JPS62203328A - Plasma cvd apparatus - Google Patents

Plasma cvd apparatus

Info

Publication number
JPS62203328A
JPS62203328A JP61044191A JP4419186A JPS62203328A JP S62203328 A JPS62203328 A JP S62203328A JP 61044191 A JP61044191 A JP 61044191A JP 4419186 A JP4419186 A JP 4419186A JP S62203328 A JPS62203328 A JP S62203328A
Authority
JP
Japan
Prior art keywords
substrate
magnetic field
discharge electrode
plasma
electrons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61044191A
Other languages
Japanese (ja)
Other versions
JPH0622205B2 (en
Inventor
Hirohiko Izumi
泉 宏比古
Akira Ishibashi
暁 石橋
Yasuaki Hayashi
林 康明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP61044191A priority Critical patent/JPH0622205B2/en
Publication of JPS62203328A publication Critical patent/JPS62203328A/en
Publication of JPH0622205B2 publication Critical patent/JPH0622205B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To form a film of high quality and uniform thickness with a high speed by a method wherein a discharge electrode is provided between two substrate provided in a vacuum chamber facing each other and magnetic fields which have components making right angles with electric fields are created on both sides of the discharge electrode and further electrons are supplied into the chamber to create high density plasma regions. CONSTITUTION:Reactive gas is introduced 2 into a chamber 1 and exhausted 3 to obtain required flow, composition and pressure. A radio frequency voltage is applied to an electrode 7 to induce glow discharges between the electrode 7 and anodes 4a and 4b. Electrons created in plasmas and electrons supplied by heater-type devices 15 are captured by the components of magnetic fields making right angles with electric fields induced by devices 13. As a result, high density plasma regions are created on both sides of the electrode 7 and decomposition of the reactive gas is accelerated and films are deposited on the substrates 8 placed on the electrodes 4a and 4b with a high speed. Species of growth created in vapor phase do not give nonuniformity to the film structure as their growth is suppressed by electron bombardment. Moreover, the distances between the substrates 8 and the plasma regions are adjusted by devices 16a and 16b to make the thicknesses of the films uniform.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、プラズマ放電により原料ガスを分解して微結
晶シリコンを含むアモルファスシリコン等の非晶質半導
体や、集積回路における層間絶縁漢、パッシベーション
膜等を基板上に堆積させる場合に適用されるプラズマ0
VD装置に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention is applicable to amorphous semiconductors such as amorphous silicon containing microcrystalline silicon by decomposing raw material gas by plasma discharge, interlayer insulation in integrated circuits, and passivation. Plasma 0 applied when depositing a film etc. on a substrate
Regarding VD devices.

(従来の技術) 従来、大面積化が容易であること、薄膜化しやすいこと
、及びP、n制御が可能であること等から、太陽電池や
イメージングデバイスとして重要な素材である水素化ア
モルファスシリコン(以下a−8i:Hと記載する)ハ
、通常プラズマCVD法によって形成され、この方法に
よるものの膜質が最も良いとさ几ている。この方法にお
いては、シランガスを高周波グロー放電により分解して
a−3i:H膜を基板上に堆積させる。
(Prior art) Hydrogenated amorphous silicon (Hydrogenated amorphous silicon) has been an important material for solar cells and imaging devices because it can be easily made into a large area, easily made into a thin film, and P and n controllable. C) (hereinafter referred to as a-8i:H) is usually formed by a plasma CVD method, and it is believed that the film quality produced by this method is the best. In this method, silane gas is decomposed by high frequency glow discharge to deposit an a-3i:H film on the substrate.

この目的で従来用いらnてき友プラズマovD装置は、
高周波電工を印加する陰極と、接地さAた陽極との平行
平板型電極によって構成されている。
The conventional plasma OVD device used for this purpose is
It is composed of parallel plate electrodes consisting of a cathode for applying high-frequency electric power and an anode that is grounded.

