JPS62198228A - Feeder branching circuit - Google Patents

Feeder branching circuit

Info

Publication number
JPS62198228A
JPS62198228A JP4110486A JP4110486A JPS62198228A JP S62198228 A JPS62198228 A JP S62198228A JP 4110486 A JP4110486 A JP 4110486A JP 4110486 A JP4110486 A JP 4110486A JP S62198228 A JPS62198228 A JP S62198228A
Authority
JP
Japan
Prior art keywords
terminal
current
power supply
terminals
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4110486A
Other languages
Japanese (ja)
Inventor
Yasuhiko Niino
新納 康彦
Hiroharu Wakabayashi
若林 博晴
Hiroaki Yano
矢野 裕明
Yoshihiko Harafuji
原藤 芳彦
Tatsuo Umetsu
梅津 健生
Masaaki Takahashi
正明 高橋
Koichi Saito
公一 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
NEC Corp
KDDI Corp
Original Assignee
Fujitsu Ltd
Kokusai Denshin Denwa KK
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd, Kokusai Denshin Denwa KK, NEC Corp filed Critical Fujitsu Ltd
Priority to JP4110486A priority Critical patent/JPS62198228A/en
Publication of JPS62198228A publication Critical patent/JPS62198228A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

PURPOSE:To attain the communication using remaining two branches even if one branch has a fault among three branches among each ground terminal station and branch devices by combining 2 control means and 4 switch means. CONSTITUTION:A switch circuit S0 connects a break contact B1 between control sections W2 and W3, a switch circuit S1 does not ground a terminal 11 when no current flows and grounds the terminal 11 when a current flowing to the control sections W2, W3 exceeds a sending current limit. A switch circuit S2 grounds a terminal 12 when a current flowing to the control section W3 exceeds the sensing current. Further, a switch circuit S3 grounds a terminal 13 when the current flows through the control sections W1, W2 exceeds the sensing limit.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は給電路分岐回路、特に海底ケーブル通信方式で
中継伝送路を三分岐する箇所に設置して陸上端局側の操
作により給電ルート接続を切替えるための給電路分岐回
路に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is a power supply line branch circuit, particularly installed at a point where a relay transmission line is branched into three in a submarine cable communication system, and connected to a power supply route by operation on the land terminal station side. This invention relates to a feed line branch circuit for switching.

〔従来の技術〕[Conventional technology]

海底ケーブル通信方式で三つの陸上端局相互間の通信を
経済的に行うには、中継伝送路およびその敷設に要する
コストを低減するため、海中に分岐装置を設置して、こ
れと各陸上端局との間をそれぞれ海底ケーブルで接続す
る必要がある。
In order to economically perform communication between three land terminal stations using the submarine cable communication system, in order to reduce the cost of relay transmission lines and their installation, a branching device is installed under the sea, and this is connected to each land terminal station. It is necessary to connect each station with a submarine cable.

第7図は上述の分岐装置における従来の給電路分岐の方
法を説明する丸めのブロック図である。
FIG. 7 is a rounded block diagram illustrating a conventional method of branching a power supply line in the above-mentioned branching device.

同図には給電系統だけを示す。三つの陸上端局をA局、
B局および0局とし、海中に分岐装置4を設けて各陸上
端局との間を海底ケーブルで接続しである。負荷3A、
3Bおよび3Cはそれぞれ、A局、B局および0局と分
岐装置4との間の給電線に給電対象として接続された中
継器である。分岐装置4内で、A局の方から導入した給
電線とB局の方から導入した給電線とを接続し、また0
局の方から導入した給電線を海中接地に一接続しである
。A局およびB局にそれぞれ設けた、給電装置2人およ
び2Bは、給電線・接地間に互いに逆極性の電圧を印加
するよう接続されており、A局およびB局間の負荷3人
および3Bに対し所定の電流値で給電する(両端給電)
。また0局の給電装置2Cは、0局および分岐回路4の
間の負荷3Cに対し所定の電流値で給電する(片端給電
)。
The figure shows only the power supply system. Three land terminal stations are called A station,
Stations B and 0 are provided, and a branching device 4 is installed underwater and connected to each land terminal station by a submarine cable. load 3A,
3B and 3C are repeaters connected to power feed lines between the A, B, and 0 stations and the branching device 4, respectively, as power feeding targets. In the branching device 4, connect the feeder line introduced from the A station and the feeder line introduced from the B station, and
The power supply line introduced from the station was connected to the underwater ground. The power supply devices 2 and 2B installed at stations A and B, respectively, are connected to apply voltages of opposite polarity between the power supply line and ground, and the power supply devices 2 and 2B installed at stations A and B, respectively, are connected to apply voltages of opposite polarity between the power supply lines and the ground. Supplies power at a predetermined current value to (both ends power supply)
. Further, the power supply device 2C of the 0th station supplies power at a predetermined current value to the load 3C between the 0th station and the branch circuit 4 (one-end power supply).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このような給電ルート接続の切替え手段を有しない給電
路分岐法では、両端給電区間すなわちA局°・分岐装置
間およびB局・分岐装置間のうちのいずれか一方で海底
ケーブル切断などにより給電障害が生じた場合に障害が
修理されて復旧するまで三周相互間の通信がすべて不可
能になり、また片端給電区間すなわち0局・分岐装置間
の中継伝送路を接地から絶縁することができないので敷
設時に中継伝送路の対地絶縁抵抗試験や耐圧試験などを
実施できないという問題点がある。
In such a power feed line branching method that does not have a means to switch the power feed route connection, a power feed failure may occur due to a submarine cable disconnection on either end of the power feed section, that is, between the A station and the branch device and between the B station and the branch device. If this occurs, all communications between the three circuits will be impossible until the fault is repaired and the system is restored, and the single-ended feed section, that is, the relay transmission line between the 0 station and the branch device, cannot be isolated from the ground. There is a problem in that it is not possible to perform ground insulation resistance tests or withstand voltage tests on relay transmission lines during installation.

