JPS62197424A - Finely powdered polyester particle and its production - Google Patents

Finely powdered polyester particle and its production

Info

Publication number
JPS62197424A
JPS62197424A JP3899986A JP3899986A JPS62197424A JP S62197424 A JPS62197424 A JP S62197424A JP 3899986 A JP3899986 A JP 3899986A JP 3899986 A JP3899986 A JP 3899986A JP S62197424 A JPS62197424 A JP S62197424A
Authority
JP
Japan
Prior art keywords
fine powder
powder particles
less
intrinsic viscosity
polyester resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3899986A
Other languages
Japanese (ja)
Inventor
Takashi Yokoi
横井 崇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP3899986A priority Critical patent/JPS62197424A/en
Publication of JPS62197424A publication Critical patent/JPS62197424A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/85Polyesters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/12Face or body powders for grooming, adorning or absorbing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/04Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/41Particular ingredients further characterized by their size
    • A61K2800/412Microsized, i.e. having sizes between 0.1 and 100 microns

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Dermatology (AREA)
  • Cosmetics (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

PURPOSE:To obtain the title particles excellent in dispersibility, smoothness, touch and packability, by ejecting a coarse powder of a starting polyester resin of a specified intrinsic viscosity and a compressed gas from a nozzle and allowing them to collide against a collision plate. CONSTITUTION:A starting polyester resin comprising at least 60mol% ethylene terephthalate units and at most 40mol% other comonomer units such as a dicarboxylic acid component or a glycol component together with, optionally additives such as a heat stabilizer, a nucleator ad a hydrolysis resistance improver are coarsely ground to an average particle diameter of 20-70mum to obtain a coarse powder of the starting polyester resin of an intrinsic viscosity <0.4, preferably, <0.3. This coarse powder and a compressed gas at a speed >=Mach 2.0 are ejected from a nozzle and allowed to collide against a collision plate to obtain the title fine particles based on a polyethylene terephthalate having an intrinsic viscosity <=0.9, an average particle diameter <=10mum, a yellowing index YI<=5.5 and an L value >=90 and a 'b' value <=2.5 (in terms of the Hunter's color scale system).

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ポリエステル系微粉体粒子及びその製造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to polyester fine powder particles and a method for producing the same.

(従来技術及びその問題点) ポリエステル系微粉体粒子を、例えば化粧品への添加剤
等に使用する場合、分散性、平滑性、なめらかさ、感触
性等の優れた粉体特性が要求される。通常化粧品等に使
用される場合、平均粒径が好ましくは10μm以下、よ
り好ましくは1〜5μmの微粉体粒子が適当であり、か
つ品質劣化の少ない白皮色相共に良好な微粉体粒子が要
求される。即ち、粒径が小さくなるに従って比表面積は
大きくなり、他物質に対する吸着性や光の反射性の様な
表面の性状に依存する特性は著しく増大し、又伸展性、
粘結性も増大する結果使用時における肌へのつき、伸び
、滑り、つや、パール効果、光の遮蔽効果等の向上とな
って表われる。又、化粧品への添加剤等に使用する際は
、品質劣化の少ない白変色相が良好である事が要求され
る。従来慣用されているタルク、カオリン、二酸化チタ
ン等の微粉体粒子とは、形状、物理的特性、化学的特性
が著しく異なるポリエステル系微粉体粒子を、化粧品へ
の添加剤等に用いた場合は、独特の効果を生じることが
期待される。
(Prior art and its problems) When polyester-based fine powder particles are used, for example, as an additive for cosmetics, excellent powder properties such as dispersibility, smoothness, smoothness, and texture are required. Normally, when used in cosmetics, etc., fine powder particles with an average particle size of preferably 10 μm or less, more preferably 1 to 5 μm are appropriate, and fine powder particles with good white peel color and less quality deterioration are required. Ru. In other words, as the particle size decreases, the specific surface area increases, and properties that depend on surface properties such as adsorption to other substances and light reflectivity increase significantly, and extensibility,
The caking property also increases, resulting in improved adhesion to the skin, spread, slipperiness, gloss, pearl effect, light shielding effect, etc. during use. Furthermore, when used as an additive to cosmetics, it is required to have a good white discoloration with little quality deterioration. When polyester-based fine powder particles, which have significantly different shape, physical properties, and chemical properties from conventionally used fine powder particles such as talc, kaolin, and titanium dioxide, are used as additives for cosmetics, It is expected to produce unique effects.

従って、ポリエステル系樹脂の粉末化については従来種
々の方法が試みられているが、一般にポリエステル系樹
脂は強靭であるため、粉砕粉末化は極めて困難である。
Therefore, various methods have been tried in the past for pulverizing polyester resins, but since polyester resins are generally tough, it is extremely difficult to pulverize them into powder.

従来用いられてきたポリエステル系樹脂の粉末化を大別
すれば、 ■ 物理的粉砕法 例えば−147℃以下の液体窒素の
様な超低温液体中に樹脂を浸せきした後、粉砕機で粉末
化する方法。
Conventionally used methods of pulverizing polyester resins can be broadly classified as follows: ■ Physical pulverization method For example, a method in which the resin is immersed in an ultra-low temperature liquid such as liquid nitrogen at -147°C or lower, and then pulverized using a pulverizer. .

■ 溶剤溶解晶析法 例えばハロゲン化芳香族の特定溶
媒に加熱溶解後、冷却析出させて微粉化する方法。塩素
化炭化水素に溶解させた後、該溶剤を除去して粉末を得
る方法。ベンジルアルコールに溶解させ、これに希釈剤
を加えてポリエステル粉末を沈澱させる方法(特開昭4
9−73452号公報)。
■ Solvent dissolution crystallization method For example, a method in which a halogenated aromatic compound is heated and dissolved in a specific solvent, and then cooled and precipitated to form a fine powder. A method of obtaining a powder by dissolving it in a chlorinated hydrocarbon and then removing the solvent. A method of precipitating polyester powder by dissolving it in benzyl alcohol and adding a diluent to it (Japanese Unexamined Patent Publication No. 4
9-73452).

■ メルト噴霧−固相重合法 例えば、低重合度のポリ
エステル樹脂を溶融状態において細孔から不活性ガス中
に噴霧せしめ粒状固体とした後、固相重合する方法(特
公昭46−3192号公報、特公昭46−3193号公
報)。
■ Melt spray-solid phase polymerization method For example, a method in which polyester resin with a low degree of polymerization is sprayed in a molten state into an inert gas through pores to form a granular solid, and then solid phase polymerized (Japanese Patent Publication No. 46-3192, (Special Publication No. 46-3193).

等があげられる。etc. can be mentioned.