(発明が解決しようとする問題点) ところで、このような構成のプラズマ0VD装置では、
a−3i:Hの堆積速度は、通常2乃至31/sec程
度である。そこで、この堆積速度を上げるために高周波
電力密度を増すと、プラズマ中で生成した活性種同士の
気相中での反応が顕著になり、膜構造に不均一性が生ず
ることになる。また同時にプラズマ中で生成されるイオ
ン種の膜に対する入射エネルギーが大きくなり、膜中に
欠陥を生じることになる。
(Problems to be solved by the invention) By the way, in a plasma 0VD device having such a configuration,
The deposition rate of a-3i:H is usually about 2 to 31/sec. Therefore, when the radio frequency power density is increased in order to increase the deposition rate, the reaction between the active species generated in the plasma in the gas phase becomes significant, resulting in non-uniformity in the film structure. At the same time, the incident energy of ion species generated in the plasma to the film increases, causing defects in the film.

こうした理由から、一般に電力密度の増加は膜質の低下
につながるため、高周波電力密度を増大させることによ
り堆積速度をこれ以上上げるのは困難である。
For these reasons, it is difficult to further increase the deposition rate by increasing the high frequency power density, since an increase in power density generally leads to a decrease in film quality.

一方、シランに代わってジシランやトリシランを原料ガ
スとして用い、堆積速度を上げる試みもなされているが
、これらのガスは非常に危険であるため、取り汲いが面
倒な上、排ガス処理や万一のガス漏れ事故に細心の注意
を払う必要があるだけでなく、これらガスは非常に高価
である上、純度の点でもまだ問題があり、量産装置への
使用は不適当な点が多い。
On the other hand, attempts have been made to increase the deposition rate by using disilane or trisilane as a raw material gas instead of silane, but these gases are extremely dangerous and are troublesome to collect, as well as exhaust gas treatment and emergency situations. In addition to the need to pay close attention to gas leak accidents, these gases are also very expensive and still have problems with their purity, making them unsuitable for use in mass production equipment.

更に量産装置としては多くの基板に同時に均一に膜形成
の処理を施せるものであることが望ましい。
Furthermore, as a mass production device, it is desirable that the device be able to uniformly perform film formation on many substrates at the same time.

従って本発明の目的は、プラズマCVD法による膜の高
速成膜を可能にし、良好な膜質及び均一な膜厚分布が得
られ、原料ガスを向上させることのできるプラズマ0V
D装置であり、しかも多くの基板を同時に処理できるプ
ラズマ0VD装置を提供することにある。
Therefore, an object of the present invention is to enable high-speed film formation by the plasma CVD method, obtain good film quality and uniform film thickness distribution, and improve the raw material gas.
An object of the present invention is to provide a plasma 0VD apparatus which is a D apparatus and can process many substrates simultaneously.

C問題点を解決する定めの手段) 上記の目的を達成する九めに、本発明では、真空容器内
に、加熱された基板と、高周波電圧を印加した平板状の
放電電極とを対向して設け、該真空容器内に導入し比反
応ガスをプラズマ化することにより加熱された基板上に
薄膜を形成するようにしたプラズマCVD装誼において
、前記加熱さfiた基板を複数枚用意してこれらを真空
容器内に間隔を存して対向設置すると共にその間隔内に
前記平板状の放電電極を各基板に平行して設け、誼放電
電極に電界に対し直交した成分を持つ磁界を該放電電極
の両面に形成する磁界形成装置を設け、更に該真空容器
内に電子を供給する電子供給装置を設けるようにした。
C) Determined Means for Solving Problems) Ninthly, in order to achieve the above object, in the present invention, a heated substrate and a flat discharge electrode to which a high frequency voltage is applied are placed facing each other in a vacuum container. In the plasma CVD equipment, a thin film is formed on the heated substrate by introducing the specific reaction gas into the vacuum vessel and turning it into plasma, in which a plurality of the heated substrates are prepared and these are heated. are placed facing each other with an interval in a vacuum container, and the flat discharge electrode is provided in parallel to each substrate within the interval, and a magnetic field having a component orthogonal to the electric field is applied to the discharge electrode. A magnetic field forming device is provided on both sides of the vacuum container, and an electron supply device is further provided to supply electrons into the vacuum container.

