性を有するスペーサを挿入し
九り、接続部材中にスペーサ粒子を混入すれは1本発明
に係る導電性粒子は任意に変形可能であるために、Pf
r望厚みの接続回路間隔を有する接続構造体を簡単に得
ることが出来る。
One way to easily obtain this optimal connection state is to insert a spacer having a desired thickness and rigidity between the circuits during the connection operation, and mix spacer particles into the connection member. Since it is arbitrarily deformable, Pf
It is possible to easily obtain a connected structure having a connection circuit spacing of a desired thickness.

スペーサ粒子とじ℃は、導電性粒子よりも高剛性である
ことが必要である。すなわち回路の接続構造体の作製時
の加圧あるいは加熱加圧によりスペーサ粒子は粒形の変
化をほとんど示さないことが必要である。
The spacer particles need to have higher rigidity than the conductive particles. In other words, it is necessary that the spacer particles show almost no change in particle shape due to pressurization or heating and pressurization during production of the circuit connection structure.

まtスペーサ粒子は導電性、あるいは絶縁性のいずれで
も良(両者を複合して用いることもできる。
The spacer particles may be either conductive or insulating (a combination of both may also be used).

スペーサ粒子についての粒径1粒子形状、添加量につい
ては特に制限されるものでないが。
There are no particular restrictions on the particle size, particle shape, and amount added of the spacer particles.

好ましくは導電性粒子の場合に準じて平均粒径はα5−
300μm、8子形状としての最小径に対する最大径の
比がa、05〜1.0.その添加量は0.1〜15体積
%が適用できる。
Preferably, the average particle size is α5- as in the case of conductive particles.
300 μm, and the ratio of the maximum diameter to the minimum diameter as an octagonal shape is a, 05 to 1.0. The amount added can be 0.1 to 15% by volume.

導電性粒子とスペーサ粒子の添加量の比率についても特
に制限されるものではなく、接続構造体の特性を考慮し
て決定すれば良い。
The ratio of the amount of conductive particles to spacer particles added is not particularly limited, and may be determined taking into consideration the characteristics of the connected structure.

(作用) 本発明にかかる回路の接続構造体においては。(effect) In the circuit connection structure according to the present invention.

導電性粒子が接続時の加圧あるいは加熱加圧により、導
電性粒子相互あるいは導電回路部と接触して導通路を形
成する。
The conductive particles come into contact with each other or with the conductive circuit section by applying pressure or heating and pressurizing during connection, thereby forming a conductive path.

この時、?#J分子核材は加圧あるいは加熱加圧による
接続操作時に軟化あるいは変形可能であるために回路面
あるいは411B子相互間で押付けるよ5に適度に変形
し接触面積を大きく保つことが出来、良好な導電性と信
頼性を得ることができる。一方弁回路部における粒子に
は1回路間の粒子はどには圧力がかからない為変形する
ことがな(従って導電性粒子の粒径や添加量を選択する
ことと合わせて隣接回路との絶縁性は充分に保友れる。
At this time,? #J molecular core material can be softened or deformed during connection operations by applying pressure or heating and pressurizing, so when pressed between circuit surfaces or 411B elements, it can be appropriately deformed and maintain a large contact area. Good conductivity and reliability can be obtained. On the other hand, the particles in the valve circuit section do not deform because no pressure is applied to the particles between one circuit (therefore, it is important to select the particle size and amount of conductive particles, as well as the insulation from the adjacent circuit. is well maintained.

さらに高分子核材は軟化変形域を、その材料の熱的特性
の選定あるいは組み合せにより、任意に設定できる九め
に、広い作業条件下で接続構造体を得ることが可能とな
る。
Furthermore, the softening deformation range of the polymer core material can be set arbitrarily by selecting or combining the thermal properties of the material, making it possible to obtain a connected structure under a wide range of working conditions.

次とえは核材として一定融点を示さない非晶性の高分子
やゴム状領域の広い架橋物を用いた場合には、%にその
軟化流動域が広く1回路接続時の条件(温度、圧力1時
間)も広(とることが可能で接続時の信頼性が著しく向
上し、合せて良好な接続作業性も得ることが出来る。
For example, when an amorphous polymer that does not exhibit a constant melting point or a crosslinked material with a wide rubber-like region is used as the core material, the softening flow range is wide in %, and the conditions (temperature, It is possible to maintain a pressure of 1 hour) and a wide range (1 hour), which significantly improves the reliability during connection, and also provides good connection workability.

また高分子核材は軟化変形の度合を、その接続条件によ
り任意に設定することが可能であり。
Furthermore, the degree of softening and deformation of the polymer core material can be arbitrarily set depending on the connection conditions.

