JPS6220174B2 - - Google Patents

Info

Publication number
JPS6220174B2
JPS6220174B2 JP58189671A JP18967183A JPS6220174B2 JP S6220174 B2 JPS6220174 B2 JP S6220174B2 JP 58189671 A JP58189671 A JP 58189671A JP 18967183 A JP18967183 A JP 18967183A JP S6220174 B2 JPS6220174 B2 JP S6220174B2
Authority
JP
Japan
Prior art keywords
reaction
alcohol
cyclopentene
results
oxidizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58189671A
Other languages
Japanese (ja)
Other versions
JPS6081139A (en
Inventor
Katsuomi Takehira
Takashi Hayakawa
Toshio Ishikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP58189671A priority Critical patent/JPS6081139A/en
Publication of JPS6081139A publication Critical patent/JPS6081139A/en
Publication of JPS6220174B2 publication Critical patent/JPS6220174B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、シクロペンテンを液相で酸化してシ
クロペンタノンを製造する方法に関するものであ
り、さらに詳しくは、本発明は、液相でアルコー
ルの共存下、触媒としてパラジウム化合物を用
い、有機過酸化物によりシクロペンテンを酸化し
てシクロペンタノンを製造する方法に関するもの
である。 シクロペンタノンは、ナイロンあるいはポリエ
ステル用モノマーの原料として現在大量に生産さ
れているシクロヘキサノンと同様に環状ケトンで
あり、類似の物理化学的性質を有し、工業的に生
産が可能となれば、6・10−ナイロン製造用セバ
シン酸等の合成高分子用モノマーの原料としての
需要が見込まれる他、その高い反応性のために多
種の誘導体の開発が可能であり、工業的に極めて
有用な物質である。同時に、本発明の製造方法の
原料であるシクロペンテンは、ナフサクラツキン
グ混合物のC5留分中に多く含まれその用途開発
が重要な課題となつているシクロペンタジエンを
部分水素添加(例えば特公昭56−1292)すること
により、高収率で容易に得られる。 過酸化物を酸化剤とするオレフインの酸化法
は、モリブテン系触媒によるプロピレンからプロ
ピレンオキシドの製造がハルコン法として注目さ
れて以来多くの研究がなされており、過酸化水
素、あるいは過酢酸、第三級ブチルヒドロペルオ
キシド、エチルベンゼンヒドロペルオキシド等の
有機過酸化物を酸化剤として種々の酸化反応が検
討されている。特に過酸化水素は副生物として水
を生成する点で、また第三級ブチルヒドロペルオ
キシドは有機試薬中に完全に溶解しかつ安定であ
る点で実用的に有利と考えられ、近年これらの過
酸化物を用いる酸化反応についての検討が進んで
いる〔J.Mol.Catal.、20 1(1983)〕。 しかるに、オレフインの酸化に有機過酸化物を
用いた例としては、現在までハルコン法型のオレ
フインのエポキシ化反応および主としてロジウム
系触媒による鎖状末端オレフインからのメチルケ
トンの製造〔J.Mol.Catal.、、1(1980)〕が
報告されているのみである。還状の内部オレフイ
ンであるシクロペンテンの酸化によるシクロペン
タノンの製造に有機過酸化物を用いた例は認めら
れない。 また、過酸化水素を酸化剤として用い、パラジ
ウム化合物、モリブデン系ヘテロポリ酸を触媒と
してシクロペンテンを酸化すると、2−シクロペ
ンテン−1−オン、シクロペンタノールの副生物
が多量に生成しシクロペンタノンの選択率は50%
以下となり(特開昭59−80619)、シクロペンタノ
ンの製造法としては有利な方法とはいえない。 本発明者らは、シクロペンテン酸化によるシク
ロペンタノンの製造法について鋭意研究を重ねた
結果、アルコール、の溶媒中でパラジウム化合物
触媒の存在下、第三級ブチルヒドロペルオキシド
等の有機過酸化物を酸化剤としてシクロペンテン
を酸化することにより、シクロペンテンが効率的
に酸化されてシクロペンタノンとなることを見出
し、この知見に基づいて本発明を完成するに到つ
た。 すなわち、本発明は、液相でパラジウム化合物
触媒の存在下、酸化剤として有機過酸化物を用い
てシクロペンテンを酸化することを特徴とするシ
クロペンタノンの製造方法を提供するものであ
る。 本発明で用いる酸化反応は、酸化剤として有機
過酸化物を用いる液相酸化反応であり、液相条件
は、アルコール溶媒を用いて形成される。この場
合、有機溶媒としては、種々のものが適用され、
一般的には、炭素数1〜20の脂肪族アルコールあ
るいはそれらの芳香環置換アルコール、で室温〜
200℃の反応温度範囲で液状のもので、かつ触媒
金属種を溶解し得るものであれば炭素鎖の環状お
よび鎖状、直鎖および分岐、あるいは一級、二級
および三級の如何を問わずに特に制限はないが、
メチルアルコール、エチルアルコール、プロピル
アルコール、イソプロピルアルコール、ブチルア
ルコール、イソブチルアルコール、ペンチルアル
コールあるいはヘキシルアルコールのような炭素
数1〜6でかつ一級または二級の脂肪族アルコー
ルまたはベンジルアルコール、フエニルエチルア
ルコールあるいはフエニルプロピルアルコールの
ような一級の芳香環置換アルコールが良好な反応
結果を与える。また、これらの溶媒は単独である
いは他のベンゼン、シクロヘキサン、水等の上記
溶媒と相溶性のある溶剤との混合溶媒としても用
いられ得る。 酸化剤として用いる有機過酸化物としては従来
公知の種々のものが適用され、例えば、第三級ブ
チルヒドロペルオキシド、クメンヒドロペルオキ
シド、エチルベンゼンヒドロペルオキシド等の有
機過酸化物、過酢酸、過安息香酸等の有機過酸等
が適用される。 パラジウム化合物触媒の添加量は、シクロペン
テンに対して0.001〜10重量%、好ましくは0.01
〜1重量%、酸化剤の有機過酸化物の添加量はシ
クロペンテンに対して過酸化物活性酸素量で0.1
〜20当量、好ましくは1〜3当量、反応雰囲気の
ガスは窒素、ヘリウム等の不活性ガス、空気ある
いは酸素のいずれを用いてもよく常圧〜30Kg/cm2
の範囲で有効である。反応温度は室温〜200℃付
近の温度で行なうことができるが、あまり低温す
ぎると反応速度が遅くなり、一方、高すぎると溶
媒の損失あるいは副反応が多くなるので40〜150
℃の範囲で実施することが好ましい。また、本発
明においては、反応系に微量の塩酸、硝酸等の無
機酸や、塩化リチウム、塩化ナトリウム等の塩化
物を共存させることもできる。 本発明で用いる触媒は、従来公知のパラジウム
化合物触媒であり、このようなものには、例え
ば、ハロゲン化物、無機酸塩、有機酸塩、有機錯
塩等が包含され、前記有機溶媒に可溶性のもので
あれば特に制約を受けないが、殊に、塩化パラジ
ウム、塩化パラジウム酸ナトリウム等の塩化物が
良好な反応成績を示す。 次に実施例により本発明の詳細を説明するが、
本発明は下記実施例にのみ限定されるものではな
い。 実施例 1 シクロペンテン5ml、エチルアルコール20ml、