これに於て、磁界形成装置による各磁界と電子供給装置
で供給された電子とで形成される高密度プラズマ領域か
ら距離を置いて夫々基板が位置される。
In this case, each substrate is positioned at a distance from a high-density plasma region formed by each magnetic field produced by the magnetic field forming device and electrons supplied by the electron supply device.

また本発明の別の特徴によれば、本プラズマCVD装置
には、前記磁界と供給された電子とにより形成される高
密度プラズマ領域を前記基板上で走査すべく磁界形成装
置と基板の少なくとも一方をほぼ同一平面内で移動させ
る移動装置が設けられる。
According to another feature of the present invention, the present plasma CVD apparatus includes at least one of a magnetic field forming device and a substrate in order to scan a high-density plasma region formed by the magnetic field and the supplied electrons on the substrate. A moving device is provided for moving the two in substantially the same plane.

(作用) このように構成することによって、本発明の装置におい
ては、磁界形成装置で発生された電極面に平行な磁界に
より放′に!極の両面でプラズマが集中し、さらに¥a
電子供給装置ら電子が4#給されることによって高密度
プラズマ領域が形成される。この高密度プラズマ領域に
より真空容器内の反応ガスの分解が大幅に促進され、そ
の結果10λ/ sec以上の堆積速度で薄膜の形成を
行なえ、しかも放電4!極の両側は夫々基板を配置して
同時に成膜処理を施すことが出来るので生産性が良い。
(Function) With this configuration, in the device of the present invention, the magnetic field generated by the magnetic field forming device and parallel to the electrode surface can be used to emit radiation! Plasma concentrates on both sides of the pole, and further
A high-density plasma region is formed by supplying 4 # of electrons from the electron supply device. This high-density plasma region greatly accelerates the decomposition of the reactant gas in the vacuum chamber, and as a result, thin films can be formed at a deposition rate of 10λ/sec or more, and the discharge rate is 4! Since substrates can be placed on both sides of the pole and film formation can be performed simultaneously, productivity is good.

一方、反応ガスの分解が促進されることによって、原料
ガスの使用効率も大幅に向上し、特に電力密度を上げる
必要がないので膜質の低下を来たすことがない。
On the other hand, by promoting the decomposition of the reaction gas, the efficiency of using the raw material gas is greatly improved, and there is no need to particularly increase the power density, so there is no deterioration in film quality.

また基板を高密度プラズマ領域から距離を置いて位置さ
せることにより、或は該基板と該磁界形成装置の少なく
とも又は双方をほぼ同一平面内で移動装置により移動さ
せて高密度プラズマ領域で基板を走査することにより、
該基板に形成される薄膜の膜厚分布を均一化することが
出来る。
Alternatively, the substrate may be scanned in the high-density plasma region by positioning the substrate at a distance from the high-density plasma region, or by moving at least or both of the substrate and the magnetic field forming device in substantially the same plane using a moving device. By doing so,
The thickness distribution of the thin film formed on the substrate can be made uniform.

(実施例) 以下添付図面を参照して本発明の実施例について説明す
る。
(Example) Examples of the present invention will be described below with reference to the accompanying drawings.

第1図は本発明によるプラズマCVD装置の一実施例を
ゑ略的に示したもので、符号(1)は真空容器で、反応
ガス導入機構(2)と排気機構(3)とを備えている。
FIG. 1 schematically shows an embodiment of a plasma CVD apparatus according to the present invention, in which reference numeral (1) is a vacuum vessel, which is equipped with a reaction gas introduction mechanism (2) and an exhaust mechanism (3). There is.