本発明の目的は、上述の問題点を解決し各陸上端局およ
び分岐装置間の三つの枝路のうちの一つに障害が発生し
た場合でも残りの二つの枝路を介した通信が可能であり
、且つ各枝路を接地から絶縁し得る給電路分岐回路を提
供することにある。
The purpose of the present invention is to solve the above-mentioned problems, and even if one of the three branch lines between each land terminal station and branch device fails, communication can be performed via the remaining two branch lines. It is an object of the present invention to provide a power supply line branch circuit which is capable of insulating each branch line from ground.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の回路は、そnぞれ給電線を接続する丸めの第1
、第2および第3の外部端子と、接地接続するための第
4の外部端子と、通過電流に応答して接続状態を制御す
るための第1のコイルを有し前記第1の外部端子および
第1の内部端子間に接続した第1の制御手段と、通過電
流に応答して接続状態を制御するための第2のコイルを
有し前記第2の外部端子および第2の内部端子間に接続
した第2の制御手段と、通過電流に応答して接続状態を
制御するための第3のコイルを有し前記第3の外部端子
および第3の内部端子間に接続した第3の制御手段と、
前記第1および第4の外部端子間に接続してあり前記第
2および第3のコイルの無通電時に両端間がオフ状態で
ありまた該両コイルに所定の電流値以上の電流が流れた
時に両端間がオン状態に切替わる第1の切、替手段と、 前記第2および第4の外部端子間に接続してあり前記第
3のコイルの無通電時に両端間がオフ状態でありまた該
コイルに所定の電流値以上の電流が流れた時に両端間が
オン状態に切替わる第2の切替手段と、 前記第3および第4の外部端子間に接続してあ秒前記第
1および第2のコイルの無通電時に両端間がオフ状態で
ありまた該両コイルに所定の電流値以上の電流が流れた
時に両端間がオン状態に切替わる第3の切替手段と、 前記第1ないし第3の内部端子間に接続してあし前記第
1ないし第3のコイルの無通電時に該第1ないし第3の
内部端子間に全てオン状態であり、該第2および第3の
コイルに所定の電流値以上の電流が流れた時に該@1の
内部端子が該第2および第3の内部端子に対しオフ状態
に切替わ抄、該第1および第3のコイルに所定の電流値
以上の電流が流れた時に該第2の内部端子が該第1およ
び第3の内部端子に対しオフ状態に切替わり、また該第
1および第2のコイルに所定の電流値以上の電流が流れ
た時に該第3の内部端子が該第1およびig2の内部端
子に対しオフ状態に切替わる第4の切替手段とを、 備えている。
The circuit of the present invention has the following advantages:
, second and third external terminals, a fourth external terminal for ground connection, and a first coil for controlling the connection state in response to a passing current, and the first external terminal and a first control means connected between the first internal terminal; and a second coil for controlling the connection state in response to a passing current, and between the second external terminal and the second internal terminal. a third control means connected between the third external terminal and the third internal terminal and having a third coil for controlling a connection state in response to a passing current; and,
It is connected between the first and fourth external terminals, and when the second and third coils are not energized, both terminals are in an OFF state, and when a current of a predetermined current value or more flows through both coils. A first switching means is connected between both ends of the coil is switched to an on state, and the second and fourth external terminals are connected to each other, and when the third coil is not energized, both ends of the switching means are switched to an on state. a second switching means that is switched on between both terminals when a current equal to or higher than a predetermined current value flows through the coil; and a second switching means that is connected between the third and fourth external terminals, a third switching means that is in an off state between both ends when the coil is not energized, and is switched to an on state between both ends when a current of a predetermined current value or more flows through both coils; When the first to third coils are not energized, all of the first to third internal terminals are in the on state, and a predetermined current is applied to the second and third coils. When a current exceeding a predetermined current value flows, the internal terminal of @1 is switched to an OFF state with respect to the second and third internal terminals. When the current flows, the second internal terminal is switched to the OFF state relative to the first and third internal terminals, and when a current equal to or higher than a predetermined current value flows through the first and second coils, the second internal terminal switches to the OFF state relative to the first and third internal terminals. and a fourth switching means for switching the internal terminal of ig2 to an off state with respect to the first internal terminal and the internal terminal of ig2.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例を示す回路図である。FIG. 1 is a circuit diagram showing an embodiment of the present invention.

給電路分岐回路1の端子11.12および13はおのお
の給電線を接続するだめの端子であり、また端子Gは接
地に接続するための端子である。制御部W、ないしWl
はおのおのリレーの電磁石の励磁用コイルでろ秒、切替
回路Soな込しS3はそれぞれリレーの接点から成るス
イッチ回路である。
Terminals 11, 12 and 13 of the feed line branch circuit 1 are terminals for connecting respective feed lines, and terminal G is a terminal for connecting to ground. Control unit W or Wl
The switching circuit S3 is a switch circuit consisting of the contacts of each relay.