しかしながら、これらの従来法によっては、前述用途等
において要求される性能を有し、かつ平均粒径10μm
以下という微粉体粒子を得る事は難しく、劣化等による
白変色相不良のため品質グレード低下を紹いてしまう事
がわかった。問題点を具体的に上げれば、 ■ 物理的粉砕法では、粉砕時の発熱等による劣化を抑
制する事がある程度できるものの、従来のハンマーミル
等の物理的粉砕は、高収率微粉末化のためには平均粒径
30μm程度が限界であり、騒音、金属異物混入、生産
コスト高等の問題は避けられない。
However, depending on these conventional methods, it is possible to achieve the performance required for the above-mentioned applications, etc., and to obtain particles with an average particle size of 10 μm.
It was found that it is difficult to obtain the following fine powder particles, and the quality grade deteriorates due to white discoloration and poor hue due to deterioration etc. Specifically, the problems are as follows: ■ Although physical pulverization methods can suppress deterioration due to heat generation during pulverization to some extent, conventional physical pulverization methods such as hammer mills do not achieve high-yield pulverization. The average particle diameter is about 30 μm as the limit, and the problems of noise, metal foreign matter contamination, and high production costs are unavoidable.

■ 溶剤溶解晶析法では、加熱溶解時の劣化着色が生じ
、黄色度指数Ylを5.5以下にする事は難しく、又、
工程の複雑化、それに伴なう著しい生産コスト高等の問
題が上げられる。
■ In the solvent dissolution crystallization method, deterioration and coloring occur during heating and dissolution, and it is difficult to reduce the yellowness index Yl to 5.5 or less.
The problem is that the process becomes more complicated and the resulting production costs are significantly higher.

■ メルト噴霧−固相重合法では、やはり加熱溶解時の
劣化着色、粒径に限界があり、低重合度ポリエステル系
樹脂を用いても現状技術では平均粒径20〜30,17
m程度のものしか得られず、目的微粉体粒子の生産収率
が著しく低い等の問題が上げられる。
■ Melt spray-solid phase polymerization method still suffers from deterioration and discoloration during heating and dissolution, and there are limits to particle size, and even if low polymerization degree polyester resin is used, current technology has an average particle size of 20 to 30,17
However, there are problems such as a very low production yield of the desired fine powder particles.

(問題点を解決するための手段) 本発明者は、低重合度ポリエステル系樹脂を用いてメル
ト噴霧−固相重合する方法に注目し、劣化着色が実質的
になく、平均粒系10μm以下の微粉体粒子及びその製
造方法を発明すべく鋭意研究を行なった。
(Means for Solving the Problems) The present inventors have focused on a method of melt spraying and solid phase polymerization using a low degree of polymerization polyester resin, and have found that there is virtually no deterioration coloring and that the average particle size is 10 μm or less. We conducted extensive research to invent fine powder particles and a method for producing them.

本発明の目的は、従来法では得る事のできなかった良好
なる分散性、平滑性、なめらかさ、感触性、充てん性を
有する微粉体粒子を提供することにある。
An object of the present invention is to provide fine powder particles having good dispersibility, smoothness, smoothness, texture, and filling properties that could not be obtained by conventional methods.

即ち、本発明の第1は、平均粒径が10μm以下、黄色
度指数YIが5.5以下、かつハンター表色系でL値が
90以上、b値が2.5以下である、固有粘度0.9以
下の主としてポリエチレンテレフタレートからなるポリ
エステル系微粉体粒子、であり、この様なポリエステル
微粉体は本発明の第2、即ち、固有粘度が0.4未満の
原料ポリエステル系樹脂の粗粉体を吹き出し速度マツハ
2.0以上の圧縮気体でノズルより吹き出し、衝突板に
衝突させるこきを特徴とするポリエステル系微粉体粒子
の製造方法、及び本発明の第3、即ち、固有粘度が0.
4未満の原料ポリエステル系樹脂の粗粉体を吹き出し速
度マツハ2.0以上の圧縮気体でノズルより吹き出し、
衝突板に衝突させ、得られた中間品微粉体粒子を減圧下
又は、不活性気体雰囲気下において、該中間品微粉体粒
子の融点よりも5〜100℃低い範囲の温度にて固相重
合する事を特徴とするポリエステル系微粉体粒子の製造
方法、により製造できる。
That is, the first aspect of the present invention is an intrinsic viscosity that has an average particle size of 10 μm or less, a yellowness index YI of 5.5 or less, and an L value of 90 or more and a b value of 2.5 or less in the Hunter color system. 0.9 or less, and such polyester fine powder is the second part of the present invention, that is, coarse powder of raw material polyester resin having an intrinsic viscosity of less than 0.4. The third aspect of the present invention is a method for producing polyester-based fine powder particles, which is characterized by blowing compressed gas from a nozzle at a blowing rate of 2.0 or higher and causing the particles to collide with a collision plate;
Blow out coarse powder of raw material polyester resin of less than 4 from a nozzle with compressed gas with a blowing speed of 2.0 or more,
The intermediate fine powder particles obtained by colliding with a collision plate are subjected to solid phase polymerization at a temperature in a range of 5 to 100°C lower than the melting point of the intermediate fine powder particles under reduced pressure or an inert gas atmosphere. It can be produced by a method for producing polyester-based fine powder particles characterized by the following.

本発明に用いる原料ポリエステル系樹脂は、通常エチレ
ンテレフタレート単位を60モル%以上、好ましくは7
5モル%以上含有したものである。
The raw material polyester resin used in the present invention usually contains 60 mol% or more of ethylene terephthalate units, preferably 7
It contains 5 mol% or more.

従って該原料ポリエステル系樹脂は、40モル%以下、
好ましくは25モル%以下であれば他の共重合成分単位
を含んでいても良い。該共重合成分の中のジカルボン酸
成分としては、例えばフタール酸、イソフタール酸、ア
ジピン酸、シュウ酸、セバシン酸、スペリン酸、グルタ
ル酸、ピメリン酸、フマル酸、コハク酸、ナフタリン−
2,6−ジカルボン酸及び1.4−シクロヘキサンジカ
ルボン酸などの中から選ばれた少なくとも1種が挙げら
れ、一方グリコール成分としては、例えば炭素数3〜l
Oのポリエチレングリコール、シクロヘキサン−1,4
−ジメタツール及びペンタエリスリトールなどの中から
選ばれた少なくとも1種が挙げられる。
Therefore, the raw material polyester resin is 40 mol% or less,
It may contain other copolymerizable component units, preferably in an amount of 25 mol% or less. Examples of dicarboxylic acid components in the copolymerization component include phthalic acid, isophthalic acid, adipic acid, oxalic acid, sebacic acid, speric acid, glutaric acid, pimelic acid, fumaric acid, succinic acid, and naphthalic acid.
At least one selected from 2,6-dicarboxylic acid and 1,4-cyclohexanedicarboxylic acid may be mentioned, while the glycol component may include, for example, a glycol component having 3 to 1 carbon atoms.
O polyethylene glycol, cyclohexane-1,4
- At least one selected from dimethatol, pentaerythritol, and the like.