塩化パラジウム0.7mmol、第三級ブチルヒドロペ
ルオキシド69.3%水溶液10mlを100mlガラス製容
器に仕込み、反応温度50℃、窒素雰囲気下で5時
間反応させ、その1時間毎に反応生成物を分析し
た。その結果を表−1に示す。 実施例 2 実施例1で塩化パラジウム0.6mmol、第三級ブ
チルヒドロペルオキシド69.3%水溶液5mlを用
い、反応温度60℃で実施例1と同様な方法で反応
させ分析した。その結果を表−1に示す。 実施例 3 実施例1で塩化パラジウム0.6mmol、第三級ブ
チルヒドロペルオキシド69.3%水溶液5mlを用
い、実施例1と同様な方法で反応させ分析した。
その結果を表−1に示す。 実施例 4 実施例3で酸素雰囲気下で実施例3と同様な方
法で反応させ分析した。その結果を表−1に示
す。 実施例 5 実施例1で塩化パラジウム0.52mmol、第三級
ブチルヒドロペルオキシド69.3%水溶液1mlを用
い、酸素雰囲気下で実施例1と同様な方法で反応
させ分析した。その結果を表−1に示す。 実施例 6 シクロペンテン5ml、エチルアルコール20ml、
塩化パラジウム0.62mmol、第三級ブチルヒドロ
ペルオキシド69.3%水溶液5ml、7.0%塩酸1ml
を100mlガラス製容器に仕込み、反応温度50℃、
窒素雰囲気下で5時間反応させ、その1時間毎に
反応生成物を分析した。その結果を表−1に示
す。 実施例 7 実施例6で7.0%塩酸の代りに3.5%塩酸を用
い、実施例6と同様な方法で反応させ分析した。
その結果を表−1に示す。 比較例 1 実施例3で第三級ブチルヒドロペルオキシド
69.3%水溶液の代りに、過酸化水素31%水溶液を
を用い、実施例3と同様な方法で反応させ分析し
た。その結果を表−1に示す。 実施例 8 実施例3でエチルアルコールの代りにイソプロ
ピルアルコールを用い、実施例3と同様な方法で
反応させ分析した。その結果を表−1に示す。 比較例 2 実施例3でエチルアルコールの代りにジオキサ
ンを用い、実施例3と同様な方法で反応させ分析
した。その結果を表−1に示す。 比較例 3 実施例3で塩化パラジウムの代りに塩化ロジウ
ム(RhCl3・3H2O)を用い、実施例3と同様な
方法で反応させ分析した。その結果を表−1に示
す。 比較例 4 実施例3で塩化パラジウムの代りに硝酸パラジ
ウムを用い、実施例3と同様な方法で反応させ分
析した。その結果を表−1に示す。
The present invention relates to a method for producing cyclopentanone by oxidizing cyclopentene in a liquid phase.More specifically, the present invention relates to a method for producing cyclopentanone by oxidizing cyclopentene in a liquid phase. The present invention relates to a method for producing cyclopentanone by oxidizing cyclopentene with a substance. Cyclopentanone is a cyclic ketone similar to cyclohexanone, which is currently produced in large quantities as a raw material for nylon or polyester monomers, and has similar physicochemical properties.・It is expected to be in demand as a raw material for synthetic polymer monomers such as sebacic acid for the production of 10-nylon, and its high reactivity makes it possible to develop a wide variety of derivatives, making it an extremely useful substance industrially. be. At the same time, cyclopentene, which is a raw material for the production method of the present invention, is produced by partial hydrogenation (e.g., 56-1292), it can be easily obtained in high yield. The oxidation method of olefins using peroxide as an oxidizing agent has been extensively researched since the production of propylene oxide from propylene using a molybdenum catalyst attracted attention as the Halcon method. Various oxidation reactions have been investigated using organic peroxides such as butyl hydroperoxide and ethylbenzene hydroperoxide as oxidizing agents. In particular, hydrogen peroxide is considered to be practically advantageous in that it produces water as a by-product, and tertiary-butyl hydroperoxide is completely soluble and stable in organic reagents, and these peroxides have recently been developed. Studies on oxidation reactions using substances are progressing [J. Mol. Catal., 20 1 (1983)]. However, to date, examples of using organic peroxides to oxidize olefins include the epoxidation reaction of olefins using the Halcon method and the production of methyl ketones from chain-terminated olefins using mainly rhodium-based catalysts [J.Mol.Catal. , 7 , 1 (1980)]. There are no examples of the use of organic peroxides in the production of cyclopentanone by oxidation of cyclopentene, a cyclic internal olefin. In addition, when cyclopentene is oxidized using hydrogen peroxide as an oxidizing agent and a palladium compound or a molybdenum-based heteropolyacid as a catalyst, a large amount of by-products such as 2-cyclopenten-1-one and cyclopentanol are produced, and cyclopentanone is selected. rate is 50%