接続状態を管理することが可能となる。九とえは接続部
における導電性粒子の粒径が不一致の場合でもその接続
条件を管理することで、大きな導電性粒子を小さな導電
性粒子の大きさかさらにそn以上に小さくなるまで圧漕
して接続することが可能であり、多くの4を性粒子が導
通に有効に寄与することが出来る。こnに対し℃従来の
金属粒子の場合は、大きな金属粒子がスペーサ状に作用
し、他の小さな粒子は導通に寄与しない友めに導通点数
が減少し接続信頼性が低かった。
It becomes possible to manage the connection status. Even if the particle sizes of the conductive particles at the connection part do not match, Kutoe can press the large conductive particles until they become smaller than the size of the small conductive particles or even smaller by controlling the connection conditions. It is possible to make a connection by using a large number of 4-wire particles, and many 4-layer particles can effectively contribute to conduction. On the other hand, in the case of conventional metal particles at ℃, large metal particles act as spacers, and other small particles do not contribute to conduction, reducing the number of conductive points and resulting in low connection reliability.

接続状態を有効(管理するためには、導電性粒子より高
剛性のスペーサ粒子を併用して接続部材中に添加するこ
とが好ましく、この場合には導電性粒子は任意に変形可
能であることから所望厚みの接続構造体を得ることが可
能となる。
In order to effectively (manage) the connection state, it is preferable to add spacer particles, which are more rigid than conductive particles, to the connection member.In this case, since the conductive particles can be deformed arbitrarily, It becomes possible to obtain a connected structure with a desired thickness.

上述し友ように本発明になる回路の接続構造体は、その
導電性粒子が回路面に沿って押しつけられるように適度
に変形し、接触面積を大きく保つことが出来る几めに、
従来ハンダ付の不可能であり之、たとえば込明導電膜に
対しても有効に接触面alを保つことが出来る。また透
明導電膜上にAuやNi メッキなどの表面処理乞特に
必要としない。また他の各種の回路面に対しても接続構
造体を得ることが出来る。
As mentioned above, the circuit connection structure of the present invention is designed so that the conductive particles are appropriately deformed so as to be pressed along the circuit surface, and the contact area can be kept large.
It is possible to effectively maintain the contact surface Al even with a dense conductive film, which is conventionally impossible to solder. Further, surface treatment such as Au or Ni plating on the transparent conductive film is not particularly required. Connection structures can also be obtained for various other circuit surfaces.

回路との接触面積を大きくとれるようになり之ことおよ
び高分子核材は接着剤成分と熱膨張係数が近似している
ことから接着剤の熱膨張により接続回路の間隔が大きく
なりても、導電性粒子の熱膨張により接続回路間隔の、
広がりに追随できる九め粒子と回路との接触状態が良好
に保すれるので、接続部の温度に対する抵抗変化はきわ
めて小さいものとなる。
Since the contact area with the circuit can be increased, and the polymer core material has a thermal expansion coefficient similar to that of the adhesive component, even if the distance between the connected circuits increases due to the thermal expansion of the adhesive, the conductivity will be maintained. Due to the thermal expansion of the particles, the distance between the connected circuits is reduced.
Since the contact state between the nine particles that can follow the spread and the circuit is maintained in good condition, the resistance change with respect to the temperature of the connection part becomes extremely small.

(実施例) 以下本発明を実施例によりさらに詳mK説明する。(Example) The present invention will be explained in more detail below with reference to Examples.

実施例1へ3 (1)接続部材の作製 高分子核体であるエポキシ粒子の表面に各々Au、 A
g、 Niy!−無電解メツキ被傍しt粒径20μmの
導電性粒子を得九〇 この時各金属の被機層のあつみは0.2μmであった。
To Example 1 3 (1) Preparation of connecting member Au, A
g, Niy! - Conductive particles with a particle size of 20 μm were obtained by electroless plating. At this time, the thickness of the coated layer of each metal was 0.2 μm.

一方、熱可塑性ポリエステル(分子量20,000.T
g7℃)100重量部とアルキルフェノール樹脂(軟化
点1o o℃)20重量部をメチルエテルケトン280
重量部中にて溶解して濃度30%の接層剤溶液をえ友。
On the other hand, thermoplastic polyester (molecular weight 20,000.T
g7℃) and 20 parts by weight of alkylphenol resin (softening point 1o℃) were mixed with 280 parts by weight of methyl ether ketone.
Dissolve in parts by weight to create a 30% concentration adhesive solution.

