JPH01202035A - Power supply system for submarine branch cable - Google Patents

Power supply system for submarine branch cable

Info

Publication number
JPH01202035A
JPH01202035A JP2714088A JP2714088A JPH01202035A JP H01202035 A JPH01202035 A JP H01202035A JP 2714088 A JP2714088 A JP 2714088A JP 2714088 A JP2714088 A JP 2714088A JP H01202035 A JPH01202035 A JP H01202035A
Authority
JP
Japan
Prior art keywords
branch
submarine
line
power supply
underwater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2714088A
Other languages
Japanese (ja)
Other versions
JP2805147B2 (en
Inventor
Iwao Kitazawa
巌 北澤
Shunsuke Tsutsumi
堤 俊介
Mamoru Yosogi
四十木 守
Kazuhiro Yoshinaga
吉永 一広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP63027140A priority Critical patent/JP2805147B2/en
Publication of JPH01202035A publication Critical patent/JPH01202035A/en
Application granted granted Critical
Publication of JP2805147B2 publication Critical patent/JP2805147B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

PURPOSE:To restrict a fault generated on a transmission line only in a fault section by allowing a relay connected to a part of a feeder between a terminal station of each branch line in each submarine branch device and a submarine earth to control the connection/disconnection of a feeder of a main submarine transmission line to/from the submarine earth connected to the submarine branch device. CONSTITUTION:When a fault is generated at a part shown by a cross mark between submarine branch devices D3 and D<4>, the devices D3, D4 connect a feeder (p) of a main transmission line respectively to submarine earths E3, E4 by allowing current to flow from the terminal stations C3, C4 of the preceding and succeeding branch lines to respective feeders q3, q4. Since the feeders are constituted as mentioned above, power supply between the terminal station A and the device D3 and between a terminal station B and the device D4 can be attained, i.e. communication can be executed in the transmission line other than the fault section. Since both the ends of the fault section are earthed by the submarine earths E3, E4, a cable can be safely picked up to execute repair work without generating the trouble of an accident such as electric shock while securing communication service in other sections.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は経済的かつ高信頼で保守性に優れた海底分岐ケ
ーブルの給電方式に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a power feeding system for submarine branch cables that is economical, highly reliable, and easy to maintain.

(従来技術及び発明が解決しようとする諜B)近年光フ
ァイバを伝送媒体とする光通信技術が実用化され、我が
国をはじめ世界各国で光ファイバによる通信伝送路の建
設が進められている。
(Intelligence B to be Solved by the Prior Art and the Invention) In recent years, optical communication technology using optical fibers as a transmission medium has been put into practical use, and the construction of communication transmission lines using optical fibers is progressing in Japan and other countries around the world.

この中で、太平洋横断ケーブル〔岩本喜直:本格的な光
海底通信への応用:日本の科学と技術。
Among them, the Trans-Pacific Cable [Yoshinao Iwamoto: Application to full-scale optical submarine communications: Japanese science and technology.

1985年〕および大西洋横断ケーブル(P、に、RU
NGE他: The SL Undersea Lig
htwave System : IEEEvol 5
AC−2No 61984年〕については光フアイバケ
ーブルが複数心の光ファイバで構成される特長を生かし
、海中分岐装置を用いて日本一グアムーハワイあるいは
米国−英国一仏国を結ぶ分岐伝送路を建設する計画が示
されている。しかし、分岐装置の詳細は不明確であり、
給電路の構成についても明確でない。
1985] and the Transatlantic Cable (P, to, RU)
NGE and others: The SL Undersea Lig
htwave System: IEEEvol5
AC-2 No. 61984] takes advantage of the fact that optical fiber cables are composed of multiple optical fibers, and uses underwater branching equipment to construct a branch transmission line connecting Japan to Guam and Hawaii, or the United States to Britain and France. A plan is shown. However, the details of the branching device are unclear;
The configuration of the power supply path is also not clear.