The following results (Japanese Patent Application Laid-Open No. 59-80619) cannot be said to be an advantageous method for producing cyclopentanone. As a result of intensive research into a method for producing cyclopentanone by oxidizing cyclopentene, the present inventors have discovered that organic peroxides such as tertiary-butyl hydroperoxide can be oxidized in the presence of a palladium compound catalyst in a solvent of alcohol. The inventors have discovered that by oxidizing cyclopentene as an agent, cyclopentene can be efficiently oxidized to cyclopentanone, and based on this knowledge, they have completed the present invention. That is, the present invention provides a method for producing cyclopentanone, which comprises oxidizing cyclopentene in a liquid phase in the presence of a palladium compound catalyst using an organic peroxide as an oxidizing agent. The oxidation reaction used in the present invention is a liquid phase oxidation reaction using an organic peroxide as an oxidizing agent, and the liquid phase condition is formed using an alcohol solvent. In this case, various organic solvents can be used,
Generally, aliphatic alcohols having 1 to 20 carbon atoms or aromatic ring-substituted alcohols are used at room temperature to
Regardless of whether the carbon chain is cyclic or linear, linear or branched, or primary, secondary or tertiary, as long as it is liquid in the reaction temperature range of 200℃ and can dissolve the catalytic metal species. There are no particular restrictions on
A primary or secondary aliphatic alcohol having 1 to 6 carbon atoms such as methyl alcohol, ethyl alcohol, propyl alcohol, isopropyl alcohol, butyl alcohol, isobutyl alcohol, pentyl alcohol or hexyl alcohol, benzyl alcohol, phenylethyl alcohol or Primary aromatic ring-substituted alcohols such as phenylpropyl alcohol give good reaction results. Further, these solvents can be used alone or as a mixed solvent with other solvents that are compatible with the above-mentioned solvents, such as benzene, cyclohexane, and water. Various conventionally known organic peroxides can be used as the oxidizing agent, such as organic peroxides such as tertiary butyl hydroperoxide, cumene hydroperoxide, and ethylbenzene hydroperoxide, peracetic acid, perbenzoic acid, etc. Organic peracids etc. are applied. The amount of palladium compound catalyst added is 0.001 to 10% by weight, preferably 0.01% by weight based on cyclopentene.
~1% by weight, and the amount of organic peroxide added as an oxidizing agent is 0.1 in peroxide active oxygen amount relative to cyclopentene.
~20 equivalents, preferably 1 to 3 equivalents; the reaction atmosphere gas may be nitrogen, an inert gas such as helium, air, or oxygen; normal pressure ~30 Kg/cm 2
Valid within the range of The reaction temperature can be from room temperature to around 200℃, but if it is too low, the reaction rate will be slow, while if it is too high, there will be a lot of solvent loss or side reactions.