メーク接点M1およびブレーク接点B1はそれぞれ制御
部W1を流れる電流に応動するメーク接点およびブレー
ク接点である。同様に、メーク接点M、(あるいはM、
)およびブレーク接点Bt(あるいはB3はそれぞれ制
御部W!(6るいにW S )を流れる電流に応動する
メーク接点お−よびブレーク接点である。
Make contact M1 and break contact B1 are respectively a make contact and a break contact that respond to the current flowing through control portion W1. Similarly, make contact M, (or M,
) and break contact Bt (or B3 are the make contact and break contact, respectively, responsive to the current flowing through the control section W! (Ws)).

制御部W、は端子11と切替回路Soとの間に接続して
あゆ、制御部W!は端子12と切替回路Soとの間に、
また■制御部Wsは端子13と切替回路Soとの間にそ
れぞれ接続しである。切替回路S0は、ブレーク接点B
1を制御部W2およびWs間に接続し、またブレーク接
点B、を制御部W、およびWs間に接続し、またブレー
ク接点B。
The control unit W, is connected between the terminal 11 and the switching circuit So, and then the control unit W! is between the terminal 12 and the switching circuit So,
Further, (2) the control section Ws is connected between the terminal 13 and the switching circuit So. The switching circuit S0 is a break contact B
1 is connected between the control parts W2 and Ws, and the break contact B is connected between the control parts W and Ws, and the break contact B is connected between the control parts W2 and Ws.

を制御部W1およびW!間に接続し九デルタ接続を有し
、無通電時には制御部W、ないしWsのすべてに接続し
ている。通電時に、制御部W!およびWlをfifiる
電流が感fJJ電流値を超えると、ブレーク接点B、お
よびB、がオフになって制御部W、の接続が切離される
。また、制御部WI およびW3を流れる電流が感rI
Ih電流値を超えると制御部W、の接続が切離され、制
御部W1ζよf、い已の電流が感動′el流値を超える
と制御部W、の接ド・が切離される。
The control units W1 and W! It has a nine-delta connection between them, and is connected to all of the control units W to Ws when the power is not energized. When energized, the control unit W! When the current flowing through F and Wl exceeds the current value fJJ, break contacts B and B are turned off and the connection of control unit W is severed. Also, the current flowing through the control units WI and W3 is
When the current value Ih exceeds the current value, the connection of the control section W is disconnected, and when the current of the control sections W1ζ to f exceeds the current value of the control section W, the connection of the control section W is disconnected.

切替回路S、は、端子11と端子Gとの間に接続されて
おり、メーク接点M!およびM、を直列接続した回路で
ある。従って切替回路S1は、無通電時はけ端子11を
接地せず、通電時に制御部W2およびW3を流れる電流
が感動電流値を超えると端子11を接地する。切替回路
S2は、端子12と端子Gとの間にメーク接点M、を接
続した回路であり、制御部W3を流れる電流が感動電流
値を超えると端子12を接地する。また切替回路S、は
、端子13と端子Gとの間にメーク接点M1およびM、
を直列接続した回路であり、制御部W。
The switching circuit S, is connected between the terminal 11 and the terminal G, and the make contact M! and M are connected in series. Therefore, the switching circuit S1 does not ground the bare terminal 11 when no current is applied, but grounds the terminal 11 when the current flowing through the control units W2 and W3 exceeds the sensing current value when the current is applied. The switching circuit S2 is a circuit in which a make contact M is connected between the terminal 12 and the terminal G, and the terminal 12 is grounded when the current flowing through the control section W3 exceeds the touching current value. In addition, the switching circuit S has make contacts M1 and M between the terminal 13 and the terminal G,
It is a circuit in which the controller W is connected in series.

およびW!の電流が感動電流値を超えると端子13を接
地する。
and W! When the current exceeds the current value, the terminal 13 is grounded.

以下に、本実施例の回路を使用して、三周間での給電起
動、および三つの枝路のうちの一枝路で給電障害が発生
した場合における残りの二枝路での給電起動を行う際の
操作手順について説明する。
The circuit of this example will be used below to start power supply for three cycles, and to start power supply in the remaining two branches when a power supply failure occurs in one of the three branches. The following describes the operating procedure.

第2図は本実施例の回路を介した三周間の給電系統の接
続を例示するブロック図である。本図は′で7図の場合
と同様に、A局およびB局間で両端給電を行い、0局で
片端給電を行う場合を示す。
FIG. 2 is a block diagram illustrating the connection of the power supply system for three circuits via the circuit of this embodiment. In this figure, as in the case of Fig. 7, ' is a case in which power is supplied at both ends between stations A and B, and power is supplied at one end at station 0.

A局の給電装置2人から負荷3人を介して分岐装置へ導
かnだ給電線は、給電路分岐回路1の端子11に接続し
ている。また、B局の給電装置2Bから負荷3Bを介し
て導かnた給電線は端子12に接続し、0局の給電装置
2Cから負荷3Cを介して導かnた給電線は端子13に
接続しである。
The n power feed lines that are led from the two power feed devices of the A station to the branch device via the three loads are connected to the terminal 11 of the power feed branch circuit 1. Also, the feeder line led from the power feeder 2B of the B station via the load 3B is connected to the terminal 12, and the feeder line led from the power feeder 2C of the 0th station via the load 3C is connected to the terminal 13. be.