もちろん、前記ジカルボン酸の代りに、ジカルボン酸の
エステル形成誘4体、例えば低級アルキルエステル、ア
リールエステル、炭酸エステル、酸ハロゲン化物なども
同等に用いることができ、又、ジオールもエステル形成
誘導体、例えばアセチル体、アルカリ金属塩などの形で
用いることができる。
Of course, instead of the dicarboxylic acid, ester-forming derivatives of dicarboxylic acids, such as lower alkyl esters, aryl esters, carbonic esters, acid halides, etc., can be equally used, and diols can also be ester-forming derivatives, such as It can be used in the form of acetyl form, alkali metal salt, etc.

さらに変性剤として、ジメチル−5−ヒドロキシイソツ
クレート、ジメチル−5−ヒドロキシへキサヒドロイソ
フタレート、ベンゼン−1,3,5−トリカルボン酸、
P−カルボメトキシフェニルジエチルホスフェート、3
.5−ジカルボキシフェニルジエチルホスフェート、リ
ン酸、トリフェニルホスフェート、トリーP−カルボメ
トキシフェニルホスフェート、トリカプリルボレート、
ソルビタン、トリメトシン酸などを1種又は2種以上、
少量含んでいてもなんら差し支えない。
Furthermore, as a modifying agent, dimethyl-5-hydroxyisotucrate, dimethyl-5-hydroxyhexahydroisophthalate, benzene-1,3,5-tricarboxylic acid,
P-carbomethoxyphenyl diethyl phosphate, 3
.. 5-dicarboxyphenyldiethyl phosphate, phosphoric acid, triphenyl phosphate, tri-P-carbomethoxyphenyl phosphate, tricaprylborate,
One or more types of sorbitan, trimethosic acid, etc.
There is no problem even if it contains a small amount.

これらの共重合成分等が40モル%を超えるとポリエス
テル系樹脂の優れた物理的特性を一般的には損ってしま
う。
If the content of these copolymer components exceeds 40 mol %, the excellent physical properties of the polyester resin will generally be impaired.

又、本発明に用いる原料ポリエステル系樹脂には、種々
の添加剤、例えば結晶核剤、滑剤、成形助剤、凝集防止
剤、あるいは酸化防止剤や紫外線吸収剤などの耐熱、耐
光性安定剤、耐加水分解性改良剤、顔料や染料などの着
色剤、帯電防止剤、導電剤、難燃剤、補強剤、充てん剤
、離型剤などを所望に応じ該溶液中に添加し、微粉体粒
子中に含有させることができる。
In addition, the raw polyester resin used in the present invention may contain various additives, such as crystal nucleating agents, lubricants, molding aids, anti-aggregation agents, and heat and light resistance stabilizers such as antioxidants and ultraviolet absorbers. Hydrolysis resistance improvers, coloring agents such as pigments and dyes, antistatic agents, conductive agents, flame retardants, reinforcing agents, fillers, mold release agents, etc. are added to the solution as desired, and the fine powder particles are mixed. It can be contained in

特に、アミン系、ヒンダードフェノール系などの耐熱安
定剤を添加すれば、微粉体粒子の耐熱エージング性を改
善することができるし、又、結晶核剤として、P−フェ
ノールスルホン酸ナトリウムなどを添加することにより
、固相重合時間を若干短縮することができる。この場合
、添加量は原料ポリエステル系樹脂に対して、好ましく
は0.003〜3.0重量%の範囲で選ばれる。さらに
、耐加水分解性改良剤として、公知のカルボジイミド化
合物やエポキシ化合物などを添加することにより、耐加
水分解性が著しく向上した微粉体粒子を得ることができ
る。その添加量は原料ポリエステル系樹脂に対して0.
03〜3.0重量%の範囲である事が好ましく、その際
種々の反応触媒、例えば酢酸金属化合物、ハロゲン化ア
ルカリ化合物等併用しても良い。
In particular, adding heat-resistant stabilizers such as amines and hindered phenols can improve the heat aging resistance of fine powder particles, and addition of sodium P-phenolsulfonate as a crystal nucleating agent. By doing so, the solid phase polymerization time can be slightly shortened. In this case, the amount added is preferably selected within the range of 0.003 to 3.0% by weight based on the raw material polyester resin. Furthermore, by adding a known carbodiimide compound, epoxy compound, or the like as a hydrolysis resistance improver, fine powder particles with significantly improved hydrolysis resistance can be obtained. The amount added is 0.0% based on the raw material polyester resin.
The amount is preferably in the range of 0.03 to 3.0% by weight, and in this case, various reaction catalysts such as metal acetate compounds, alkali halide compounds, etc. may be used in combination.

次に、本発明の微粉体粒子の製造方法について説明する
。即ち、本発明の微粉体粒子は固有粘度が0.4未満の
原料ポリエステル系樹脂粗粉体を吹き出し速度マツハ2
.0以上の圧縮気体でノズルより吹き出し、衝突板に衝
突させることによって得られる。また、これを中間品微
粉体粒子としてさらに固相重合することによっても得ら
れる。本発明において、収率よく微粉体粒子を得るため
には、原料ポリエステル系樹脂の固有粘度は、0.4未
満、好ましくは0.3未満である事が必要である。この
固有粘度が0.4以上であると粉砕の際、所望の粉体粒
径を有する微粉体粒子は得られにくい。原料ポリエステ
ル系樹脂として、固有粘度が0.4未満、好ましくは0
.3未満のものを用いる事により、初めて平均粒径10
μm以下の微粉体粒子への微粉末化が容易となり、目的
とする微粉体粒子を高収率で得る事ができる。
Next, a method for producing fine powder particles of the present invention will be explained. That is, in the fine powder particles of the present invention, raw material polyester resin coarse powder having an intrinsic viscosity of less than 0.4 is blown at a blowing speed of Matsuha 2.
.. It is obtained by blowing compressed gas of 0 or more from a nozzle and colliding it with a collision plate. It can also be obtained by further solid-phase polymerization as intermediate fine powder particles. In the present invention, in order to obtain fine powder particles with good yield, the raw material polyester resin needs to have an intrinsic viscosity of less than 0.4, preferably less than 0.3. When the intrinsic viscosity is 0.4 or more, it is difficult to obtain fine powder particles having a desired powder particle size during pulverization. The raw material polyester resin has an intrinsic viscosity of less than 0.4, preferably 0.
.. By using less than 3, the average particle size is 10 for the first time.
Pulverization into fine powder particles of μm or less becomes easy, and the desired fine powder particles can be obtained at a high yield.

本発明における原料ポリエステル系樹脂の粗粉体とは、
例えばハンマーミル等従来の物理的粉砕法にて得られた
平均粒系20〜70μm程度の粗粉体をいい、短時間に
粗粉砕処理を行なえば熱劣化等による着色はまったく問
題にならない。
The coarse powder of the raw material polyester resin in the present invention is
For example, it refers to a coarse powder with an average particle size of about 20 to 70 μm obtained by a conventional physical pulverization method such as a hammer mill, and if the coarse pulverization treatment is carried out in a short time, coloring due to thermal deterioration etc. will not be a problem at all.