Preferably, the temperature is within the range of .degree. Further, in the present invention, trace amounts of inorganic acids such as hydrochloric acid and nitric acid, and chlorides such as lithium chloride and sodium chloride may be present in the reaction system. The catalyst used in the present invention is a conventionally known palladium compound catalyst, and includes, for example, halides, inorganic acid salts, organic acid salts, organic complex salts, etc., and those that are soluble in the organic solvent. Although there are no particular restrictions, chlorides such as palladium chloride and sodium chloride palladate show particularly good reaction results. Next, the details of the present invention will be explained with reference to Examples.
The present invention is not limited only to the following examples. Example 1 5 ml of cyclopentene, 20 ml of ethyl alcohol,
A 100 ml glass container was charged with 0.7 mmol of palladium chloride and 10 ml of a 69.3% aqueous solution of tertiary butyl hydroperoxide, and the reaction was allowed to proceed for 5 hours at a reaction temperature of 50° C. under a nitrogen atmosphere, and the reaction product was analyzed every hour. The results are shown in Table-1. Example 2 A reaction was conducted in the same manner as in Example 1 using 0.6 mmol of palladium chloride and 5 ml of a 69.3% aqueous solution of tertiary-butyl hydroperoxide at a reaction temperature of 60°C. The results are shown in Table-1. Example 3 A reaction was carried out in the same manner as in Example 1 using 0.6 mmol of palladium chloride and 5 ml of a 69.3% aqueous solution of tertiary-butyl hydroperoxide.
The results are shown in Table-1. Example 4 In Example 3, a reaction was performed in the same manner as in Example 3 in an oxygen atmosphere and analyzed. The results are shown in Table-1. Example 5 In Example 1, 0.52 mmol of palladium chloride and 1 ml of a 69.3% aqueous solution of tertiary butyl hydroperoxide were reacted and analyzed in the same manner as in Example 1 under an oxygen atmosphere. The results are shown in Table-1. Example 6 5 ml of cyclopentene, 20 ml of ethyl alcohol,
Palladium chloride 0.62 mmol, tertiary butyl hydroperoxide 69.3% aqueous solution 5 ml, 7.0% hydrochloric acid 1 ml
was placed in a 100ml glass container, the reaction temperature was 50℃,
The reaction was carried out under a nitrogen atmosphere for 5 hours, and the reaction product was analyzed every hour. The results are shown in Table-1. Example 7 The reaction and analysis were conducted in the same manner as in Example 6, except that 3.5% hydrochloric acid was used instead of 7.0% hydrochloric acid.
The results are shown in Table-1. Comparative Example 1 Tertiary butyl hydroperoxide in Example 3
The reaction and analysis were conducted in the same manner as in Example 3, using a 31% hydrogen peroxide aqueous solution instead of the 69.3% aqueous solution. The results are shown in Table-1. Example 8 The reaction and analysis were carried out in the same manner as in Example 3, except that isopropyl alcohol was used instead of ethyl alcohol. The results are shown in Table-1. Comparative Example 2 A reaction and analysis was carried out in the same manner as in Example 3 except that dioxane was used instead of ethyl alcohol. The results are shown in Table-1. Comparative Example 3 Rhodium chloride (RhCl 3 .3H 2 O) was used instead of palladium chloride in Example 3, and the reaction and analysis were conducted in the same manner as in Example 3. The results are shown in Table-1. Comparative Example 4 In Example 3, palladium nitrate was used instead of palladium chloride, and the reaction and analysis were conducted in the same manner as in Example 3. The results are shown in Table-1.