この接着剤溶液中に前記導電性粒子を混合シ、バーコー
タによりセパレータ(シリコン処理ポリエステルフィル
ム)上に塗布し110℃−5分間の乾燥を行ない、導電
性粒子を5体S%含有した厚み25μmのフィルム状接
続部材をえto (2)  回路の接続 ライン巾αj me、ピッチQ、2順、厚み35μmの
銅回路を有する全回路中1oommのフレキシブル回路
板(FPC)に、接着中3IllI11長さ1oomm
に切断した接続部材を載置して150℃−10kg/ば
一5秒の加熱加圧により仮貼付を行ない接続部材付FP
C’Yえた。
The conductive particles were mixed in this adhesive solution, coated on a separator (silicon-treated polyester film) using a bar coater, and dried at 110°C for 5 minutes to form a 25 μm thick film containing 5 S% conductive particles. (2) Circuit connection line width αj me, pitch Q, 2 order, 1 oomm of the total circuit having a copper circuit with a thickness of 35 μm is a flexible circuit board (FPC).
The cut connection member is placed on the FP with the connection member attached and temporarily pasted by heating and pressing at 150°C and 10kg/15 seconds.
C'Y got it.

そのあとセパレータを剥離して、他の同一ピッチを有す
る透明導電カラス(酸化インジウム回路、ガラス厚み1
mm )と顕微跳上で回路の位置合せを行ない170℃
−20kg/aflI−10秒間の加熱加圧により回路
を接続した。
After that, the separator was peeled off and another transparent conductive glass (indium oxide circuit, glass thickness 1
mm) and the circuit was aligned using a microscope jumper at 170°C.
-20kg/aflI-The circuit was connected by heating and pressurizing for 10 seconds.

<5)  tF価 回路接続部を恒温槽中に保持し、リード線を通して一2
0℃および80℃における回路の接続抵抗tマルチメー
タで測定し、あわせて隣接回路間の絶縁性をチェックし
た。絶縁性は1070以上を良好なものとした。抵抗の
測定結果は一20℃における値を規準の1.0として8
0℃における抵抗の変化率で表示し友。
<5) Hold the tF value circuit connection part in a thermostatic oven, and pass the lead wire through it.
The connection resistance of the circuit at 0° C. and 80° C. was measured using a multimeter, and the insulation between adjacent circuits was also checked. Insulation properties of 1070 or higher were considered good. Resistance measurement results are based on the standard value of 1.0 at -20°C.
Displayed as the rate of change in resistance at 0°C.

結果を第1表および第6図に示し九が、いずれも高温側
で高抵抗となる正の変化率でありt。実施例1〜6はと
もに抵抗の変化率が1.1〜1.2倍ときわめて安定し
ていた。回路接続部を透明導電膜側から顕微駒観祭し友
ところ、導電性粒子は回路面において偏平状につぶれて
接触面積が増加していることが確認できた。なお第1表
における厚みの変化とは接続後の回路間隔it)に対す
る接Wc前の接続部材の厚み(寿の変化の比(t/r 
)で表示し友。
The results are shown in Table 1 and FIG. 6. In both cases, t is a positive rate of change with high resistance on the high temperature side. In Examples 1 to 6, the rate of change in resistance was 1.1 to 1.2 times, which was extremely stable. When the circuit connection part was viewed under a microscope from the side of the transparent conductive film, it was confirmed that the conductive particles were flattened on the circuit surface, increasing the contact area. The change in thickness in Table 1 is the ratio of the change in the thickness (life) of the connecting member before contact Wc to the circuit interval it after connection (t/r
) to display friends.

比較例1 実施例1〜3と同様であるが、尋を性粒子は高分子核材
の無い粒径204℃融点170℃のハンダ粒子を用い友
。結果を第1表および第6図に示しtが、実施例1〜6
に較べて変化率は約2倍と太きかった。
Comparative Example 1 Same as Examples 1 to 3, except that solder particles with a diameter of 204° C. and a melting point of 170° C. without a polymer core material were used as the thick particles. The results are shown in Table 1 and FIG. 6, and t is for Examples 1 to 6.
The rate of change was approximately twice as large as that of .

ま之回路接続部!観察し九ところ、FPCoIIIのC
u回路面にはハンダが濡れており良好に接続できていた
が、透明導電膜面にはハンダの濡れは生じておらず点状
に接触しているだけであっ次。
Mano circuit connection part! After observing, the C of FPCoIII
The solder was wet on the u circuit surface and a good connection was made, but there was no solder wetting on the transparent conductive film surface and there was only point contact.

し友がって熱膨張収縮の大きな接着剤層の変動に対して
、金属であるハンダ粒子の変動はわずかであるためにハ
ンダ粒子はガラス回路面と不安定な接触となり、抵抗の
変化率が大きかったものと推定される。
Compared to the fluctuations in the adhesive layer, which has a large thermal expansion and contraction, the fluctuations in the metal solder particles are small, so the solder particles come into unstable contact with the glass circuit surface, and the rate of change in resistance decreases. It is estimated that it was large.