又、本発明の微粉末化の際に用いる圧縮気体の種類は特
に限定はしないが、一般的には空気、窒素いずれを用い
ても良い。特に、粉じん爆発等の防災対策として窒素を
用いると良い。
Further, the type of compressed gas used in the pulverization of the present invention is not particularly limited, but generally either air or nitrogen may be used. In particular, it is good to use nitrogen as a disaster prevention measure against dust explosions and the like.

微粉末化の際に用いる圧縮気体の流速は、粗粉体供給量
等、生産条件との組み合わせにおいて必ずしも特定でき
ないが、本発明実施例においては第1図中の粉砕ノズル
出口でマツハ約2.8近辺とする。本発明における圧縮
気体の流速は、少なくともマツハ2.0以上は必要で、
材料力学的に衝撃粉砕を進めるために被粉砕物を先ず圧
縮状態とし、さらに弾性限界を越え粒子内への割れ目、
結晶間隙又は夾雑物を境とし破壊が進行するのではない
かと考えられる。
Although the flow rate of the compressed gas used during pulverization cannot necessarily be specified in combination with the production conditions such as the amount of coarse powder supplied, in the embodiment of the present invention, the flow rate of the compressed gas used at the outlet of the pulverization nozzle in FIG. It should be around 8. The flow rate of the compressed gas in the present invention needs to be at least Matsuha 2.0 or higher,
In order to advance impact pulverization in terms of material mechanics, the material to be pulverized is first compressed, and then the elastic limit is exceeded to create cracks within the particles.
It is thought that the destruction progresses at the crystal gaps or impurities as boundaries.

圧縮気体中で粒子同志の衝撃により粉砕促進された微粉
体粒子は、分級室で高速旋回流により分級され製品排気
、サイクロンにより捕集される。
The fine powder particles, which are pulverized by the impact between the particles in the compressed gas, are classified by a high-speed swirling flow in the classification chamber, and then collected by the product exhaust and cyclone.

一方、粗粒は遠心力により旋回流の外側に寄せられ、再
び圧縮気体中に戻り、反復循環されシャープな粒度分布
を有する目的の微粉体粒子、又は中間品微粉体粒子を得
る事ができる。
On the other hand, the coarse particles are drawn to the outside of the swirling flow by centrifugal force, return to the compressed gas, and are repeatedly circulated to obtain target fine powder particles or intermediate fine powder particles having a sharp particle size distribution.

本製造方法は従来の製造方法とは異なり、物理的粉砕法
に比較して、■粉砕時の発熱がほとんどなく材料の熱劣
化を抑える事ができると同時に、■静電凝集しやすいポ
リエステル系樹脂微粉体にとっては、圧縮気体を用いる
ため、大へん作業性が良好で生産性が向上し、■粉砕機
内の摩耗が少なく、従って製品内の不純物の混入が少な
い。■駆動部分がないため、掻作保守清掃が簡単である
This manufacturing method differs from conventional manufacturing methods in that, compared to physical pulverization methods, it generates almost no heat during pulverization and can suppress thermal deterioration of the material, while also being able to: For fine powder, since compressed gas is used, workability is very good and productivity is improved. (1) There is less wear inside the pulverizer, so there is less contamination of impurities in the product. ■Since there are no moving parts, scraping, maintenance, and cleaning are easy.

又、溶剤溶解晶析法に比較して、■加熱劣化がない、■
生産コストを著しく低減できる。■生産工程が簡単で、
安全である。
Also, compared to the solvent dissolution crystallization method, there is no heating deterioration;
Production costs can be significantly reduced. ■The production process is simple,
It's safe.

さらに、本発明に最も近いメルト噴霧−固相重合法と比
較すると、■メルトしないので、加熱劣化、着色がない
。■粉砕ノズル出口正面に衝突板を設置した事と、■圧
縮気体を用いて原料粗粉体を吹き出し速度マツハ約2.
8にてノズルより吹き出す事の相乗効果で衝撃による微
粉末化の著しい促進が可能となった、等の利点が上げら
れる。
Furthermore, compared to the melt spray-solid phase polymerization method which is closest to the present invention, (1) there is no melting, so there is no heating deterioration or coloring. ■A collision plate was installed in front of the pulverizing nozzle outlet, and ■Compressed gas was used to blow out raw material coarse powder at a speed of approximately 2.
In step 8, the synergistic effect of blowing out from the nozzle makes it possible to significantly accelerate the pulverization by impact.

本発明の第3においては、このようにして得られた中間
品微粉体粒子は、例えば5■Hg以下、かつ酸素濃度5
ppm以下の減圧下又は不活性気体の雰囲気下に、該樹
脂微粉体の融点よりも5〜100℃低い範囲の温度にお
いて固相重合させる。この際の反応時間には、要求され
る粉体製品の物性によって適宜選ばれる。この固相重合
によって、該樹脂微粉体粒子の重合度及び結晶化度は上
昇する。
In the third aspect of the present invention, the intermediate fine powder particles thus obtained have an oxygen concentration of, for example, 5 ■Hg or less and an oxygen concentration of 5
Solid phase polymerization is carried out under reduced pressure of ppm or less or in an inert gas atmosphere at a temperature in the range of 5 to 100° C. lower than the melting point of the fine resin powder. The reaction time at this time is appropriately selected depending on the required physical properties of the powder product. This solid phase polymerization increases the degree of polymerization and crystallinity of the resin fine powder particles.

この様にして得られたポリエステル系微粉体粒子は、黄
色度指数YIが5.5以下、かつハンター表色系でL値
が90以上、b値が2.5以下、固有粘度が0.9以下
である。本発明で用いる原料ポリエステル系樹脂は、固
相重合反応速度が比較的遅く、敢えて固有粘度を0.9
より太き(したものを得ようとすると、固相重合時の反
応温度を上げ、反応時間も延長せざるを得ず、着色問題
や融着現象が生じる上に、生産コストが高くなる。従っ
て、本発明においては、該樹脂微粉体粒子の固有粘度は
、0.9以下である事が必要である。
The polyester fine powder particles thus obtained have a yellowness index YI of 5.5 or less, an L value of 90 or more in the Hunter color system, a b value of 2.5 or less, and an intrinsic viscosity of 0.9. It is as follows. The raw material polyester resin used in the present invention has a relatively slow solid phase polymerization reaction rate, and the intrinsic viscosity has been intentionally lowered to 0.9.
In order to obtain a thicker product, the reaction temperature during solid phase polymerization must be increased, the reaction time must be extended, coloring problems and fusion phenomena may occur, and production costs will increase. In the present invention, the intrinsic viscosity of the resin fine powder particles must be 0.9 or less.