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 シクロペンテンを酸化してシクロペンタノン
を製造するに際し、液相でアルコールの共存下、
触媒としてパラジウム化合物、酸化剤として有機
過酸化物を用いてシクロペンテンを酸化すること
を特徴とするシクロペンタノンの製造方法。
1. When producing cyclopentanone by oxidizing cyclopentene, in the presence of alcohol in the liquid phase,
A method for producing cyclopentanone, which comprises oxidizing cyclopentene using a palladium compound as a catalyst and an organic peroxide as an oxidizing agent.
JP58189671A 1983-10-11 1983-10-11 Production of cyclopentanone Granted JPS6081139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58189671A JPS6081139A (en) 1983-10-11 1983-10-11 Production of cyclopentanone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58189671A JPS6081139A (en) 1983-10-11 1983-10-11 Production of cyclopentanone

Publications (2)

Publication Number Publication Date
JPS6081139A JPS6081139A (en) 1985-05-09
JPS6220174B2 true JPS6220174B2 (en) 1987-05-06

Family

ID=16245222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58189671A Granted JPS6081139A (en) 1983-10-11 1983-10-11 Production of cyclopentanone

Country Status (1)

Country Link
JP (1) JPS6081139A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0236803U (en) * 1988-09-02 1990-03-09

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH064553B2 (en) * 1986-04-19 1994-01-19 出光興産株式会社 Method for producing cyclic ketones
AT410441B (en) * 2001-05-25 2003-04-25 Dsm Fine Chem Austria Gmbh METHOD FOR PRODUCING AROMATIC ALDEHYDES AND KETONES BY CATALYTIC OXIDATION OF ALKYLAROMATIC COMPOUNDS

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0236803U (en) * 1988-09-02 1990-03-09

Also Published As

Publication number Publication date
JPS6081139A (en) 1985-05-09

Similar Documents

Publication Publication Date Title
KR20130021413A (en) Carbocatalysts for chemical transformations
KR20010057566A (en) Process for preparing ketone, alcohol and hydroperoxide
US7038089B2 (en) Process for preparation of hydroperoxides
US5840934A (en) Process for producing epoxidized product of olefins
JP2001233809A (en) Method for oxidizing hydrocarbons
TW200948768A (en) Method for producing carbonyl compound
JPS6220174B2 (en)
JP5481975B2 (en) Production method of epoxy compound
US6071848A (en) Process for the hydroxylation of aromatic hydrocarbons
JP4522672B2 (en) Method for producing cycloaliphatic oximes
JPH1072455A (en) Production of epoxidized products of olefin compounds
US4256650A (en) Process for preparing propylene oxide and acetic acid
US3278608A (en) Process for manufacturing alphaethylenic alcohols
US4115440A (en) Selenium catalyzed decomposition of peroxide intermediates resulting from the autoxidation of acrolein and methacrolein
JPS63104932A (en) Post treatment of reaction mixture containing cyclohexylhydroperoxide
US3502715A (en) Method for producing and stabilizing percarboxylic acid
US3792087A (en) Vapor phase oxidation of ethylene to acetic acid
HU207706B (en) Process for producing alpha-omega-diacids
JPH04145073A (en) Production of styrene oxide
US3042722A (en) Oxidation of cyclic olefins
EP0174194A2 (en) Process for the oxidation of alkanes
JP3230243B2 (en) Phenol production catalyst and phenol production method
JPH01117859A (en) Production of aromatic percarboxylic acid
US6790997B2 (en) Preparation of carbonyl compounds from alcohols
JP3526345B2 (en) Method for producing arylalkyl hydroperoxides