給電装置2A、2Bおよび2Cはいずれも同じ回路構成
を有し、直流を直交流変換回路21で交流に変換し、変
圧器Tで昇圧したあとダイオードDから成る整流回路で
整流して、更に平滑回路22で平滑した直流電流を給電
線に送出する。なおブロック内の実線矢印は、この直流
を送出する向きを示す。端子Gは海中で接地接続される
The power supply devices 2A, 2B, and 2C all have the same circuit configuration, and convert direct current into alternating current with a DC/AC conversion circuit 21, step up the voltage with a transformer T, rectify it with a rectifier circuit consisting of a diode D, and further smooth it. The DC current smoothed by the circuit 22 is sent to the power supply line. Note that the solid arrow inside the block indicates the direction in which this direct current is sent. Terminal G is connected to ground underwater.

無通電時に、切替回路Soは制御部W1ないしWsをす
べて接続しているオン状態であり、また切替回路S、、
S、およびSsはいずれもオフ状態である。従って、給
電装置2A、2Bおよび2Cを切離すと、各枝路を接地
から絶縁することができ、中継伝送路の絶縁抵抗試験や
耐圧試験を行うのが可能である。
When no power is applied, the switching circuit So is in an on state connecting all the control units W1 to Ws, and the switching circuits S,...
Both S and Ss are in the off state. Therefore, by disconnecting the power supply devices 2A, 2B, and 2C, each branch line can be insulated from the ground, and it is possible to perform an insulation resistance test and a withstand voltage test on the relay transmission line.

第3図は、第2図に示す接続で給電起動する場合の動作
を説明するためのブロック図である、同図では、切替回
路SoないしSaを簡略化して図示しである。切替回路
SoのスイッチSA、SRおよびSCは、無通電時にい
ずnもオン状態である。スイッチSAは、制御部W2お
よびWsの感動時にオフ状態へ切替わる1、スイッチS
Rは、制御部W1およびWSの感動時にオフ状態へ切替
わる。またスイッチSCは、制御部W1およびW。
FIG. 3 is a block diagram for explaining the operation when power supply is started using the connections shown in FIG. 2. In the same figure, the switching circuits So to Sa are shown in a simplified manner. The switches SA, SR, and SC of the switching circuit So are all in an on state when no current is applied. The switch SA is switched to the OFF state when the control units W2 and Ws are touched.
R is switched to the off state when the control units W1 and WS are impressed. Further, the switch SC includes control units W1 and W.

の感動時にオフ状態へ切替わる。すなわち本図の切替回
路S0は、第1図の場合と同じ機能をもち、且つ制御部
W、ないしWSのそれぞれの接続の有無を見易くして示
しである。切替回路S、ないしS、は、そ1ぞれ第1°
図の場合と同じ機能をもつ単一スイッチに簡略化して示
しである。
Switches to OFF state when touched. That is, the switching circuit S0 in this figure has the same function as that in FIG. 1, and is shown to make it easier to see whether or not each of the control units W and WS is connected. The switching circuits S and S are respectively 1°
It is simplified to a single switch with the same function as in the figure.

給電起動時には、まず給電d置2人だけを起動させる。When power supply is started, first only the two people in the power supply position are started.

これに伴りて給電袋#2Bおよび2CのダイオードD(
第2図参照)は、順方向の電圧が印加されるので、導通
状態にな襲、制御部W1を通ったあと制御部W、および
Wsに分流する電流が流れ始める。この電流をリレーの
感−動電流値工8まで増やすと、制御部W!に流nる電
流が感動電流値工3に達するが、制御部W、およびWs
に分流する電流はいずれも感動電流値Isに達せず、従
って切替回路SoないしSsはいずれも切替わらない。
Along with this, the diodes D (
(see FIG. 2) enters a conductive state as a forward voltage is applied, and a current begins to flow after passing through the control section W1 and then being shunted to the control sections W and Ws. When this current is increased to the relay's sensing current value 8, the control unit W! The current flowing through n reaches the moving current value controller 3, but the control unit W and Ws
None of the currents that are shunted to reach the impressive current value Is, and therefore, none of the switching circuits So to Ss is switched.

次に給電袋*2Aの送出tR,値を工3に保ったまま、
給電装置2Bを起動して送出電流値をIsまで増やして
いく。これに伴って制御部W3の゛直流が減少していく
。こルがゼロになった時、制御部W1およびWSの電流
がいずれも感動電流値IsになロスイッチScがオフ状
態になり制御部W、の接続が切離さnたあと、切替回路
Ssがオン状態になり端子13が接地接続さnる。すな
わち、給電路分岐回路l内で、端子11および12間の
接続は保持されたまま、端子13が端子11および12
との接続を切離さnて接続に切替わり、A局およびB局
間で両端給電し且つ0局で片端給電するだめの給電路が
形成される。
Next, while keeping the output tR of the power supply bag *2A at 3,
The power supply device 2B is activated and the sending current value is increased to Is. Along with this, the direct current of the control section W3 decreases. When this becomes zero, the currents in the control sections W1 and WS both reach the moving current value Is, the switch Sc turns off, and the connection between the control section W and the control section W is disconnected. It turns on and the terminal 13 is connected to ground. That is, within the feeder branch circuit l, the terminal 13 is connected to the terminals 11 and 12 while the connection between the terminals 11 and 12 is maintained.
The connection is disconnected from the station A and station B, and a power supply path is formed in which power is supplied at both ends between the A station and the B station, and power is supplied at one end at the 0 station.