海底光中継伝送方式の給電方式は一般に大地帰路方式で
あり、ケーブルには1本の導体があり帰路には大地を利
用している。また、給電電圧は通常両端局から十と−の
極性で定電流で給電することにより、最大給電電圧を片
端から給電する場合の1/2で済むように構成している
。これを分岐伝送路に適用した場合、第5図に示すよう
に端局A−B間は両端給電とし、一方、端局Cと海中分
岐袋fiD間の給電路については海中分岐装置り側で海
中アース已に落とし、端局Cから片端給電する構成が最
も基本的な構成と考えられる。
The power supply system for submarine optical relay transmission systems is generally a return-to-earth method, in which the cable has one conductor and uses the earth for the return path. In addition, the power supply voltage is normally supplied from both terminal stations with a constant current with polarity of 10 and -, so that the maximum power supply voltage can be reduced to 1/2 of that when power is supplied from one end. When this is applied to a branch transmission line, as shown in Figure 5, power is supplied at both ends between terminal station A and B, while the power supply line between terminal station C and underwater branch bag fiD is connected to the underwater branch equipment side. The most basic configuration is considered to be one in which the power is connected to the underwater earth and one end is supplied with power from terminal station C.

このような給電路構成による給電方式の場合、海中分岐
装置りと端局A又は8間で給電路に障害が発生した場合
、端局A−B間の全中継器が動作を停止することになる
ので端局A−B間のみならず端局A−Cまたは端局B−
C間も伝送不能となる。つまり、1つの障害が障害区間
のみならず全伝送路を障害に巻き込む欠点があった。
In the case of a power supply system with such a power supply path configuration, if a failure occurs in the power supply path between the underwater branching device and terminal station A or 8, all repeaters between terminal stations A and B will stop operating. Therefore, not only between terminal station A and B, but also between terminal station A and C or terminal station B-
Transmission between C and C is also disabled. In other words, there is a drawback that a single fault causes not only the faulty section but also the entire transmission line to become faulty.

また、これまで、主伝送路の複数ケ所で支線が分岐され
る場合の検討例はない。
Furthermore, to date, there has been no study of cases in which branch lines are branched at multiple locations on the main transmission line.

本発明の目的は、上記欠点に鑑み、主伝送路から少くと
も1本以上の支線が分岐されている場合、伝送路に障害
が生じても障害区間を除く区間については通信が可能で
、かつ、障害区間の修理が安全に実施できる経済的でか
つ高信鯨で保守性に優れた海底分岐ケーブルの給電方式
を提供することにある。
In view of the above-mentioned drawbacks, an object of the present invention is to provide a system in which, when at least one branch line is branched from the main transmission line, even if a fault occurs in the transmission line, communication is possible in sections other than the faulty section, and The object of the present invention is to provide a power supply system for submarine branch cables that is economical, reliable, and easy to maintain, and allows repair of faulty sections to be carried out safely.

(課題を解決するための手段) 本発明は上記目的達成のため、主海底伝送路の途中に支
線を分岐接続し、該支線の給電路の分岐装置側端末を海
底アースに接続しておき、各分岐装置内において各支線
の端局と海底アース間給電路の一部に設けた継電器によ
って主海底伝送路の給電線と該分岐装置に設けた海中ア
ースとの接続切離し制御を行う給電路の構成となってお
り、主伝送路の給電路と海中アースとの接続切離しを各
支線の端局で制御できることを要旨どする。
(Means for Solving the Problems) In order to achieve the above object, the present invention connects a branch line in the middle of the main submarine transmission line, and connects the terminal of the branch line on the branching device side of the power supply line to the submarine ground. In each branch device, a relay installed in a part of the power feed line between the end station of each branch line and the submarine ground is used to control the connection and disconnection between the main submarine transmission line power feed line and the underwater ground provided in the branch device. The main feature is that the connection and disconnection between the main transmission line power supply line and the underwater earth can be controlled at the terminal station of each branch line.

(実施例) 以下、図面に沿つて本発明の実施例について説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

なお、実施例は一つの例示であって、本発明の精神を逸
脱しない範囲で種々の変更あるいは改良を行いうろこと
は言うまでもない。
It should be noted that the embodiments are merely illustrative, and it goes without saying that various changes and improvements may be made without departing from the spirit of the present invention.