実施例4 スチレンブタジェンブロック共重合体(MI2.6)1
00重量部と軟化点130℃のロジン変性フェノ−、J
l−樹脂40重量部およびトルエン200tf部よりな
る接着剤溶液中に、Niを被覆したポリスチレン粒子を
分散して、実施例−1〜3と同様な手法により、導電!
11.′8子を2体積%含有し九庫み35μmの接続部
材を得た。
Example 4 Styrene butadiene block copolymer (MI2.6) 1
00 parts by weight and rosin modified phenol with a softening point of 130°C, J
Polystyrene particles coated with Ni were dispersed in an adhesive solution consisting of 40 parts by weight of l-resin and 200 tf parts of toluene, and conductivity was obtained using the same method as in Examples 1 to 3.
11. A connecting member containing 2% by volume of ``8'' and having a thickness of 35 μm was obtained.

ここで導電性粒子の平均粒径は30μmであり。Here, the average particle size of the conductive particles is 30 μm.

Ni被覆層の厚みは約0.5μmであった。The thickness of the Ni coating layer was about 0.5 μm.

実施例1〜6と同様に回路の接続を行ないその評価を行
なう友。回路の接続条件を変化させたときの結果を第1
表に示し九が各接続条件において抵抗の変化率は小さく
良好であり之。
A friend who connects the circuit and evaluates it in the same way as Examples 1 to 6. The first result is the result when the circuit connection conditions are changed.
As shown in the table, the rate of change in resistance is small and good under each connection condition.

接続時の温度および圧力の変化により回路接続後の厚み
の変化率は0.11〜0.71と変化した。
The rate of change in thickness after circuit connection varied from 0.11 to 0.71 due to changes in temperature and pressure during connection.

実施例5 実施例4の接続部材作製時に、Ni被堕のポリスチレン
粒子の他にさらにアトマイズN+(平均粒径10μm、
は父球状)を重加し実施例4と同様にフィルムの作製と
評111b’a’行ない結果を第1表に示した。抵抗の
変化率は良好であリ、さらに実施例5−2.5−3にお
いては回路接続後の厚みはスペーサ粒子として用いた導
電性のNi粒子の粒子径である10μmに制御さnた。
Example 5 When producing the connection member of Example 4, in addition to the Ni-corroded polystyrene particles, atomized N+ (average particle size 10 μm,
A film was prepared and evaluated in the same manner as in Example 4, with the spherical shape being spherical), and the results are shown in Table 1. The rate of change in resistance was good, and furthermore, in Example 5-2.5-3, the thickness after circuit connection was controlled to 10 μm, which is the particle diameter of the conductive Ni particles used as spacer particles.

高分子核材よりなる導電性粒子よりも小さな粒子径の導
電性スペーサを用いたことにより接続回路間のNi と
混在して高分子核材よりなる導電粒子が若干押しつぶさ
tた状態で回路間に存在し好!しい接続状態を得ること
ができ友。実施例5−1の130℃接続の場合に回路間
の厚みがスペーサ粒子径である10μm−!:で達しな
い18μmであっ之のは、高分子核材および接着剤成分
の流動性が不足し℃いるためで、さらに温度上昇などの
手段によりスペーサ厚みに制御可能である。
By using a conductive spacer with a particle size smaller than the conductive particles made of polymer core material, the conductive particles made of polymer core material are mixed with Ni between the connected circuits, and the conductive particles made of polymer core material are slightly crushed between the circuits. Good to exist! You can get new connections with your friends. In the case of connection at 130°C in Example 5-1, the thickness between the circuits is 10 μm, which is the spacer particle diameter! The reason why the spacer thickness of 18 μm is not reached is due to insufficient fluidity of the polymeric core material and the adhesive component, and the spacer thickness can be further controlled by means such as increasing the temperature.

実施例6 実施例5と同じであるがスペーサ粒子としてアトマイズ
Niの変りに絶縁性のシリカ粉(粒径10μの球状)を
・加えた。第1表のようにこの場合も良好な抵抗変化率
と接続回路間厚みの制御が可能であう之。
Example 6 The same as Example 5, except that insulating silica powder (spherical with a particle size of 10 μm) was added instead of atomized Ni as spacer particles. As shown in Table 1, in this case as well, it is possible to control the rate of change in resistance and the thickness between the connecting circuits.

絶縁性スペーサ粒子の添加は回路間のリーク防止効果も
あるとみらt、またシリカなどのいわゆる低熱膨張材の
重加は、マドIJックス(本例では接着剤)全体の熱膨
張″4を低下させることは良く知られ几事実であり本例
でもそのような効果も併せて発生しているものとみもね
る。
The addition of insulating spacer particles is thought to have the effect of preventing leakage between circuits, and the addition of so-called low thermal expansion materials such as silica reduces the thermal expansion of the entire adhesive (in this example, the adhesive) by 4. It is well known and true that this effect is occurring in this case as well.