仁のあと続けて給電装置t2Aおよび2Cの送出電流を
給電定格電流値まで増やしてA局およびB局間の両端給
電を行う。また給電袋[20を起動して0局での片端給
電を行う。
Subsequently, the sending currents of the power supply devices t2A and t2C are increased to the power supply rated current value, and power is supplied at both ends between the A station and the B station. In addition, the power supply bag [20 is activated to perform one-end power supply at station 0.

第4図は、第2図に示す接続でA局および分岐装置間の
枝路の途中で給電線が接地と短絡する給電障害を生じた
際に、B局および0局で給電起動する場合の動作を説明
するためのブロック図である。同図でも、第3図と同様
に、切替回路SoないしSsを簡略化して図示しである
。給電障害発生時には、給電装置2A、2Bおよび2C
の給電を一旦停止したあと、極性を反転して接続した給
電装置2Bt−起動して、その送出電流値をI s/2
まで増やす。、この電流は、制御部W2を通ったあと制
御部WIおよびW、に分流する。この時に制御部W、な
いしW、にfrf、21.る′直流はいず1も感動電流
値Is以下であるから、どのリレーも感動せず、従って
切替回路S0ないしS3はいずnも切替わらない。次に
給電装置2Bの送出電流値をIs/2に保りたまま、給
電装置2Cを起動して送出電流値をIsまで増やしてい
く。制御部W3の電流値がIsに達すると、切替回路S
、がオン状態に切替わゆ端子12が接地接続さnる。(
制御部W。
Figure 4 shows the connection shown in Figure 2 when power supply is activated at stations B and 0 when a power supply fault occurs in which the power supply line is shorted to ground in the middle of the branch between A station and the branch device. FIG. 2 is a block diagram for explaining the operation. Similarly to FIG. 3, the switching circuits So to Ss are shown in a simplified manner in this figure as well. In the event of a power supply failure, power supply devices 2A, 2B, and 2C
After temporarily stopping the power supply, start the connected power supply device 2Bt with the polarity reversed, and change the sending current value to I s/2
increase to , this current is divided into the control parts WI and W after passing through the control part W2. At this time, frf is sent to the control unit W, or 21. Since all of the DC currents are less than the sensing current value Is, none of the relays is touched, and therefore none of the switching circuits S0 to S3 are switched. Next, while keeping the sending current value of the power feeding device 2B at Is/2, the power feeding device 2C is activated and the sending current value is increased to Is. When the current value of the control unit W3 reaches Is, the switching circuit S
, is switched to the on state, and the terminal 12 is connected to ground. (
Control unit W.

の電流値がIsに達する直前までの間、制御部W。The control unit W until just before the current value reaches Is.

およびWSの電流値はいずれもIs以下である。)端子
12が接地接続さnると、制御部W、に電流を殆んど流
さずにB局および0局で片端給電できる接続状態になる
。このあと、給電装置2Cの送出電流値を工8に保った
まま、給電装置2Bを一旦給電停止したあと極性を元に
戻し接続してから起動させ(ただし負荷3Bが両方向給
電可能であ几ば、この給電装置2Bに対する操作は不要
である)、送出電流をIsまで増やす。こnに伴って制
御4WtおよびW、に流れる電流値が工3に達し、スイ
ッチSAがオフ状態に切替わ口制御部W。
The current values of WS and WS are both equal to or less than Is. ) When the terminal 12 is connected to ground, a connection state is established in which power can be supplied at one end from the B station and the 0 station with almost no current flowing through the control unit W. After this, while keeping the output current value of the power supply device 2C at 8, power supply to the power supply device 2B is temporarily stopped, the polarity is returned to the original state, and the connection is started. , no operation is required for this power supply device 2B), and the sending current is increased to Is. As a result, the current value flowing through the controls 4Wt and W reaches 4, and the switch SA is turned off.

の接続が切峡さnたあと、切替回路S、がオン状態に切
替わり端子11を接地接続する。すなわち、給電路分岐
回路1内で端子12および13間の接続は保持さ几たま
ま端子12が接地接続さnると共に、端子11が端子1
2および13との接続を切離されて接地接続に切替わ9
、B局および0局でそ几ぞれ片端給電するための給電路
が形成される。
After the connection is made, the switching circuit S is turned on and connects the terminal 11 to ground. That is, the connection between terminals 12 and 13 is maintained within the feeder branch circuit 1, and terminal 12 is grounded, and terminal 11 is connected to terminal 1.
9 is disconnected from 2 and 13 and switched to ground connection.
, B station, and 0 station, a power feeding path is formed for feeding power to one end of each of the stations.

このあと続けて給電装置2Bおよび2Cの送出電流をそ
れぞれ定格電流値まで増やしてB局および0局で片端給
電を行う。なお、端子11が接地接続さnているから、
上述の給電を開始したあとでも、障害を生じた枝路の給
電線に高電圧が印加されることは無く、障害箇所の修理
を安全に行うことができる。
Thereafter, the sending currents of the power supply devices 2B and 2C are increased to their respective rated current values, and one-end power supply is performed at the B station and the 0 station. Note that since terminal 11 is connected to ground,
Even after the above-mentioned power supply is started, high voltage is not applied to the power supply line of the branch where the fault has occurred, and the fault can be repaired safely.