(発明の効果) 本発明のポリエステル系微粉体粒子は、平均粒径10μ
m以下の粒子から成っているので、分散性、平滑性、な
めらかさ、感触性などの優れた粉体特性効果が期待でき
、特に化粧品などの用途に供した場合、収斂性、皮脂吸
収性、撥水性、肌の保護、さらには肌へのつき、伸び、
滑りが良好である。又、黄色度指数Ylが5.5以下の
粒子であるため、劣化による着色がなく、化粧品等の用
途に適している。該微粉体粒子は化粧品用以外に、潤滑
剤、滑剤、多孔性高分子材料、粉体塗装剤、充てん剤、
細胞培養用培地材料などにも有用である。
(Effect of the invention) The polyester fine powder particles of the present invention have an average particle size of 10 μm.
Since it is made up of particles of less than m in size, it can be expected to have excellent powder properties such as dispersibility, smoothness, smoothness, and texture, and especially when used in cosmetics etc., it has astringency, sebum absorption, Water repellency, skin protection, adhesion to the skin, elongation,
Good sliding properties. Furthermore, since the particles have a yellowness index Yl of 5.5 or less, they do not become discolored due to deterioration and are suitable for applications such as cosmetics. In addition to cosmetics, the fine powder particles can be used as lubricants, lubricants, porous polymer materials, powder coating agents, fillers,
It is also useful as a medium material for cell culture.

本発明のポリエステル系微粉体粒子の製造方法の特色は
、従来の製造方法即ち低重合度ポリエステル系樹脂のメ
ルト噴霧−固相重合法に比較し、原料樹脂をメルトする
ことなく固体粗粉体のまま、吹き出し速度マツハ2.0
以上で圧縮気体と共に吹き出し、衝突板に衝突させる、
及び、さらにその後固相重合させるという独自の方法、
組み合わせにより、従来の方法では得る事のできなかっ
た目的とする微粉体粒子特性を全てかねそなえたものを
、高収率で、比較的容易に得る事ができ、その工業的価
値は極めて高い。
The feature of the method for producing polyester fine powder particles of the present invention is that, compared to the conventional production method, that is, the melt spraying-solid phase polymerization method of low polymerization degree polyester resin, solid coarse powder particles are produced without melting the raw material resin. Mama, balloon speed Matsuha 2.0
With the above, the compressed gas is blown out and collided with the collision plate.
And, a unique method of further solid phase polymerization,
By combining these methods, it is possible to relatively easily obtain fine powder particles with all of the desired characteristics that could not be obtained using conventional methods, in a high yield, and the industrial value thereof is extremely high.

実施例 次に実施例により本発明をさらに詳細に説明するが、本
発明はこれらの例に限定されるものではない。
EXAMPLES Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples.

なお、固有粘度、結晶化度、結晶完全性パラメーター、
粒径分布、融点、黄色度指数Yl及び白皮色相Lib値
(ハンター表色系)は次の様にして求めた。
In addition, intrinsic viscosity, crystallinity, crystal perfection parameters,
Particle size distribution, melting point, yellowness index Yl, and white skin hue Lib value (Hunter color system) were determined as follows.

(1)固有粘度 試料1gを0CP(0−クロロフェノール)溶媒100
mlに溶解し、ウベローデ改良型毛細管式粘度計を用い
て35℃の恒温にて測定した還元粘度の値を極限粘度に
換算したもので、固相重合後の微粉体固有粘度は、29
0℃にて1分間再溶融したものを用い測定した値である
(1) Add 1 g of intrinsic viscosity sample to 100% of 0CP (0-chlorophenol) solvent.
The value of the reduced viscosity measured using an Ubbelohde improved capillary viscometer at a constant temperature of 35°C is converted to the intrinsic viscosity, and the intrinsic viscosity of the fine powder after solid phase polymerization is 29.
This is a value measured using a sample that was remelted at 0°C for 1 minute.

(2)結晶化度 対称反射法により赤道方向のX線回折強度を測定し、X
線回折強度の回折角依存性曲線から算出した。
(2) Measure the X-ray diffraction intensity in the equator direction using the crystallinity symmetric reflection method,
It was calculated from the diffraction angle dependence curve of linear diffraction intensity.

X線回折強度は理学電機社製XvA発生装置(RAD−
rA)とゴニオメータ(SG−9R) 、計数管にはシ
ンチレーションカウンター、計数部には波高分析器を用
い、ニッケルフィルターで単色化したCuKct線(波
長λ=1.5418人)を用いて測定した。粉体粒子試
料の軸面がX線回折面に対して垂直になる様にサンプル
ホルダーをセットし、30KV、80mAでX線発生装
置を運転し、スキャニング速度1″/分、チャート速度
10m/分、タイムコンスタント1秒、ダイパージエン
トスリット1/2°ルシービングスリット0.3m/m
、スキャッタリングスリット1/2”において20が3
5〜7°まで回折強度を記録した。
X-ray diffraction intensity was measured using an XvA generator (RAD-
rA) and a goniometer (SG-9R), a scintillation counter as the counter, a pulse height analyzer as the counting section, and the measurement was performed using a CuKct line (wavelength λ = 1.5418) made monochromatic with a nickel filter. Set the sample holder so that the axial plane of the powder particle sample is perpendicular to the X-ray diffraction surface, operate the X-ray generator at 30 KV and 80 mA, scan speed 1″/min, and chart speed 10 m/min. , time constant 1 second, dipersient slit 1/2° lucid slit 0.3m/m
, 20 is 3 at the scattering slit 1/2”
Diffraction intensity was recorded from 5 to 7 degrees.

ポリエチレンテレフタレート系樹脂は一般に赤道線上の
回折角2θ=7°〜26@の範囲に3個の主要な反射を
有する。低角度側から(100)、(010)、(11
0)面である。
Polyethylene terephthalate resin generally has three main reflections in the range of diffraction angle 2θ=7° to 26@ on the equatorial line. From the low angle side (100), (010), (11
0) surface.

得られたX線回折強度曲線より、2θ−7″と20−3
5@の回折強度曲線間を直線で結びベースラインとした
。2θ=200付近の谷を頂点とし、低角側及び高角側
のすそに沿って直線で結び、結晶部と非晶部に分離し、
次式に従って面積法で結晶化度Xcを求めた。
From the obtained X-ray diffraction intensity curve, 2θ-7″ and 20-3
The diffraction intensity curves of 5@ were connected with a straight line to form a baseline. The valley around 2θ = 200 is the apex, connected by a straight line along the base of the low angle side and the high angle side, and separated into a crystalline part and an amorphous part,
Crystallinity Xc was determined by the area method according to the following formula.

(3)結晶完全性パラメーター 上記X線回折強度の回折角依存性曲線を用い、(110
)と(100)のピーク間の分離度の指数として、結晶
完全性パラメーターRを算出した。
(3) Crystal perfection parameter Using the above diffraction angle dependence curve of X-ray diffraction intensity, (110
) and (100) peaks, the crystal perfection parameter R was calculated.