実施例7 実施例6と同様であるが導電性粒子として平均粒径3μ
m(被覆層はNiでCL1μmの厚み)の粒子を2体積
%含有するようにして、厚み15μmのフィルム状接続
部材をえた。この場合は導電性粒子よりも大きなスペー
サ粒子を用いたことに相当する。結果は第1表のよ5に
良好な抵抗の変化率を示し、接続後の回路間厚みはスペ
ーサ粒子の粒子径に一致して得ることができに0また回
路間においては導電性粒子は数イ固が凝集して連なつて
いる様子が接続部断面の電子顕微鏡により観察できた。
Example 7 Same as Example 6, but with an average particle size of 3μ as conductive particles.
A film-like connecting member with a thickness of 15 μm was obtained by containing 2% by volume of particles of CL (the coating layer is Ni and has a thickness of CL 1 μm). This case corresponds to using spacer particles larger than the conductive particles. The results show a good rate of change in resistance as shown in Table 1, and the thickness between the circuits after connection can be obtained by matching the particle size of the spacer particles. Using an electron microscope, a cross-section of the joint was able to observe how the solids were agglomerated and connected.

(発明の効果) 以上詳述したように本発明になる(口)路の接続構造体
は、 $1it性粒子として回路接続時の加圧あるいは
加熱加圧により軟化あるいは変形可能である高分子核材
の表面に導電性の金属薄層を有する導電性粒子の作用に
より、回路面あるいは導電性粒子相互間で押しつけるよ
うに適度に変形するため、接触面積を大きくとることが
可能である。また高分子核材はその剛性や熱膨張収縮特
性が従来の金属粒子にくらべて、接着剤の性質に極めて
近いことと合せて、温度変化に対して接着剤が熱膨張収
縮変形するときも、追随して変形する九め抵抗変化の少
い接続構造体とすることが出来る。さらに高分子核材の
弾性により導電性金属の薄層は回路面に押しつけられて
存在する構造の几め回路材質に対する選択性が無い特長
を有し九とえば従来表面処理の必要であった透明導電膜
に対して轡別な表面処理なしでも信頼性に優れた有効な
接続構造体を得ることが可能となっ九。
(Effects of the Invention) As described in detail above, the (mouth) passage connection structure of the present invention comprises a polymer core that can be softened or deformed as $1it particles by pressurization or heating and pressurization during circuit connection. Due to the action of the conductive particles having a thin conductive metal layer on the surface of the material, the circuit surface or the conductive particles are appropriately deformed so as to press against each other, so it is possible to increase the contact area. In addition, the rigidity and thermal expansion/contraction properties of polymer core materials are much closer to those of adhesives than those of conventional metal particles, and even when the adhesive undergoes thermal expansion/contraction deformation due to temperature changes, It is possible to obtain a connected structure with less change in resistance due to deformation. Furthermore, due to the elasticity of the polymeric core material, the thin layer of conductive metal is pressed against the circuit surface, resulting in a reduced structure and lack of selectivity to the circuit material. It has become possible to obtain an effective connection structure with excellent reliability without special surface treatment of the conductive film.

また本発明になる接続構造体においては、導電性粒子の
核体が高分子であるために、その軟化あるいは変形域が
広いために広い接続条作中を有するので、ばらつきの少
い安定した接続構造体を得ることが可能である。
In addition, in the connected structure of the present invention, since the core of the conductive particles is a polymer, its softening or deformation range is wide, so it has a wide connecting strip, so stable connections with little variation can be achieved. It is possible to obtain a structure.

さらに接続部材中にスペーサ粒子を併用することで接続
構造体の回路間隔を制御することも可能である。
Furthermore, it is also possible to control the circuit spacing of the connection structure by using spacer particles in the connection member.