該真空容器(1)内には、接地さA友平板状の陽向して
設置される。まt放湯極電極(4)には基板(8)の支
持装置(9)が設けられると共にこれに装着された基板
(8)を所望の温度に加熱する電気ヒータからなる加熱
機構αCが組込ま几る。0Dは加熱機構aυの電源であ
る。
Inside the vacuum container (1), a grounded A-shaped plate is placed facing forward. Furthermore, the hot water discharge electrode (4) is provided with a support device (9) for the substrate (8), and is also equipped with a heating mechanism αC consisting of an electric heater that heats the substrate (8) mounted thereon to a desired temperature. Reduce. 0D is a power source for the heating mechanism aυ.

こうし九構成は従来のものと同様であるが、本発明のも
のでは真空容器(1)内に対向させて1対の陽極電極(
4m) (4b)を設けることにより複数枚の基板(8
1(81を対向設置するようにし、その間隔(17J内
に放tt極(7)を設けるようにし一該放電電極(7)
に電界に対し直交した成分を持つ磁界を該を極(7)の
両面に発生させる磁界形成装置(13を設け、更に真空
容器(11内に、電源Iからの通電により発熱して電子
を放出するヒータ形の電子供給装置(lりを設けるよう
にし蛇。
Although this configuration is similar to the conventional one, the one of the present invention has a pair of anode electrodes (1) facing each other in the vacuum container (1).
By providing 4 m) (4b), multiple boards (8
1 (81) are installed facing each other, and a discharge electrode (7) is provided within the interval (17J).
A magnetic field forming device (13) is provided which generates a magnetic field having a component orthogonal to the electric field on both sides of the pole (7), and a vacuum container (11) is provided with a magnetic field forming device (13) that generates heat and emits electrons by applying electricity from the power source I. A heater-type electronic supply device (preferably equipped with a heater-type electronic supply device).

このように構成した図示装置の作動は次の通りである。The operation of the illustrated apparatus constructed in this way is as follows.

まず、真空9 Hfil内に反応ガス導入機構(2)に
よりシランガス等の反応ガスを導入し、この反応ガス導
入機構(2)と排気機構(3)とにより該容器(1)内
を所望のガス組成、ガス流量及び圧力に調節し、その後
放電電極(7)に高層波電圧を印加してこれと各@極電
極(4a) (4b)との間にグロー放電を発生させる
。この時、プラズマ中で発生した電子及び電子供給装置
(151により供給された電子は、磁界形成装置(13
1の電界と直交する成分を有する磁界によって捕えられ
、この部分における電子密度が極めて高くなる。その結
果、高密度プラズマ領域が放電11L極(7)の両側に
形成され、反応ガスの分解が促進されて10 X / 
see以上の高速で各陽極電極(4a) (4b)に設
けた基板f8) (81上に膜の堆積を丘なえる。この
場合、電力密度は通常のプラズマCVD装置と同程度で
あるため、膜に対する入射イオンのエネルギーは大きく
なることはない。また、電子密度が極めて高くなってい
るために、活性1同士の反応で気相中に生成される成長
核も電子衝撃のために成長が押割され、従つ”C1膜中
の構造に不均一性を与えることがなく、膜質の低下は生
じない。
First, a reaction gas such as silane gas is introduced into the vacuum 9 Hfil by the reaction gas introduction mechanism (2), and the reaction gas introduction mechanism (2) and exhaust mechanism (3) pump the inside of the container (1) into a desired gas. After adjusting the composition, gas flow rate and pressure, a high wave voltage is applied to the discharge electrode (7) to generate a glow discharge between it and each @ electrode (4a) (4b). At this time, the electrons generated in the plasma and the electrons supplied by the electron supply device (151) are transferred to the magnetic field forming device (13
They are captured by a magnetic field having a component perpendicular to the electric field of 1, and the electron density in this part becomes extremely high. As a result, high-density plasma regions are formed on both sides of the discharge 11L pole (7), and the decomposition of the reactant gas is promoted to 10
The film is deposited on the substrate f8) (81) provided on each anode electrode (4a) (4b) at a high speed higher than The energy of the incident ions does not increase.Also, because the electron density is extremely high, the growth of the growth nuclei generated in the gas phase by the reaction between active 1s is also suppressed due to electron bombardment. Therefore, no non-uniformity is imparted to the structure in the C1 film, and no deterioration in film quality occurs.