結晶子サイズ、結晶の完全性は回折プロフィルの広がり
から求めるべきだが、ポリエチレンテレフタレート系樹
脂の場合、各回折位置が互いに近いためピークの重なり
が生じやすく、純粋なプロフィルが求めにくいため、R
を用いて比較した。Rは、第3図モデル回折角依存性曲
線のピークを用い、R= In+in/ I (+00
1で算出した。
Crystallite size and crystal integrity should be determined from the spread of the diffraction profile, but in the case of polyethylene terephthalate resin, each diffraction position is close to each other, so peaks tend to overlap, making it difficult to obtain a pure profile.
Comparison was made using For R, use the peak of the model diffraction angle dependence curve in Figure 3, and calculate R=In+in/I (+00
1.

(4)粒径分布 従来のマイクロ・トラック法により測定した。(4) Particle size distribution Measurements were made using the conventional Micro Track method.

(5)融点 試料10mgをアルミ製サンプルパンにセットし、理学
電機−の示差走査熱量天秤(TG−DSC)標準型にて
、以下の条件にて測定した。なお、本発明第1表の融点
は、DSCチャートの吸熱ピークの頂点の温度とした。
(5) Melting point 10 mg of the sample was set in an aluminum sample pan, and measured using a standard differential scanning calorimeter (TG-DSC) manufactured by Rigaku Denki under the following conditions. The melting points in Table 1 of the present invention were taken as the temperature at the top of the endothermic peak in the DSC chart.

(6)黄色度指数YI 本発明のポリエチレンテレフタレート系微粉体粒子の黄
色度を示す指標であり、1931年CIEで採用の標準
表色系に準じ、3つのセンサーで刺激量X、Y、Zをと
らえ、その値を用いてした。
(6) Yellowness Index YI This is an index that shows the yellowness of the polyethylene terephthalate fine powder particles of the present invention, and is based on the standard color system adopted by CIE in 1931. Three sensors measure the stimulation amount X, Y, and Z. and used that value.

(7)白変色相−L値す値(ハンター表色系)L値及び
b値は、ハンター色差図におけるもので、L値は明るさ
を示し、L値が大きい程色が明るく白変が向上している
事を示し、又す値は色相を示しプラス(+)で絶対値が
大きい程黄味側に、マイナス(−)で絶対値が大きい程
青味側にある事を示している。即ちb値の絶対値が大き
い程、色相は深い事を示している。
(7) White discoloration hue - L value (Hunter color system) The L value and b value are from the Hunter color difference diagram. The L value indicates brightness, and the larger the L value, the brighter the color and the less white discoloration. The value indicates the hue, and a positive (+) sign indicates that the larger the absolute value, the more yellowish the color is, and a negative (-) sign that the larger the absolute value is, the more bluish the color is. . That is, the larger the absolute value of the b value, the deeper the hue.

なお、発明明表1におけるL値、b値については、スガ
試験機側製SMカラーコンピューター5M−4−2を用
い下記の仕様にて算出した値である。2光路方式、0°
照明拡散光受光条件にて、試料照射面φ301m、受光
器には温度補償回路付シリコン光電池とフィルターの組
み合わせでC先光測定値を採用した。
The L value and b value in Invention Table 1 are values calculated using SM Color Computer 5M-4-2 manufactured by Suga Test Instruments in accordance with the following specifications. 2 optical path method, 0°
Under the condition of diffused illumination light reception, the sample irradiation surface was φ301 m, and the light receiver was a combination of a silicon photocell with a temperature compensation circuit and a filter, and the C-direction light measurement value was adopted.

実施例1 ジメチルテレフタル酸100重量部、エチレングリコー
ル68重量部、酢酸マンガン0.05重量部を窒素雰囲
気下140〜220℃の温度に加熱し、発生するメタノ
ールを連続的に系外へ留去しながら、2.5時間のエス
テル交換反応を行ったのち、さらにこれにトリメチルホ
スフェート0.03重量部、二酸化チタン0.5重量部
、三酸化アンチモン0.05重量部を加えた。
Example 1 100 parts by weight of dimethyl terephthalic acid, 68 parts by weight of ethylene glycol, and 0.05 parts by weight of manganese acetate were heated to a temperature of 140 to 220°C under a nitrogen atmosphere, and the generated methanol was continuously distilled out of the system. After carrying out the transesterification reaction for 2.5 hours, 0.03 parts by weight of trimethyl phosphate, 0.5 parts by weight of titanium dioxide, and 0.05 parts by weight of antimony trioxide were further added thereto.

次に、このエステル交換生成物の温度を295℃に昇温
し、過剰のエチレングリコールを留去したのち、0.5
 uHgの減圧下で0.15時間かきまぜながら溶融重
縮合反応を行った。
Next, the temperature of this transesterified product was raised to 295°C, excess ethylene glycol was distilled off, and 0.5
The melt polycondensation reaction was carried out under a reduced pressure of uHg with stirring for 0.15 hours.

得られた重縮合物は、275℃溶融時12ボイズの溶融
粘度を有するもので、窒素雰囲気下に取り出し徐冷した
ところ、比較的もろい性状を有する固体となった。この
ものの固有粘度は0.15、結晶化度は15%、密度は
1.350g/cIlであった。この様にして得られた
樹脂を、公知の方法であるボールミル粉砕法にて平均粒
径50μm程度の粗粉末化を行ない、原料ポリエチレン
テレフタレート系粗粉体粒子となし、続いて日本ニュー
マチック社製超音速ジェットミルrlDs−2型」(構
造図を第1図、粉砕室拡大図を第2図に示す。)にて、
その粗粉体粒子を吹き出し速度マツハ2.8の圧縮気体
でノズルより吹き出し衝突板に衝突させて微粉末化し、
ポリエチレンテレフタレート系微粉体粒子を得た。この
微粉体粒子の各測定値を第1表に示す。
The obtained polycondensate had a melt viscosity of 12 voids when melted at 275°C, and when it was taken out in a nitrogen atmosphere and slowly cooled, it became a relatively brittle solid. This material had an intrinsic viscosity of 0.15, a crystallinity of 15%, and a density of 1.350 g/cIl. The resin obtained in this way was coarsely powdered to an average particle size of about 50 μm using a known ball milling method to obtain raw material polyethylene terephthalate coarse powder particles, and then manufactured by Nippon Pneumatic Co., Ltd. Supersonic jet mill rlDs-2 type (a structural diagram is shown in Figure 1, and an enlarged view of the crushing chamber is shown in Figure 2).
The coarse powder particles are blown out from a nozzle with compressed gas at a speed of Matsuha 2.8 and collided with a collision plate to be pulverized.
Polyethylene terephthalate-based fine powder particles were obtained. Table 1 shows the measured values of the fine powder particles.