第1図は本発明の一実施例を説明する図であって、端局
A−B間が主伝送路であり、C,、C,・・・C7は各
支線の端局であり、D、、D、  ・・・D7は夫々の
海中分岐装置、RYI、RYI  ・・・RY。
FIG. 1 is a diagram illustrating an embodiment of the present invention, in which the main transmission line is between terminal stations A and B, C, C, . . . C7 are terminal stations of each branch line, and D ,,D,...D7 are the respective underwater branching devices, RYI, RYI...RY.

は各海中分岐装置り、、D、  ・・・D、に設けた継
電器、(スイッチを含む、)である、また、E、、E。
are the relays (including switches) installed at each underwater branching device, D, . . . D, and E, E.

・・・E7は夫々の海中分岐装置り、、D、  ・・・
Dllにおける海中アースである。
... E7 is each underwater branching device, D, ...
This is an underwater earth in Dll.

第2図は(a)は海中分岐装置の給電路の構成の詳細を
説明する図であって、pは主伝送路の給電路、Q! (
i−1,2,・・・n1以下同じ、)は支線の給電路、
klは支線の給電路の一部に設けられた継電器、S!は
継電器klで動作する主伝送路の給電路pと海中アース
Et との間のスイッチである。
In FIG. 2, (a) is a diagram explaining the details of the configuration of the power supply line of the underwater branching device, p is the power supply line of the main transmission line, and Q! (
i-1, 2, . . . the same applies below n1) is the feeder line of the branch line,
kl is a relay installed in a part of the feeder line of the branch line, S! is a switch between the feed line p of the main transmission line and the underwater earth Et operated by the relay kl.

このような構成になっているので、支線の給電路qiに
電流を流すことにより継電器k、を働かせスイッチSi
を動作せしめて、主給電路P+をを海中アースE(に接
続することができる。また、第2図(b)のようにスイ
ッチS!を反対に接続しておけば、全く反対の動作とな
り、支線の給電路qtに電流を流している間は主給電路
pを海中アースEIから離しておき、支線の給電路q!
の電流を止めた時に主給電路pを海中アースE、に接続
することができる。
With this configuration, relay k is activated by passing current through the feed line qi of the branch line, and switch Si is activated.
The main power feed line P+ can be connected to the underwater earth E (by activating the switch. , while the current is flowing through the feeder line qt of the branch line, the main feeder line p is kept away from the underwater earth EI, and the feeder line q! of the branch line is kept separate from the underwater earth EI.
When the current in is stopped, the main power supply line p can be connected to the underwater earth E,.

第3図(a)及びΦ)は主伝送路が中継器Rを含む中継
伝送路で、支線が総て中継器Rのない無中継伝送路の場
合の例である。従って、この場合、正常時には支線の給
電路9Iに電流を流す必要はないので、海中分岐装置D
tの給電路の構成を第2図(a)に示す構成とする。第
3図(a)は正常時の給電路の構成を示し、各支線の給
電路q、には全く電流を流さないので、主伝送路は端局
A−B間で両端給電することになる。
FIGS. 3(a) and Φ) are examples in which the main transmission line is a relay transmission line including a repeater R, and all branch lines are non-repeater transmission lines without a repeater R. Therefore, in this case, there is no need to supply current to the branch power supply path 9I during normal operation, so the underwater branch device D
The configuration of the power supply line t is shown in FIG. 2(a). Figure 3 (a) shows the configuration of the power supply line during normal operation, and since no current flows through the power supply line q of each branch line, the main transmission line is fed at both ends between terminal station A and B. .