以上のように本発明は信頼性に優n九回路の接続構造体
を提供するものであるが、導電性粒子は金属を有効利用
しており、省資源上からもきわめて有意義なものである
As described above, the present invention provides a highly reliable connection structure with nine circuits, and since metal is effectively used as the conductive particles, it is extremely significant from the standpoint of resource saving.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明に係る回路接続部の構造体
を示す断面模式図、第3および4図は本発明に係る4を
性粒子の断面模式図、第5図は本発明に係る接続部材を
示す断面模式図、第6図は温度と抵抗の変化率を示すグ
ラフである。 符号の説明 1 導電性粒子   2 絶縁性接着剤3 回路   
   4 回路(透明導電膜)5 非回路部    6
 非回路部 7 基板      8 基板 9 高分子核材   10  金属薄層11  中空部 ヱン 第1図    第2図 第3図    第4図 51i!L 度(0C) 第6図 手続補正書(自発) 昭和 6148月25日 1、事件の表示 昭和61年特許願第49465号 2、発明の名称 回路の接続構造体 3、補正をする者 事件との関係     特許出願人 名 称 (4451B立化成工業株式会社明細書の「発
明の詳細な説明」の欄。 6、補正の内容 (リ 明細書第11頁第14〜15行目に「メッキ法溶
射法」とあるを[メツ中法、潅射法Jと訂正する。 (2)  明細書第12頁の第1行と第2行の間に次の
文章を挿入する。 「高分子核材のメッキ力法として、無電解メッキ法によ
る金属の形成法についての一般的な方法が適用可能であ
るが九とえは、高分子核材を必要に応じて表面粗化や親
水化処理を行ない塩化パラジウムなどの触媒付与を行な
う。 そのあと、無電解メッキ液中にて所定の温度と時間をか
けて必要により攪拌等による核材の凝集防止はかりなが
ら処理すればよい。メッキ厚みはメッキ液量や時間、温
度などの制御により可能である。 メッキ液としては、之とえはニッケルの場合には、ニッ
ケルーリン系、ニッケルーホウ素系などでよく、還元剤
としては次亜リン酸ナトリウム、はう素化水素ナトリウ
ムなどが代表的であり、銅メッキの場合には、ロッ7エ
ル塩浴とEDTA浴が代表的であり還元剤にはホルムア
ルデヒド等が用いろnる。 さらにメッキ法により金属の複合層全形成する場合を説
明する。之とえば前記したニッケル層上に金層を設ける
場合について述べると、金メッキ液はシアン化金系が一
般的であり還元型置換型いずnも適用できるが、置換型
金めっぎ法が取扱い易いことと、所望厚みからして本発
明には好ましい。 ニッケルメッキ品を金めつき液中にて所定温度で所定時
間処理すれば高分子核材/Nf/Auの複合層を有する
導電性粒子を得ることができる。」 (6)明細書第12頁第11行に「材料がある」とある
を「材料である」と訂正する。 以上
1 and 2 are schematic cross-sectional diagrams showing the structure of the circuit connection part according to the present invention, FIGS. 3 and 4 are schematic cross-sectional diagrams of the particles according to the present invention, and FIG. FIG. 6, a schematic cross-sectional view showing such a connecting member, is a graph showing temperature and resistance change rate. Explanation of symbols 1 Conductive particles 2 Insulating adhesive 3 Circuit
4 Circuit (transparent conductive film) 5 Non-circuit part 6
Non-circuit part 7 Substrate 8 Substrate 9 Polymer core material 10 Thin metal layer 11 Hollow part Figure 1 Figure 2 Figure 3 Figure 4 Figure 51i! L Degree (0C) Figure 6 Procedural Amendment (Spontaneous) August 25, 1982 1, Indication of Case 1986 Patent Application No. 49465 2, Name of Invention Circuit Connection Structure 3, Person Making Amendment Case and Relationship between Patent applicant name (4451B "Detailed description of the invention" column of Rikkasei Kogyo Co., Ltd. specification. 6. Contents of amendment ” should be corrected as [Metsu medium method, irradiation method J. (2) The following sentence should be inserted between the first and second lines on page 12 of the specification: “Plating of polymeric core material As a force method, a general method for forming metals by electroless plating can be applied, but in the ninth example, palladium chloride can be formed by subjecting the polymer core material to surface roughening and hydrophilic treatment as necessary. After that, it may be treated in an electroless plating solution at a predetermined temperature and time, taking steps to prevent agglomeration of the core material by stirring, etc. if necessary.The plating thickness is determined by the amount of plating solution and the time. This is possible by controlling the temperature, etc. The plating solution may be nickel-phosphorous, nickel-boron, etc. in the case of nickel, and the reducing agent may be sodium hypophosphite or boronate. Typical examples are sodium hydrogen hydride, and in the case of copper plating, Rocher salt baths and EDTA baths are typical, and formaldehyde etc. are used as reducing agents.Furthermore, metal composite layers can be formed using plating methods. For example, in the case where a gold layer is formed on the nickel layer described above, the gold plating solution is generally gold cyanide, and a reduction type or substitution type is also applicable. The displacement gold plating method is preferable for the present invention because of its ease of handling and the desired thickness.If a nickel-plated product is treated in a gold plating solution at a predetermined temperature for a predetermined time, the polymer core material/Nf/ Conductive particles having a composite layer of Au can be obtained.'' (6) On page 12, line 11 of the specification, the phrase ``there is a material'' is corrected to ``is a material.''