実施例2 原料樹脂の固有粘度を0.30にするため、溶融重縮合
反応時間を0.50時間とする以外は全て実施例1と同
様であり、えられた製品の物性を第1表に示す。
Example 2 Everything was the same as in Example 1 except that the melt polycondensation reaction time was changed to 0.50 hours in order to set the intrinsic viscosity of the raw resin to 0.30, and the physical properties of the obtained product are shown in Table 1. show.

実施例3 実施例1と同様にして、溶融重縮合、ボールミル粉砕に
よる粗粉末化、及び超音速ジェットミルによる微粉末化
を行なった。
Example 3 In the same manner as in Example 1, melt polycondensation, coarse powdering by ball milling, and fine powdering using a supersonic jet mill were carried out.

次に、該ポリエチレンテレフタレート系微粉体粒子を固
相重合装置に移し、50 m11gの減圧下で140℃
にて2時間乾燥したのち、温度を230℃に昇温し、0
.5 mHgの減圧下で11時間固相重合反応を行い、
最終製品微粉体粒子を得た。この微粉体粒子の各測定値
を第1表に示す。なお、本徽扮体粒子の密度は、1.4
56g/c+dであった。
Next, the polyethylene terephthalate fine powder particles were transferred to a solid phase polymerization apparatus and heated at 140°C under reduced pressure of 50 ml and 11 g.
After drying for 2 hours, the temperature was raised to 230°C and
.. Solid phase polymerization reaction was carried out for 11 hours under reduced pressure of 5 mHg,
Final product fine powder particles were obtained. Table 1 shows the measured values of the fine powder particles. In addition, the density of the Honki body particles is 1.4
It was 56g/c+d.

実施例4 固相重合反応時間を3時間とする以外は全て実施例3と
同様に行ない、微粉体粒子を得た。この微粉体粒子の各
測定値を第1表に示す。
Example 4 Fine powder particles were obtained in the same manner as in Example 3 except that the solid phase polymerization reaction time was changed to 3 hours. Table 1 shows the measured values of the fine powder particles.

実施例5 原料樹脂の固有粘度を0.30にするため、溶融重縮合
反応時間を0.50時間とし、固相重合反応時間を13
時間とした以外は、実施例3と同様であり、えられた製
品の物性を第1表に示す。
Example 5 In order to set the intrinsic viscosity of the raw resin to 0.30, the melt polycondensation reaction time was set to 0.50 hours, and the solid phase polymerization reaction time was set to 13 hours.
The procedure was the same as in Example 3 except that the time was changed, and the physical properties of the obtained product are shown in Table 1.

実施例6 固相重合反応時間を17時間とする以外は全て実施例5
と同様に行ない、微粉体粒子を得た。この微粉体粒子の
各測定値を第1表に示す。
Example 6 All the same as Example 5 except that the solid phase polymerization reaction time was 17 hours.
Fine powder particles were obtained in the same manner as above. Table 1 shows the measured values of the fine powder particles.

実施例7 固相重合雰囲気をN2フローとした以外は、実施例3と
同様であり、えられた製品の物性を第1表に示す。
Example 7 The procedure was the same as in Example 3 except that the solid phase polymerization atmosphere was N2 flow, and the physical properties of the obtained product are shown in Table 1.

比較例1 原料の固有粘度を0.50にするため、溶融重縮合反応
時間を1.50時間とした以外は実施例1と同様であり
、えられた製品の物性を第1表に示す。
Comparative Example 1 The procedure was the same as in Example 1 except that the melt polycondensation reaction time was changed to 1.50 hours in order to set the intrinsic viscosity of the raw material to 0.50. The physical properties of the obtained product are shown in Table 1.

平均粒径が20μmとなり、目的とする粒径粒子の収率
は著しく悪かった。
The average particle size was 20 μm, and the yield of particles with the desired particle size was extremely poor.

比較例2 原料樹脂の固有粘度を0.50にするため、溶融重縮合
反応時間を1.50時間とし、固相重合反応時間を4時
間とした以外は実施例3と同様であり、えられた製品の
物性を第1表に示す、平均粒径が20μmとなり、目的
とする粒径粒子の収率は著しく悪かった。
Comparative Example 2 Same as Example 3 except that the melt polycondensation reaction time was 1.50 hours and the solid phase polymerization reaction time was 4 hours in order to make the intrinsic viscosity of the raw resin 0.50. The physical properties of the product are shown in Table 1. The average particle size was 20 μm, and the yield of particles with the desired particle size was extremely poor.

比較例3 製品固有粘度を0.91にするため、固相重合反応温度
を245℃とし、固相重合反応時間を10時間とした以
外は、比較例2と同様であり、製品物性を第1表に示す
。平均粒径が15μm、白変色相パラメーターb値が8
5、b値が2.7となり、目的の微粉体粒子を得る事は
できなかった。
Comparative Example 3 The same as Comparative Example 2 except that the solid phase polymerization reaction temperature was 245°C and the solid phase polymerization reaction time was 10 hours in order to make the product intrinsic viscosity 0.91, and the product physical properties were Shown in the table. Average particle size is 15μm, white discoloration phase parameter b value is 8
5. The b value was 2.7, and the desired fine powder particles could not be obtained.

比較例4 固相重合反応時の真空度が10Torr、酸素濃度が5
0ppmである以外は、実施例3と同様であり、製品物
性を第1表に示す。黄色度指数Ylが6.0となり、目
的の微粉体粒子を得る事ができなかった。
Comparative Example 4 Vacuum degree during solid phase polymerization reaction was 10 Torr, oxygen concentration was 5
The product was the same as Example 3 except that it was 0 ppm, and the physical properties of the product are shown in Table 1. The yellowness index Yl was 6.0, and the desired fine powder particles could not be obtained.

比較例5 原料樹脂の固有粘度を0.15とし、製造方法にメルト
噴霧−固相重合法を用い、特開昭56−157431号
公報に準じて比較テストを行ない、得られた製品物性を
第1表に示す。平均粒径が40μm、黄色度指数Ylが
6.5となり、目的の微粉体粒子を得る事はできなかっ
た。
Comparative Example 5 The intrinsic viscosity of the raw material resin was set to 0.15, the melt spray-solid phase polymerization method was used as the manufacturing method, and a comparative test was conducted according to JP-A-56-157431. It is shown in Table 1. The average particle size was 40 μm and the yellowness index Yl was 6.5, making it impossible to obtain the desired fine powder particles.