第3図(b)は主伝送路の任意の一部、例えば海中分岐
袋MDs  Da間X印で障害になった場合の給電路の
構成を示すもので、その前後の支線の端局C1と04か
ら夫々の給電路qs+qaに電流を流すことにより、海
中分岐装置Ds、Daにおいて主伝送路の給電路pを海
中アースEs、F、aに接続する。このように、給電路
を構成することにより、端局Aと海中分岐装置り1間お
よび端局Bと海中分岐装置D4間の給電が可能となり、
障害区間以外の伝送路に於いては通信が可能となる。ま
た、障害区間については、両端が海中アースP、z、E
4でアースされているので、他区間の通信サービスを確
保したまま、感電等の災害の心配もなく安全にケーブル
を引揚げて修理作業を行うことができ第4図(a)及び
(b)は支線も中継器を含む中継伝送路の場合の例であ
る。従って、この場合、正常時には支線の給電路q1に
電流を流す必要があるので、海中分岐装置Diの給電路
の構成を第2囲い)に示す構成とする。第4図(a)は
正常時の給電路の構成を示し、各支線の給電路qiには
全て電流を流すので、主伝送路は端局A−B間で両端給
電することになる。
Fig. 3(b) shows the configuration of the power supply line in the event that a failure occurs at any part of the main transmission line, for example, at the X mark between the underwater branch bag MDs Da, and between the terminal station C1 of the branch line before and after it. By passing a current from 04 to each power supply line qs+qa, the power supply line p of the main transmission line is connected to the underwater earth Es, F, a in the underwater branching devices Ds, Da. By configuring the power supply path in this way, power can be supplied between the terminal station A and the underwater branching device D4 and between the terminal station B and the underwater branching device D4.
Communication is possible on transmission paths other than the faulty section. In addition, both ends of the fault section are connected to underwater earth P, z, and E.
Since the cable is grounded at 4, the cable can be safely pulled up and repair work can be carried out without worrying about disasters such as electric shock while ensuring communication services for other sections. is an example of a relay transmission line where the branch line also includes a repeater. Therefore, in this case, since it is necessary to flow current through the power supply line q1 of the branch line during normal operation, the configuration of the power supply line of the underwater branching device Di is set as shown in the second box). FIG. 4(a) shows the configuration of the power supply line during normal operation, and since current flows through all the power supply lines qi of each branch line, the main transmission line is supplied with power at both ends between the terminal stations A and B.

第4図ら)は主伝送路の任意の一部、例えば海中分岐装
置Ds  Da間で障害になった場合の給電路の構成を
示すもので、その前後の支線の端局C1とC1からの給
電を止めることにより、海中分岐装置D3.D、におい
て主伝送路の給電路pを海中アースE3.E4に接続す
る。このように、給電路pを構成することにより、端局
Aと海中分岐装置り1間および端局Bと海中分岐装置D
4間の給電が可能となり、障害区間と端局Cs海中分岐
装置り1間、端局C1と海中分岐装置!o、間以外の伝
送路に於いては通信可能となる。また、障害区間につい
ては、両端が海中アースEz、Eaでアースされている
ので、他区間の通信サービスを確保したまま、感電等の
災害の心配もな(安全にケーブルを引揚げて修理作業を
行うことができる。
Figure 4) shows the configuration of the power supply line in the event of a failure in any part of the main transmission line, for example between the underwater branching devices Ds and Da, and the power supply from the terminal stations C1 and C1 of the branch lines before and after the main transmission line. By stopping the underwater branching device D3. D, the power supply line p of the main transmission line is connected to the underwater earth E3. Connect to E4. In this way, by configuring the power supply path p, the power transmission between the terminal station A and the underwater branching device 1 and between the terminal station B and the underwater branching device D is possible.
It is now possible to supply power between 4 points, between the faulty section and the terminal station Cs underwater branching device, and between the terminal station C1 and the underwater branching device! Communication is possible on transmission paths other than those between. In addition, since both ends of the faulty section are grounded with underwater earth Ez and Ea, there is no need to worry about disasters such as electric shock while ensuring communication services for other sections (the cable can be safely pulled up and repair work carried out). It can be carried out.