更に一枚の放il!電極(7)への通電でその両側に設
は次基板(81(81に同時に瞑を形成出来るので生産
性が良い。
One more release! By energizing the electrode (7), the electrodes (81) can be formed on both sides at the same time, resulting in good productivity.

尚、各基板(8)は、これに形成される膜厚を均一化す
るために高密度プラズマ領域から距離を置いて位置され
るが、その距離の調節を陽極電極(4a) (4’b)
に設は九昇降装fl C16a)(161))で行なえ
るようにした。
Each substrate (8) is positioned at a distance from the high-density plasma region in order to equalize the thickness of the film formed thereon, but the distance can be adjusted using the anode electrodes (4a) (4'b). )
The installation can be done using nine elevators (fl C16a) (161)).

また、本発明の第2発明の実施例は、第2図乃至第4図
に見られる如くであり、移動装置αηにより磁界形成装
置03)と基板+81 +81の少なくとも一方をほぼ
同一平面内で移動させ、これにより高密度プラズマ領域
か基板(8)上を走査して形成される膜厚分布がより一
層均−になるようにした。これを具体的に説明すると、
第2図示の例は、放TL電極(7)の全体が移動装置α
Dにより間隔UJO側方に往復移動されて高密度プラズ
マ領域で基板(8)を走査するように構成したものを示
し、第3図示のものは放i’x極(7)内に複数個の永
久磁石で構成したl赤形成装置αJを移動自在に設け、
放’a電極(7)は動かさずに磁界形成装置σJだけが
移動装置αηにより間隔(1′3の側方に移動されるよ
うにした例を示す。また、第4図は2台の移動装置(1
7)で基板(8)を取付は之陽極電極(4a)(4b)
を夫々移動する構成とした実施例である。
Further, the embodiment of the second invention of the present invention is as shown in FIGS. 2 to 4, in which at least one of the magnetic field forming device 03) and the substrates +81 and +81 is moved in substantially the same plane by the moving device αη. This made the film thickness distribution formed by scanning the high-density plasma region over the substrate (8) more uniform. To explain this specifically,
In the example shown in the second figure, the entire discharge TL electrode (7) is moved by the moving device α.
D shows a configuration configured to scan the substrate (8) in a high-density plasma region by reciprocating laterally at intervals UJO, and the one shown in the third figure has a plurality of A red forming device αJ composed of a permanent magnet is provided movably,
An example is shown in which only the magnetic field forming device σJ is moved to the side of the distance (1'3) by the moving device αη without moving the releasing electrode (7). Equipment (1
7) Attach the substrate (8) to the anode electrodes (4a) (4b)
This is an embodiment configured to move each of the two.

なお、図示してはないが、基板(8)及び磁界形成装置
0Qの両方を移動装置αDで移動させ、基板(8)を高
密度プラズマ領域で走査することも可能である。
Although not shown, it is also possible to move both the substrate (8) and the magnetic field forming device 0Q by a moving device αD to scan the substrate (8) in the high-density plasma region.

基板(8)の高密度プラズマ領域に近い部分は、遠い部
分よりも薄膜形成速度が多少速く、近い部分の膜厚が他
の部分よりも厚くなり易いが、前記のように高密度プラ
ズマ領域を走査移動させることにより基板(8)の膜厚
の分布が均一化される。
The thin film formation rate is somewhat faster in the parts of the substrate (8) near the high-density plasma region than in the parts far away, and the film thickness in the near parts tends to be thicker than in other parts. By scanning and moving, the film thickness distribution of the substrate (8) is made uniform.