なお、A局および分岐装置間の途中で給電線が地絡せず
開放状態になる給電障害を生じた場合には、第4図に示
す接続で給電装置2Bおよび2Cの送出電流値を共にI
sまで増やしていくことにより、給電路分岐回路1内で
上述の場合と同じ給電路を形成できる。
In addition, if a power supply fault occurs in which the power supply line is open without a ground fault between the A station and the branch device, the sending current values of power supply devices 2B and 2C can be changed to I by the connection shown in Fig. 4.
By increasing the number to s, it is possible to form the same feed path as in the above case within the feed path branch circuit 1.

第5図は、0局および分岐装置間の枝路の途中で給″r
i!、線が地絡する給電障害を生じた際に、A局および
B局で給電超勤する場合の動作を説明するためのブロッ
ク図である。同図でも切替回路S0ないしSlを簡略化
して図示しである。給電起動時には、まず給電装置2B
を起動させ、その送出電流値をIs/21で増やす。こ
の時には、どのリレーも感動しない。次に給電装置2B
の送出電流値を工8/2に保ったまま、給電装置f&2
Aを起動して送出電流値をIaまで増やしていく。この
時に、制御部W1の通過電流値だけが工3に達する。こ
のあと、給電装!2Bの送出電流値をI8/2からIs
まで増やしていくと、制御部W1およびW。
Figure 5 shows the supply of "r" on the branch path between the
i! FIG. 2 is a block diagram illustrating an operation when station A and station B perform overtime power supply when a power supply failure occurs in which a line is grounded. In the same figure, the switching circuits S0 to S1 are shown in a simplified manner. When starting power supply, first power supply device 2B
is activated and its sending current value is increased by Is/21. At this time, none of the relays are impressed. Next, power supply device 2B
While keeping the sending current value of f&2 at f&2,
Start A and increase the sending current value to Ia. At this time, only the passing current value of the control unit W1 reaches step 3. After this, power supply equipment! 2B sending current value from I8/2 to Is
When increasing the number of controllers W1 and W.

の各通過電流値が工3に適した時に、制御部W3に電流
が流れなくなり、スイッチScがオフ状態に切替わり制
御部Wsの接続を切離したあと、切替回路S3がオン状
態に切替わり端子13を接地接続する。すなわち、A局
およびB局間で両端給電するための給電路が形成される
と共に、障害を生じた枝路が接地接続される。
When each passing current value is suitable for the terminal 3, no current flows to the control unit W3, the switch Sc is switched to the OFF state and the connection of the control unit Ws is disconnected, and then the switching circuit S3 is switched to the ON state and the terminal Connect 13 to ground. That is, a power supply path for feeding power at both ends is formed between the A station and the B station, and the branch path where the fault has occurred is grounded.

なお、B局および分岐装置間の途中で給1it線が地絡
せず開放状態になる給電障害を生じた場合も、上述と同
様な起動操作を行うことにより、A局およびC局間で両
端給電するための給電路を形成できる。
In addition, even if a power supply failure occurs in which the feed 1it line is open without a ground fault between the B station and the branch device, by performing the same startup operation as described above, the power supply line between both ends of the A and C stations can be disconnected. A power supply path for power supply can be formed.

以上に説明したごとく、各陸上端局および分岐装置間の
三つの枝路のうちの一つに障害が発生した場合でも、本
実施例の回路を使用して端局で給電の起動操作を行うこ
とにより、残りの二つの枝路を介した通信を再開するよ
うに給電路を形成することができる。
As explained above, even if a failure occurs in one of the three branch lines between each land terminal station and branch device, the circuit of this embodiment can be used to start the power supply at the terminal station. By doing so, the power supply path can be formed so as to resume communication via the remaining two branch paths.

第6図(a)および(b)は、制御部W!、W、あるい
はWsの一構成例を示す回路図であり、す1/−の電磁
石励磁用コイルに流れる電流を軽減してリレーの小形化
および信頼性向上を図るための構成例を示す。同図(&
)は、励磁用コイルに並列に、ツェナーダイオードZD
を互いに逆極性に直列接続した定電圧回路を、接続した
回路である。励磁用コイルを流nる電流が、そのリレー
の感動電流以上で設定した値に達すると、コイル両端の
電圧はそれ以上に上昇せず、感動電流値を大幅に超える
電流がコイルに流れるのを防止できる。制御回路W2の
励磁用コイルでは、給電起動時に流れる電流の向きは一
方向に限定されておらず、いずれの方向の電流に対して
も定電圧特性が得られるようツェナーダイオードZDを
逆極性で直列接続しておく。
FIGS. 6(a) and 6(b) show the control unit W! , W, or Ws, and shows a configuration example for reducing the current flowing through the electromagnet excitation coil of S1/- to reduce the size of the relay and improve reliability. Same figure (&
) is a Zener diode ZD in parallel with the excitation coil.
This is a circuit in which constant voltage circuits are connected in series with opposite polarities. When the current flowing through the excitation coil reaches the set value, which is higher than the excitation current of the relay, the voltage across the coil will not rise any further, and a current that significantly exceeds the excitation current value will not flow through the coil. It can be prevented. In the excitation coil of the control circuit W2, the direction of the current flowing at the time of power supply startup is not limited to one direction, and a Zener diode ZD is connected in series with opposite polarity so that constant voltage characteristics can be obtained for current in either direction. Keep it connected.