(発明の効果) 以上説明したように、本発明によれば、主海底伝送路の
途中に支線を分岐接続し、該支線の給電路の海中分岐装
置側端末を海中アースに接続し、各海中分岐装置内の各
支線の端局と海中アース間給電路の一部に設けた継電器
によって主海底伝送路の給電線と該海中分岐装置に設け
た海中アースとの接続切離し制御を行うことにより、伝
送路の障害を障害区間のみにとどめることかで全信頼性
の高い分岐伝送路を構成することができる。また、障害
修理時においても他の区間に影響を与えることなく、か
つ、感電等の人的災害の心配がないので保守性にすぐれ
た分岐伝送路を提供でき、方式構成および回線運用上の
経済的効果は絶大である。
(Effects of the Invention) As explained above, according to the present invention, a branch line is branched and connected in the middle of the main submarine transmission line, and the terminal on the underwater branch device side of the power supply line of the branch line is connected to the underwater ground, and each underwater By controlling the connection and disconnection between the power supply line of the main submarine transmission line and the underwater ground provided in the underwater branching device using a relay installed in a part of the power feeding line between the terminal station of each branch line in the branching device and the underwater ground, A branch transmission line with high overall reliability can be constructed by limiting the failure of the transmission line to only the faulty section. In addition, even when a fault is repaired, it does not affect other sections and there is no risk of human disasters such as electric shock, so it is possible to provide a branch transmission line with excellent maintainability, and it is economical in system configuration and line operation. The effect is enormous.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の海中分岐給電路の実施例の概要説明図
、第2図(a)は海中分岐装置の給電路の構成の詳細説
明図、第2図[有])は同じく海中分岐装置の給電路の
構成の詳細説明図であって、第2図(a)の構成と反対
の動作をする構成に関する図、第3図(a)及び(ハ)
は主伝送路が中継器を含む中継伝送路で、支線が総て中
継器のない無中継伝送路の場合の例で、第3図(a)は
正常時の給電路の構成図、第3図(b)は主伝送路の任
意の一部、例えば海中分岐装置D!−D、間で障害にな
った場合の給電路の構成図、第4図(a)及び(b)は
支線も中継器を含む中継伝送路の場合の例で、第4図(
a)は正常時の給電路の構成図、第4図(b)は主伝送
路の任意の一部、例えば海中分岐装置Ds  Da間で
障害になった場合の給電路の構成図、第5図は従来技術
から容易に類推できる分岐給電路の説明図である。 A、 B・・・・主伝送路の端局 C1・・・・・支線の端局 り、・・・・・海中分岐装置 El  ・・・・・海中アース p・・・・・・主伝送路の給電路 qr  ・・・・・支線の給電路 に+  ・・・・・支線の給電路の一部に設けられた継
電器 S、・・・・・継電器に1で動作する主伝送路の給電路
pと海中アースE五との間 のスイッチ 特許出願人  日本電信電話株式会社 、 第23図 (a) (b) 第4図 (a) (b)
Figure 1 is a schematic explanatory diagram of an embodiment of the underwater branch power supply line of the present invention, Figure 2 (a) is a detailed explanatory diagram of the configuration of the power supply route of the underwater branch device, and Figure 2 (with) is also an underwater branch FIGS. 3A and 3C are detailed explanatory diagrams of the configuration of the power supply path of the device, and are related to a configuration that operates opposite to the configuration in FIG. 2A, and FIGS. 3A and 3C;
Figure 3(a) is an example where the main transmission line is a relay transmission line including a repeater and all branch lines are non-repeater transmission lines without repeaters. Figure (b) shows an arbitrary part of the main transmission line, for example, the underwater branch device D! Figures 4(a) and 4(b) are configuration diagrams of the power supply line in the case of a failure between the branch line and the branch line.
Figure 4(b) is a configuration diagram of the power supply line in the event of a failure in any part of the main transmission line, for example between underwater branching devices Ds and Da; The figure is an explanatory diagram of a branch power supply path that can be easily inferred from the prior art. A, B...Terminal station of main transmission line C1...Terminal station of branch line...Underwater branching device El...Underwater earth p...Main transmission power supply line qr of the main transmission line qr ...... on the power supply line of the branch line + ...... relay S installed in a part of the power supply line of the branch line ...... the main transmission line that operates at 1 on the relay Switch between power supply line p and underwater earth E5 Patent applicant: Nippon Telegraph and Telephone Corporation, Figure 23 (a) (b) Figure 4 (a) (b)

Claims (1)