(発明の効果) 以上のように、本発明によれば、対向して設は念基板間
に放電[極を設け、該放電電極にはその両面に電界と直
交した成分を持つ磁界を形成する磁界形成装置を設ける
ようにし、更に真空容器内に電子を供給する電子供給装
置を設けたので、その磁界と供給された電子とKより放
電電極の両側に高密度プラズマ領域を形成することが出
来、これにより反応ガスの分解が大幅に危険で高価なガ
スを使用せずに高速成膜を行なえ、しかも放ti!極の
両側に於て基板に成膜出来るのでプラズマCVD装置の
生産性が大幅に向上し、大電力を必要としないので膜質
の低下を防止出来る等の効果を得られ、更に@2発明に
よれば、これらの効果に加え、膜厚の分布を均一化する
ことが出来る効果がある。
(Effects of the Invention) As described above, according to the present invention, a discharge electrode is provided between the opposing substrates, and a magnetic field having a component perpendicular to the electric field is formed on both surfaces of the discharge electrode. Since a magnetic field forming device is provided and an electron supplying device is further provided to supply electrons into the vacuum vessel, a high-density plasma region can be formed on both sides of the discharge electrode by the magnetic field, the supplied electrons, and K. This makes it possible to perform high-speed film formation without using expensive gases that are significantly dangerous to decompose the reaction gases. Since the film can be formed on the substrate on both sides of the pole, the productivity of the plasma CVD apparatus is greatly improved, and since a large amount of power is not required, deterioration of film quality can be prevented. For example, in addition to these effects, the film thickness distribution can be made uniform.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1発明の実施例のプラズマCVD装
置を示す概路線図、第2図乃至第4図は本発明の第2発
明の実施例の概路線図である。
FIG. 1 is a schematic diagram showing a plasma CVD apparatus according to a first embodiment of the present invention, and FIGS. 2 to 4 are schematic diagrams showing a plasma CVD apparatus according to a second embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1 真空容器内に、加熱された基板と、高周波電圧を印
加した平板状の放電電極とを対向して設け、該真空容器
内に導入した反応ガスをプラズマ化することにより加熱
された基板上に薄板を形成するようにしたプラズマCV
D装置において、前記加熱された基板を複数枚用意して
これらを真空容器内に間隔を存して対向設置すると共に
その間隔内に前記平板状の放電電極を各基板に平行して
設け、該放電電極に、電界に対し直交した成分を持つ磁
界を該放電電極の両面に形成する磁界形成装置を設け、
更に該真空容器内に電子を供給する電子供給装置を設け
たことを特徴とするプラズマCVD装置。 2 前記磁界形成装置による各磁界と前記電子供給装置
で供給された電子とで形成される高密度プラズマ領域か
ら距離を置いて夫々基板を位置させることを特徴とする
特許請求の範囲第1項に記載のプラズマCVD装置。 3 真空容器内に、加熱された基板と、高周波電圧を印
加した平板状の放電電極とを対向して設け、該真空容器
内に導入した反応ガスをプラズマ化することにより加熱
された基板上に薄板を形成するようにしたプラズマCV
D装置において、前記加熱された基板を複数枚用意して
これらを真空容器内に間隔を存して対向設置すると共に
その間隔内に前記平板状の放電電極を各基板に平行して
設け、該放電電極に、電界に対し直交した成分を持つ磁
界を該放電電極の両面に形成する磁界形成装置を設け、
更に該真空容器内に電子を供給する電子供給装置を設け
、該磁界と供給された電子とにより形成される高密度プ
ラズマ領域を該基板上で走査すべく該磁界形成装置と該
基板の少なくとも一方をほぼ同一平面内で移動させる移
動装置を設けたことを特徴とするプラズマCVD装置。
[Claims] 1. A heated substrate and a flat discharge electrode to which a high-frequency voltage is applied are provided in a vacuum container so as to face each other, and a reaction gas introduced into the vacuum container is turned into plasma. Plasma CV that forms a thin plate on a heated substrate
In apparatus D, a plurality of the heated substrates are prepared and placed facing each other with a gap between them in a vacuum container, and the flat discharge electrode is provided in parallel to each substrate within the gap. The discharge electrode is provided with a magnetic field forming device that forms a magnetic field having a component perpendicular to the electric field on both sides of the discharge electrode,
A plasma CVD apparatus further comprising an electron supply device for supplying electrons into the vacuum vessel. 2. According to claim 1, each substrate is positioned at a distance from a high-density plasma region formed by each magnetic field generated by the magnetic field forming device and electrons supplied by the electron supply device. The plasma CVD apparatus described above. 3. A heated substrate and a flat discharge electrode to which a high frequency voltage is applied are provided facing each other in a vacuum container, and a reaction gas introduced into the vacuum container is turned into plasma, so that the heated substrate is heated. Plasma CV for forming thin plates
In apparatus D, a plurality of the heated substrates are prepared and placed facing each other with a gap between them in a vacuum container, and the flat discharge electrode is provided in parallel to each substrate within the gap. The discharge electrode is provided with a magnetic field forming device that forms a magnetic field having a component perpendicular to the electric field on both sides of the discharge electrode,
Furthermore, an electron supply device for supplying electrons is provided in the vacuum container, and at least one of the magnetic field generation device and the substrate is configured to scan a high-density plasma region formed by the magnetic field and the supplied electrons on the substrate. 1. A plasma CVD apparatus characterized by being provided with a moving device that moves the parts within substantially the same plane.
JP61044191A 1986-03-03 1986-03-03 Plasma CVD equipment Expired - Lifetime JPH0622205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61044191A JPH0622205B2 (en) 1986-03-03 1986-03-03 Plasma CVD equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61044191A JPH0622205B2 (en) 1986-03-03 1986-03-03 Plasma CVD equipment