以下余白Margin below

【図面の簡単な説明】[Brief explanation of drawings]

第1図 超音速ジェットミル構造図 第2図 粉砕室拡大図 第3図 モデル回折角依存曲線 特許出願人 旭化成工業株式会社 第1図 1什λ(バ・ソゲフィルターへ) ? 第2図 Figure 1 Supersonic jet mill structure diagram Figure 2: Enlarged view of the crushing chamber Figure 3 Model diffraction angle dependence curve Patent applicant: Asahi Kasei Industries, Ltd. Figure 1 1 tithe λ (to Ba Soge filter) ? Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)平均粒径が10μm以下、黄色度指数Y I が5
.5以下、かつハンター表色系でL値が90以上、b値
が2.5以下である、固有粘度0.9以下の主としてポ
リエチレンテレフタレートからなるポリエステル系微粉
体粒子。
(1) Average particle size is 10 μm or less, yellowness index Y I is 5
.. 5 or less, and has an L value of 90 or more and a b value of 2.5 or less in the Hunter color system, and has an intrinsic viscosity of 0.9 or less and is mainly composed of polyethylene terephthalate.
(2)固有粘度が0.4未満の原料ポリエステル系樹脂
の粗粉体を吹き出し速度マツハ2.0以上の圧縮気体で
ノズルより吹き出し、衝突板に衝突させることを特徴と
するポリエステル系微粉体粒子の製造方法。
(2) Polyester fine powder particles characterized by blowing coarse powder of raw material polyester resin having an intrinsic viscosity of less than 0.4 from a nozzle with compressed gas having a blowing speed of 2.0 or higher and causing it to collide with a collision plate. manufacturing method.
(3)固有粘度が0.4未満の原料ポリエステル系樹脂
の粗粉体を吹き出し速度マツハ2.0以上の圧縮気体で
ノズルより吹き出し、衝突板に衝突させ、得られた中間
品微粉体粒子を減圧下又は、不活性気体雰囲気下におい
て、該中間品微粉体粒子の融点よりも5〜100℃低い
範囲の温度にて固相重合する事を特徴とするポリエステ
ル系微粉体粒子の製造方法。
(3) Coarse powder of raw material polyester resin with an intrinsic viscosity of less than 0.4 is blown out from a nozzle with compressed gas at a blowing rate of 2.0 or higher, and the resulting intermediate fine powder particles are collided with a collision plate. A method for producing polyester fine powder particles, which comprises performing solid phase polymerization under reduced pressure or in an inert gas atmosphere at a temperature in the range of 5 to 100° C. lower than the melting point of the intermediate fine powder particles.
JP3899986A 1986-02-26 1986-02-26 Finely powdered polyester particle and its production Pending JPS62197424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3899986A JPS62197424A (en) 1986-02-26 1986-02-26 Finely powdered polyester particle and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3899986A JPS62197424A (en) 1986-02-26 1986-02-26 Finely powdered polyester particle and its production

Publications (1)

Publication Number Publication Date
JPS62197424A true JPS62197424A (en) 1987-09-01

Family

ID=12540826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3899986A Pending JPS62197424A (en) 1986-02-26 1986-02-26 Finely powdered polyester particle and its production

Country Status (1)

Country Link
JP (1) JPS62197424A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7066473B2 (en) 2003-08-07 2006-06-27 Nishikawa Rubber Co., Ltd. Glass seal weatherstrip
JP2008063305A (en) * 2006-09-11 2008-03-21 Pet Rebirth:Kk Cosmetic
EP2241307A1 (en) * 2009-04-17 2010-10-20 E. I. du Pont de Nemours and Company Micronized polymer powder and cosmetic composition thereof
WO2013024669A1 (en) * 2011-08-15 2013-02-21 国立大学法人山梨大学 Means for manufacturing microbeads comprising thermoplastic polymer microparticles
EP3357954A4 (en) * 2015-09-28 2019-06-05 Sekisui Plastics Co., Ltd. Polyester-based resin particles, process for producing same, and use thereof
JP2021524941A (en) * 2018-10-17 2021-09-16 エルジー・ケム・リミテッド Anti-reflection film, polarizing plate and display device
JP2021534463A (en) * 2019-05-28 2021-12-09 エルジー・ケム・リミテッド Anti-reflection film, polarizing plate and display device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7066473B2 (en) 2003-08-07 2006-06-27 Nishikawa Rubber Co., Ltd. Glass seal weatherstrip
JP2008063305A (en) * 2006-09-11 2008-03-21 Pet Rebirth:Kk Cosmetic
EP2241307A1 (en) * 2009-04-17 2010-10-20 E. I. du Pont de Nemours and Company Micronized polymer powder and cosmetic composition thereof
JP2012524109A (en) * 2009-04-17 2012-10-11 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Micronized polymer powder and cosmetic composition thereof
WO2013024669A1 (en) * 2011-08-15 2013-02-21 国立大学法人山梨大学 Means for manufacturing microbeads comprising thermoplastic polymer microparticles
US9731260B2 (en) 2011-08-15 2017-08-15 University Of Yamanashi Means for manufacturing micro-beads comprising thermoplastic polymer micro-particles
EP3357954A4 (en) * 2015-09-28 2019-06-05 Sekisui Plastics Co., Ltd. Polyester-based resin particles, process for producing same, and use thereof
US10501586B2 (en) 2015-09-28 2019-12-10 Sekisui Plastics Co., Ltd. Polyester-based resin particles, process for producing same, and use thereof
JP2021524941A (en) * 2018-10-17 2021-09-16 エルジー・ケム・リミテッド Anti-reflection film, polarizing plate and display device
JP2021534463A (en) * 2019-05-28 2021-12-09 エルジー・ケム・リミテッド Anti-reflection film, polarizing plate and display device

Similar Documents

Publication Publication Date Title
US6200659B1 (en) Polyester, stretch blow molded product formed thereof and method for producing polyester
US7662880B2 (en) Polyester polymer and copolymer compositions containing metallic nickel particles
TWI404761B (en) Aluminum/alkaline or alkali/titanium containing polyesters having improved reheat, color and clarity
EP1784447B1 (en) Polyester polymer and copolymer compositions containing metallic tungsten particles
US7300967B2 (en) Polyester polymer and copolymer compositions containing metallic titanium particles
US4454312A (en) Biaxially stretched polyester films
JPS62197424A (en) Finely powdered polyester particle and its production
JPH11222519A (en) Production of polyester
KR20070108385A (en) Process for continuous production of polyester, polyester prepolymer granule and polyester
EP1518878A1 (en) Process for producing polyester resin
JP2019085504A (en) Polyester resin composition and method for producing the same
US4853462A (en) Preparation of discrete particles of polyalkylene carbonate
US20060051542A1 (en) Polyester polymer and copolymer compositions containing metallic molybdenum particles
JP3193180B2 (en) Method for producing polyester composition
JP2004123868A (en) Polytrimethylene terephthalate resin composition and its preparation process
JP3617324B2 (en) Polyester and stretch blow molded article comprising the same
JPS62199649A (en) Production of fine particle dispersion for polyester
JPS6088029A (en) Production of internal particle-containing polyester
JPH0157141B2 (en)
JPS62101628A (en) Fine resin powder and its production
JP2020189960A (en) Polyester composition and method for producing the same
JP2008512560A (en) Polyester polymer and copolymer compositions comprising metallic molybdenum particles
JPH0435490B2 (en)
JPS5971325A (en) Preparation of polyester
JPS59210937A (en) Production of polyester