【特許請求の範囲】[Claims] 主海底伝送路の途中に支線を分岐接続し、該支線の給電
路の海中分岐装置側端末を海中アースに接続し、各海中
分岐装置内の各支線の端局と海中アース間給電路の一部
に設けた継電器によって主海底伝送路の給電線と該海中
分岐装置に設けた海中アースとの接続切離し制御を行う
ことを特徴とする海底分岐ケーブルの給電方式。
A branch line is branched and connected in the middle of the main submarine transmission line, and the terminal on the underwater branch device side of the feed line of the branch line is connected to the underwater ground, and the power feed line between the terminal station of each branch line in each underwater branch device and the underwater earth is connected. 1. A power feeding system for a submarine branch cable, characterized in that a relay provided in the section controls the connection and disconnection between the feeder line of the main submarine transmission line and the underwater ground provided in the submarine branch device.
JP63027140A 1988-02-08 1988-02-08 Submarine branch cable power supply system Expired - Lifetime JP2805147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63027140A JP2805147B2 (en) 1988-02-08 1988-02-08 Submarine branch cable power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63027140A JP2805147B2 (en) 1988-02-08 1988-02-08 Submarine branch cable power supply system

Publications (2)

Publication Number Publication Date
JPH01202035A true JPH01202035A (en) 1989-08-15
JP2805147B2 JP2805147B2 (en) 1998-09-30

Family

ID=12212743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63027140A Expired - Lifetime JP2805147B2 (en) 1988-02-08 1988-02-08 Submarine branch cable power supply system

Country Status (1)

Country Link
JP (1) JP2805147B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5196984A (en) * 1991-02-08 1993-03-23 Northern Telecom Limited Submarine telecommunications systems

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62198228A (en) * 1986-02-25 1987-09-01 Kokusai Denshin Denwa Co Ltd <Kdd> Feeder branching circuit
JPS63262923A (en) * 1987-04-21 1988-10-31 Fujitsu Ltd Feed switching device for underwater branching device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62198228A (en) * 1986-02-25 1987-09-01 Kokusai Denshin Denwa Co Ltd <Kdd> Feeder branching circuit
JPS63262923A (en) * 1987-04-21 1988-10-31 Fujitsu Ltd Feed switching device for underwater branching device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5196984A (en) * 1991-02-08 1993-03-23 Northern Telecom Limited Submarine telecommunications systems

Also Published As

Publication number Publication date
JP2805147B2 (en) 1998-09-30

Similar Documents

Publication Publication Date Title
US6166836A (en) Power switching of optical fibre cable branching units
US5196984A (en) Submarine telecommunications systems
EP0495509B1 (en) Feeding system and feeding method for a submarine cable communication system
JPH01202035A (en) Power supply system for submarine branch cable
JP2786524B2 (en) Feeding line switching circuit for undersea branching device and method for feeding power in undersea cable communication system
JP3967382B2 (en) Branch device for optical fiber transmission system
US7067940B2 (en) Submarine branching unit having asymmetrical architecture
JP2665544B2 (en) Power supply switching circuit for submarine cable transmission line
JPH05327561A (en) Feeding path switching circuit
JPH0253332A (en) Feeder switching circuit
EP1294113B1 (en) Branching unit for an optical transmission system
JP3171862B2 (en) Power supply system and method for communication cable
JP2632905B2 (en) Transmission line feeder switching circuit
US20230308186A1 (en) Submarine optical cable system
WO2023139747A1 (en) Power feeding system, branching device, and power feeding method
JP2691218B2 (en) Submarine power feed path configuration method and submarine power feed switching circuit
JPH01196926A (en) Branch feeding system
EP1322046B1 (en) Submarine branching unit having asymmetrical architecture
JPS61105131A (en) Repeater for branching relay transmission
JPH01221930A (en) Branch transmission path
JPS63262923A (en) Feed switching device for underwater branching device
JPS63246042A (en) Optical cable branching device
JPH04256225A (en) Feeding method and feed line switching circuit for sea-bottom cable communication system
JPS6088912A (en) Undersea branching method of optical submarine cable
JPH04336718A (en) Submarine branching device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070724

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080724

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080724

Year of fee payment: 10