同図の)は、励磁用コイルに並列に、ツェナーダイオー
ドZDを定電圧回路として、接続した回路である。制御
回路Wt  (あるいはWs  )の励磁用コイルでは
、給電起動時に流詐る電流の向きを一方向に限定し得る
ので、その方向の電流に対してのみ定電圧特性が得られ
れば、感動電流値を大幅に超えるilJ流がコイルに流
れるのを防止できる。
) in the figure is a circuit in which a Zener diode ZD is connected as a constant voltage circuit in parallel to the excitation coil. In the excitation coil of the control circuit Wt (or Ws), it is possible to limit the direction of the current that flows during power supply startup to one direction, so if constant voltage characteristics can be obtained only for the current in that direction, the impressive current value It is possible to prevent an ilJ current that significantly exceeds the current from flowing into the coil.

このように定電圧回路を励磁用コイルに並列接続するこ
とにより、給電起動時に感動電流値以上の電流が流れる
励磁用コイルに対し、感動電流値を大幅に超える電流が
流れることを防止でき、リレーの小形化および信頼性向
上を達成できる。
By connecting the constant voltage circuit in parallel to the excitation coil in this way, it is possible to prevent a current that significantly exceeds the excitation current value from flowing to the excitation coil, through which a current exceeding the excitation current value flows at the time of power supply startup, and to prevent the relay from flowing. It is possible to achieve smaller size and improved reliability.

第1図に示した実施例において、各リレーの動作の信頼
度を向上するには、制御部W1ないしW3とその通過電
流に応動するメーク接点M1ないしMsおよびブレーク
接点B1ないしBSとのうち、必要な箇所を周知の冗長
系で構成して、複数個の構成素子から成る冗長系のうち
の一部分の素子に故障が発生しても冗長系としては所望
の動作を行うようにすれば良い。
In the embodiment shown in FIG. 1, in order to improve the reliability of the operation of each relay, among the control units W1 to W3, the make contacts M1 to Ms and the break contacts B1 to BS that respond to the passing current, Necessary parts may be configured with a well-known redundant system so that even if a failure occurs in some elements of the redundant system made up of a plurality of components, the redundant system can perform the desired operation.

〔発明の効果〕〔Effect of the invention〕

以上に説明したように本発明には、陸上端局での給電起
動操作に応じて給電ルートを切替える手段を設けること
により、各陸上端局および分岐装置間の三つの枝路のう
ちの一つに障害が発生した場合にも残りの二つの枝路を
介した通信が可能であり、且つ各枝路を接地から絶縁し
得る給電路分岐回路を実現できるという効果かある。
As explained above, in the present invention, by providing a means for switching the power supply route according to the power supply activation operation at the land terminal station, one of the three branch routes between each land terminal station and the branching device can be switched. Even if a failure occurs in the two branches, communication is possible via the remaining two branches, and it is possible to realize a feeder branch circuit that can isolate each branch from the ground.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第6図(a) 、 (b)は本発明の実施
例を示す回路図、@2図ないし第5図は本発明の実施例
を示すブ筒ツク図、第7図は従来の給電路分岐法を説明
するためのブ四ツク図である。 l・・・・・・給電路分岐回路、W、、W3・・・・・
・制御部、S、−S、・・・・・・切替回路、M、 、
 Ms・・・・・・メーク接点、B1〜B、・・・・・
・ブレーク接点、11〜13.G・・・・・・端子、2
A、2B、2C・・・・・・給電装置、3A、3B、3
C・・・・・・負荷、zD・・・・・・ツェナーダイオ
ード、4・・・・・・分岐装置。 代理人 弁理士  内 原   晋 茅 1  図 第 2 図 第 3 図 卒 4− 薗 *sm
Figures 1 and 6 (a) and (b) are circuit diagrams showing an embodiment of the present invention, Figures 2 to 5 are block diagrams showing an embodiment of the present invention, and Figure 7 is a conventional circuit diagram. FIG. 4 is a block diagram for explaining a power supply path branching method. l...Feed line branch circuit, W,, W3...
・Control unit, S, -S,...Switching circuit, M, ,
Ms...Make contact, B1~B,...
・Break contacts, 11-13. G...Terminal, 2
A, 2B, 2C...Power supply device, 3A, 3B, 3
C... Load, zD... Zener diode, 4... Branch device. Agent Patent Attorney Shinkyo Uchihara 1 Figure 2 Figure 3 Figure Graduate 4- Sono*sm

Claims (2)