Publications (2)

Publication Number Publication Date
JPS62203328A true JPS62203328A (en) 1987-09-08
JPH0622205B2 JPH0622205B2 (en) 1994-03-23

Family

ID=12684676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61044191A Expired - Lifetime JPH0622205B2 (en) 1986-03-03 1986-03-03 Plasma CVD equipment

Country Status (1)

Country Link
JP (1) JPH0622205B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2713668A1 (en) * 1993-12-13 1995-06-16 Leybold Ag Method and device for vacuum coating optical lenses with optical layers.
US20130272930A1 (en) * 2009-02-17 2013-10-17 Mcalister Technologies, Llc Induction for thermochemical processes, and associated systems and methods
US8771636B2 (en) 2008-01-07 2014-07-08 Mcalister Technologies, Llc Chemical processes and reactors for efficiently producing hydrogen fuels and structural materials, and associated systems and methods
US8821602B2 (en) 2011-08-12 2014-09-02 Mcalister Technologies, Llc Systems and methods for providing supplemental aqueous thermal energy
US8911703B2 (en) 2011-08-12 2014-12-16 Mcalister Technologies, Llc Reducing and/or harvesting drag energy from transport vehicles, including for chemical reactors, and associated systems and methods
US8926719B2 (en) 2013-03-14 2015-01-06 Mcalister Technologies, Llc Method and apparatus for generating hydrogen from metal
US8926908B2 (en) 2010-02-13 2015-01-06 Mcalister Technologies, Llc Reactor vessels with pressure and heat transfer features for producing hydrogen-based fuels and structural elements, and associated systems and methods
US9188086B2 (en) 2008-01-07 2015-11-17 Mcalister Technologies, Llc Coupled thermochemical reactors and engines, and associated systems and methods
US9206045B2 (en) 2010-02-13 2015-12-08 Mcalister Technologies, Llc Reactor vessels with transmissive surfaces for producing hydrogen-based fuels and structural elements, and associated systems and methods
US9302681B2 (en) 2011-08-12 2016-04-05 Mcalister Technologies, Llc Mobile transport platforms for producing hydrogen and structural materials, and associated systems and methods
US9309473B2 (en) 2011-08-12 2016-04-12 Mcalister Technologies, Llc Systems and methods for extracting and processing gases from submerged sources
US9522379B2 (en) 2011-08-12 2016-12-20 Mcalister Technologies, Llc Reducing and/or harvesting drag energy from transport vehicles, including for chemical reactors, and associated systems and methods