Claims (3)

【特許請求の範囲】[Claims] 1.相対峙して形成された接続用回路が電気的接続部材
により相互に接続された回路の接続構造体において、接
続部材が高分子重合体からなる核材のほゞ全表面を導電
性の金属薄層により実質的に被覆された導電性粒子と絶
縁性接着剤とからなり、前記導電性粒子は相対峙する回
路により押圧変形した状態で固定してなることを特徴と
する回路の接続構造体。
1. In a circuit connection structure in which connection circuits formed facing each other are connected to each other by an electrical connection member, the connection member is a conductive metal thin film that covers almost the entire surface of a core material made of a polymer. 1. A circuit connection structure comprising conductive particles substantially covered with a layer and an insulating adhesive, wherein the conductive particles are fixed in a press-deformed state by opposing circuits.
2.相対峙する回路の少くとも一方が透明導電膜である
特許請求の範囲第1項記載の回路の接続構造体。
2. The circuit connection structure according to claim 1, wherein at least one of the opposing circuits is a transparent conductive film.
3.相対峙して形成された接続用回路が電気的接続部材
により相互に接続された回路の接続構造体において、接
続部材が高分子重合体からなる核材のほゞ全表面を導電
性の金属薄層により実質的に被覆された導電性粒子と高
剛性のスペーサ粒子および絶縁性接着剤とからなり、前
記導電性粒子は前記スペーサ粒子により隔てられた相対
峙する回路により押圧変形した状態で固定してなること
を特徴とする回路の接続構造体。
3. In a circuit connection structure in which connection circuits formed facing each other are connected to each other by an electrical connection member, the connection member is a conductive metal thin film that covers almost the entire surface of a core material made of a polymer. It consists of conductive particles substantially covered by a layer, highly rigid spacer particles, and an insulating adhesive, and the conductive particles are fixed in a pressed deformed state by opposing circuits separated by the spacer particles. A circuit connection structure characterized by:
JP4946586A 1986-02-14 1986-03-06 Circuit connection structure Granted JPS62206772A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP4946586A JPS62206772A (en) 1986-03-06 1986-03-06 Circuit connection structure
US07/013,904 US4740657A (en) 1986-02-14 1987-02-12 Anisotropic-electroconductive adhesive composition, method for connecting circuits using the same, and connected circuit structure thus obtained
EP87301263A EP0242025B1 (en) 1986-02-14 1987-02-13 Anisotropic-electroconductive adhesive composition, method for connecting circuits using the same, and connected circuit structure thus obtained
DE8787301263T DE3770318D1 (en) 1986-02-14 1987-02-13 ANISOTROPE ELECTRICITY-CONDUCTING ADHESIVE COMPOSITION, METHOD FOR CONNECTING CIRCUITS AND THE CIRCUITS OBTAINED THEREFORE.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4946586A JPS62206772A (en) 1986-03-06 1986-03-06 Circuit connection structure

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP13590394A Division JPH0793157B2 (en) 1994-06-17 1994-06-17 Circuit connection structure

Publications (2)

Publication Number Publication Date
JPS62206772A true JPS62206772A (en) 1987-09-11
JPH0340899B2 JPH0340899B2 (en) 1991-06-20

Family

ID=12831886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4946586A Granted JPS62206772A (en) 1986-02-14 1986-03-06 Circuit connection structure

Country Status (1)

Country Link
JP (1) JPS62206772A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62243668A (en) * 1986-04-16 1987-10-24 Matsushita Electric Ind Co Ltd Antisotropic electrically conductive adhesive
JPS6447084U (en) * 1987-09-16 1989-03-23
JPH0329207A (en) * 1988-12-05 1991-02-07 Hitachi Chem Co Ltd Composition for circuit connection and connection method and connection structure of semiconductor chip using the composition
JPH03120778A (en) * 1989-10-03 1991-05-22 Mitsubishi Electric Corp Manufacture of compound wiring board
US5162087A (en) * 1990-09-03 1992-11-10 Soken Chemical & Engineering Co., Ltd. Anisotropic conductive adhesive compositions
JP2008270846A (en) * 2003-10-03 2008-11-06 Fuji Electric Device Technology Co Ltd Method for manufacturing semiconductor device
US10177465B2 (en) 2014-10-29 2019-01-08 Dexerials Corporation Electrically conductive material