【特許請求の範囲】[Claims] (1)それぞれ給電線を接続するための第1、第2およ
び第3の外部端子と、 接地接続するための第4の外部端子と、 通過電流に応答して接続状態を制御するための第2のコ
イルを有し前記第2の外部端子および第2の内部端子間
に接続した第2の制御手段と、 通過電流に応答して接続状態を制御するための第3のコ
イルを有し前記第3の外部端子および第のの内部端子間
に接続した第3の制御手段と、 前記第1および第4の外部端子間に接続してあり前記第
2および第3のコイルの無通電時に両端間がオフ状態で
ありまた該両コイルに所定の電流値以上の電流が流れた
時に両端間がオン状態に切替わる第1の切替手段と、 前記第2および第4の外部端子間に接続してあり前記第
3のコイルの無通電時に両端間がオフ状態でありまた該
コイルに所定の電流値以上の電流が流れた時に両端間が
オン状態に切替わる第2の切替手段と、 前記第3および第4の外部端子間に接続してあり前記第
1および第2のコイルの無通電時に両端間がオフ状態で
ありまた該両コイルに所定の電流値以上の電流が流れた
時に両端間がオン状態に切替わる第3の切替手段と、 前記第1ないし第3の内部端子間に接続してあり前記第
1ないし第3のコイルの無通電時に該第1ないし第3の
内部端子間は全てオン状態であり、該第2および第3の
コイルに所定の電流値以上の電流が流れた時に該第1の
内部端子が該第2および第3の内部端子に対しオフ状態
に切替わり、該第1および第3のコイルに所定の電流値
以上の電流が流れた時に該第2の内部端子が該第1およ
び第3の内部端子に対しオフ状態に切替わり、また該第
1および第2のコイルに所定の電流値以上の電流が流れ
た時に該第3の内部端子が該第1および第2の内部端子
に対しオフ状態に切替わる第4の切替手段とを、備えた
ことを特徴とする給電路分岐回路。
(1) First, second, and third external terminals for connecting the power supply lines, respectively, a fourth external terminal for grounding, and a fourth external terminal for controlling the connection state in response to passing current. a second control means having two coils and connected between the second external terminal and the second internal terminal; and a third coil for controlling the connection state in response to the passing current. a third control means connected between a third external terminal and a third internal terminal; and a third control means connected between the first and fourth external terminals, both ends of which are connected when the second and third coils are not energized. a first switching means that switches the terminals to the on state when the coils are in the off state and a current equal to or higher than a predetermined current value flows through both the coils; and the second and fourth external terminals. a second switching means that is in an OFF state between both ends when the third coil is not energized, and is switched to an ON state between both ends when a current of a predetermined current value or more flows through the third coil; 3 and a fourth external terminal, and when the first and second coils are not energized, the terminals are in the OFF state, and when a current of a predetermined current value or more flows through the coils, the terminals are connected between the terminals. is connected between the first to third internal terminals, and the first to third internal terminals are connected to each other when the first to third coils are not energized. are all in the on state, and when a current equal to or higher than a predetermined current value flows through the second and third coils, the first internal terminal switches to the off state with respect to the second and third internal terminals. , when a current equal to or higher than a predetermined current value flows through the first and third coils, the second internal terminal is switched to an OFF state with respect to the first and third internal terminals, and the first and third internal terminals are turned off. and fourth switching means for switching the third internal terminal to an OFF state with respect to the first and second internal terminals when a current equal to or higher than a predetermined current value flows through the second coil. A feeder branch circuit featuring:
(2)前記第1ないし第3のコイルのうちの少くとも一
つに定電圧回路を並列接続した特許請求の範囲(1)項
記載の給電路分岐回路。
(2) The feed line branch circuit according to claim (1), wherein a constant voltage circuit is connected in parallel to at least one of the first to third coils.
JP4110486A 1986-02-25 1986-02-25 Feeder branching circuit Pending JPS62198228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4110486A JPS62198228A (en) 1986-02-25 1986-02-25 Feeder branching circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4110486A JPS62198228A (en) 1986-02-25 1986-02-25 Feeder branching circuit

Publications (1)

Publication Number Publication Date
JPS62198228A true JPS62198228A (en) 1987-09-01

Family

ID=12599168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4110486A Pending JPS62198228A (en) 1986-02-25 1986-02-25 Feeder branching circuit

Country Status (1)

Country Link
JP (1) JPS62198228A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01202035A (en) * 1988-02-08 1989-08-15 Nippon Telegr & Teleph Corp <Ntt> Power supply system for submarine branch cable

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01202035A (en) * 1988-02-08 1989-08-15 Nippon Telegr & Teleph Corp <Ntt> Power supply system for submarine branch cable

Similar Documents

Publication Publication Date Title
US5517383A (en) Branching unit for submarine systems
US5386147A (en) Aerospace power control system for monitoring and reliably transferring power buses
EP0418919B1 (en) Multicircuit control apparatus and control method therefor
US5196984A (en) Submarine telecommunications systems
US5334879A (en) Feeding system and feeding method for a submarine cable communication system
US11556096B2 (en) Submarine branching unit and submarine branching method
US7122917B2 (en) Control arrangement and isolated power supplies for power electronic system
JPS62198228A (en) Feeder branching circuit
JP2786524B2 (en) Feeding line switching circuit for undersea branching device and method for feeding power in undersea cable communication system
US4459491A (en) Circuit arrangement for automatically closing a remote feed loop of a remote feed device
JP3967382B2 (en) Branch device for optical fiber transmission system
US2997607A (en) Remotely controllable circuit system
JPS62198227A (en) Feeder branching circuit
US3205420A (en) Plural motor load responsive sequential starting circuit
US1916925A (en) Power transmission system
JPH02113735A (en) Power feeding method for optical submarine transmission system
JP2632905B2 (en) Transmission line feeder switching circuit
JPH03132436A (en) Different power supply mixed-contact detecting system and device therefor
JPS637032A (en) Feeder switching circuit
SU1644287A1 (en) Device for centralized overcurrent protection of network
SU1394329A2 (en) System for controlling and checking three-phase power supply lines for outdoor illumination with cascading
SU1117760A2 (en) Device for protecting three-phase power network against incomplete phase operation
SU855860A1 (en) Aerodrome electric power-generating system
SU1152013A1 (en) Device for checking and controlling dispersed objects
JPS5932184Y2 (en) Remote monitoring control device