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2713668A1 (en) * 1993-12-13 1995-06-16 Leybold Ag Method and device for vacuum coating optical lenses with optical layers.
US9188086B2 (en) 2008-01-07 2015-11-17 Mcalister Technologies, Llc Coupled thermochemical reactors and engines, and associated systems and methods
US8771636B2 (en) 2008-01-07 2014-07-08 Mcalister Technologies, Llc Chemical processes and reactors for efficiently producing hydrogen fuels and structural materials, and associated systems and methods
US20130272930A1 (en) * 2009-02-17 2013-10-17 Mcalister Technologies, Llc Induction for thermochemical processes, and associated systems and methods
US9541284B2 (en) 2010-02-13 2017-01-10 Mcalister Technologies, Llc Chemical reactors with annularly positioned delivery and removal devices, and associated systems and methods
US9206045B2 (en) 2010-02-13 2015-12-08 Mcalister Technologies, Llc Reactor vessels with transmissive surfaces for producing hydrogen-based fuels and structural elements, and associated systems and methods
US8926908B2 (en) 2010-02-13 2015-01-06 Mcalister Technologies, Llc Reactor vessels with pressure and heat transfer features for producing hydrogen-based fuels and structural elements, and associated systems and methods
US8821602B2 (en) 2011-08-12 2014-09-02 Mcalister Technologies, Llc Systems and methods for providing supplemental aqueous thermal energy
US9302681B2 (en) 2011-08-12 2016-04-05 Mcalister Technologies, Llc Mobile transport platforms for producing hydrogen and structural materials, and associated systems and methods
US9309473B2 (en) 2011-08-12 2016-04-12 Mcalister Technologies, Llc Systems and methods for extracting and processing gases from submerged sources
US9522379B2 (en) 2011-08-12 2016-12-20 Mcalister Technologies, Llc Reducing and/or harvesting drag energy from transport vehicles, including for chemical reactors, and associated systems and methods
US8911703B2 (en) 2011-08-12 2014-12-16 Mcalister Technologies, Llc Reducing and/or harvesting drag energy from transport vehicles, including for chemical reactors, and associated systems and methods
US9617983B2 (en) 2011-08-12 2017-04-11 Mcalister Technologies, Llc Systems and methods for providing supplemental aqueous thermal energy
US8926719B2 (en) 2013-03-14 2015-01-06 Mcalister Technologies, Llc Method and apparatus for generating hydrogen from metal

Also Published As

Publication number Publication date
JPH0622205B2 (en) 1994-03-23

Similar Documents

Publication Publication Date Title
KR101529578B1 (en) Apparatus and method for treating substrate using plasma
JPH05275345A (en) Plasma cvd method and its device
US6855377B2 (en) Deposited film forming apparatus and deposited film forming method
US6172322B1 (en) Annealing an amorphous film using microwave energy
JP2005005280A (en) Method for passivating semiconductor substrate
JPS62203328A (en) Plasma cvd apparatus
JP2970654B1 (en) Thin film forming equipment
US6638359B2 (en) Deposited film forming apparatus and deposited film forming method
JP2000068227A (en) Method for processing surface and device thereof
JP3117366B2 (en) Plasma processing equipment
CN111586958A (en) Push-pull linear plasma source and application thereof
JPH0420985B2 (en)
JPH0249386B2 (en) PURAZUMACVD SOCHI
JP2608456B2 (en) Thin film forming equipment
JPS62209821A (en) Plasma cvd apparatus
JPS62205618A (en) Plasma cvd unit
JPS62159419A (en) Apparatus for forming amorphous semiconductor thin film
JPS62124277A (en) Plasma cvd device
JPS62177180A (en) Surface treatment
JPH0249385B2 (en) PURAZUMACVD SOCHI
JP2687468B2 (en) Thin film forming equipment
JP2005116740A (en) Plasma processing apparatus
JP2649330B2 (en) Plasma processing method
JP2636215B2 (en) Deposition film forming equipment
JPH01298174A (en) Formation of thin film using ion cyclotron resonance and device therefor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term