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5057458A (en) * 1973-09-19 1975-05-19
JPS57111366A (en) * 1981-05-20 1982-07-10 Seikosha Co Ltd Electrically conductive adhesive
JPS58182685A (en) * 1982-04-20 1983-10-25 セイコーエプソン株式会社 Vertical energization agent for display panel
JPS5917534A (en) * 1982-07-20 1984-01-28 Seiko Epson Corp Method for conducting top and bottom of liquid crystal panel
JPS6084718A (en) * 1983-10-14 1985-05-14 日立化成工業株式会社 Conductive anisotropic adhesive sheet
JPS60117504A (en) * 1983-11-28 1985-06-25 日立化成工業株式会社 Conductive anisotropic adhesive sheet for connecting high current circuit
JPS60262489A (en) * 1984-06-11 1985-12-25 ソニ−ケミカル株式会社 Coupling sheet
JPS628407A (en) * 1985-07-04 1987-01-16 藤倉化成株式会社 Manufacture of anisotropic conducting sheet-like product
JPS62115679A (en) * 1985-11-15 1987-05-27 富士高分子工業株式会社 Electric jointing unit

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5057458A (en) * 1973-09-19 1975-05-19
JPS57111366A (en) * 1981-05-20 1982-07-10 Seikosha Co Ltd Electrically conductive adhesive
JPS58182685A (en) * 1982-04-20 1983-10-25 セイコーエプソン株式会社 Vertical energization agent for display panel
JPS5917534A (en) * 1982-07-20 1984-01-28 Seiko Epson Corp Method for conducting top and bottom of liquid crystal panel
JPS6084718A (en) * 1983-10-14 1985-05-14 日立化成工業株式会社 Conductive anisotropic adhesive sheet
JPS60117504A (en) * 1983-11-28 1985-06-25 日立化成工業株式会社 Conductive anisotropic adhesive sheet for connecting high current circuit
JPS60262489A (en) * 1984-06-11 1985-12-25 ソニ−ケミカル株式会社 Coupling sheet
JPS628407A (en) * 1985-07-04 1987-01-16 藤倉化成株式会社 Manufacture of anisotropic conducting sheet-like product
JPS62115679A (en) * 1985-11-15 1987-05-27 富士高分子工業株式会社 Electric jointing unit

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62243668A (en) * 1986-04-16 1987-10-24 Matsushita Electric Ind Co Ltd Antisotropic electrically conductive adhesive
JPS6447084U (en) * 1987-09-16 1989-03-23
JPH0329207A (en) * 1988-12-05 1991-02-07 Hitachi Chem Co Ltd Composition for circuit connection and connection method and connection structure of semiconductor chip using the composition
JPH03120778A (en) * 1989-10-03 1991-05-22 Mitsubishi Electric Corp Manufacture of compound wiring board
US5162087A (en) * 1990-09-03 1992-11-10 Soken Chemical & Engineering Co., Ltd. Anisotropic conductive adhesive compositions
JP2008270846A (en) * 2003-10-03 2008-11-06 Fuji Electric Device Technology Co Ltd Method for manufacturing semiconductor device
US10177465B2 (en) 2014-10-29 2019-01-08 Dexerials Corporation Electrically conductive material

Also Published As

Publication number Publication date
JPH0340899B2 (en) 1991-06-20

Similar Documents

Publication Publication Date Title
JP2748705B2 (en) Circuit connection members
WO2011007763A1 (en) Conductive particles, anisotropic conductive film, assembly, and connection method
US5162087A (en) Anisotropic conductive adhesive compositions
JPS62188184A (en) Adhesive compound with anisotropic conductivity and adhesivefilm for circuit connection and connection of circuits usingthose materials
WO2014007334A1 (en) Conductive particle, resin particle, conductive material, and connection structure
JP2000195339A (en) Anisotropic conductive adhesive film
JP5650611B2 (en) Anisotropic conductive film, method for manufacturing anisotropic conductive film, connection method, and joined body
JP5685473B2 (en) Anisotropic conductive film, method for manufacturing bonded body, and bonded body
TW201741416A (en) Anisotropic conductive film, connecting method and joined structure
TWI647886B (en) Anisotropic conductive film, connection structure, connection structure manufacturing method and connection method
WO2012105701A1 (en) Electroconductive particles and anisotropic conductive material using same
JP2546262B2 (en) Circuit connecting member and method of manufacturing the same
JPH07105716A (en) Covering particle and anisotropically conductive adhesive
WO2005068573A1 (en) Adhesive film and method for producing the same
JPS62206772A (en) Circuit connection structure
JPS6331905B2 (en)
WO2007099965A1 (en) Circuit connecting material, connection structure for circuit member using the same, and method for producing such connection structure
JPH07157720A (en) Film having anisotropic electrical conductivity
JPS6331906B2 (en)
JP2005146044A (en) Anisotropic conductive adhesive
JPH08148211A (en) Connection member and structure and method for connecting electrode using the same
JP4739999B2 (en) Method for manufacturing anisotropic conductive material and anisotropic conductive material
JPH10273635A (en) Connecting member for circuit and production of circuit board
JPH0793157B2 (en) Circuit connection structure
JP3782590B2 (en) Conductive fine particles, anisotropic conductive adhesive, and conductive connection structure