JPS6219641B2 - - Google Patents

Info

Publication number
JPS6219641B2
JPS6219641B2 JP1635281A JP1635281A JPS6219641B2 JP S6219641 B2 JPS6219641 B2 JP S6219641B2 JP 1635281 A JP1635281 A JP 1635281A JP 1635281 A JP1635281 A JP 1635281A JP S6219641 B2 JPS6219641 B2 JP S6219641B2
Authority
JP
Japan
Prior art keywords
water level
output
switching device
flow rate
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1635281A
Other languages
Japanese (ja)
Other versions
JPS57131904A (en
Inventor
Isao Takami
Kazuhiro Nagashima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1635281A priority Critical patent/JPS57131904A/en
Publication of JPS57131904A publication Critical patent/JPS57131904A/en
Publication of JPS6219641B2 publication Critical patent/JPS6219641B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Non-Electrical Variables (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、蒸気発生器の水位を適切な値に制御
する装置に関する。 蒸気発生器は、一般に加熱装置を内蔵した缶内
に給水を連続的に導入し、給水を加熱して発生し
た蒸気を抽出するものであるが、内部の水位が変
動すると所期の蒸気が得られないばかりでなく、
加熱装置にエネルギを供給する装置にも種々の悪
影響を及ぼす怖れがある。 例えば、加圧水型原子力発電所の蒸気発生器
は、原子炉の炉心を貫流する冷却材を1次流体
(加熱媒体)とし、給水を2次流体(被加熱媒
体)とする一種の熱交換器であるが、胴側流体で
ある給水の水位が大巾に変動すると前述のような
不具合を生ずる怖れがある。 このため、従来、給水流量信号と蒸気流量信号
と水位信号とを用いて給水流量を調節しこれによ
つて、給水の水位を自動制御していた。 しかしながら、流量計等の機器の故障に備えて
手動制御装置を併設し、自動制御装置の作動不良
が生じた場合に手動制御に切換えて引続き水位制
御をしていたが、前記切換え操作に時間を要する
と水位が大きく変動する怖れが残つていた。 本発明は、前記した事情に鑑みなされたもの
で、給水流量計、蒸気流量計等の構成を多重化
し、故障判別器を併設して常に正常な機器を用
い、いずれかに故障等が生じても引き続き適切に
水位を自動制御しうる水位制御装置を提供するこ
とを目的とする。 以下、図示の実施例に基づいて説明する。 図面は、本発明の実施例の系統図を示したもの
である。蒸気発生器の給水管(図示しない)に設
けられた2個の給水流量計11a,11b(同一
の内部構造をもつ)の出力端は、切換器13の入
力端13a,13bに夫々連絡すると共に故障判
別器15に接続している。 蒸気発生器の蒸気管(図示しない)に設けられ
た2個の蒸気流量計17a,17bの出力端は、
切換器19の入力端19a,19bに夫々連絡す
ると共に故障判別器21に連絡している。 切換器13,19の出力端は、夫々判別器2
1,15に各別に連絡すると共に、後述する給水
流量制御器51、予備の給水流量制御器52及び
判別器56に連絡している。 又判別器15,19の出力端は、各別に切換器
13,19の操作端(図示しない)に接続してい
る。 蒸気発生器の胴部(図示しない)に設けられた
同一構造の水位計31a,31b,31cのう
ち、水位計31a,31bの出力端は、切換器3
3の入力端33a,33bに夫々連絡すると共に
故障判別器35に連絡している。 他方、判別器35は切換器33の操作端(図示
しない)に連絡すると共に残りの水位計31cに
も連絡している。 切換器33の出力端は、水位制御信号発生器3
7、故障判別器39及び予備の信号発生器41に
夫々連絡し、更に信号発生器37の出力端の一
は、信号発生器41に接続し、前者の出力を後者
に印加しうるようになつている。 切換器43の入力端43a,43bは、信号発
生器37の他の出力端及び信号発生器41の出力
端に夫々各別に連絡し、更に切換器43の図示し
ない操作端に連絡した判別器39に、入力端43
aが連絡している。 切換器43の出力端にその入力端が連絡した流
量制御器51及び予備の流量制御器52の出力端
は、夫々切換器54の入力端54a,54bに各
別に連絡し、切換器54の出力端は図示しない給
水流量調節弁に連絡している。 切換器54の図示しない操作端に出力端が連絡
した故障判別器56の複数の入力端は、前述した
ように切換器13,19の夫々の出力端に夫々連
絡すると共に、切換器43の出力端及び流量制御
器51の出力端に連絡し、これら4個の機器の出
力を受けて後述の故障判別作用を行なう。 切換器43の出力端の他の切換器13,19の
出力端に各別に連絡した流量制御器51の他の出
力端は、流量制御器52の入力端に連絡し、流量
制御器52の他の入力端は切換器13,19の出
力端に夫々各別に連絡している。 前記した構成の本実施例において、給水流量計
11a,11bの出す給水流量信号FW1,FW
2は共に判別器15に入力として印加され、流量
計11a,11bの故障が判別され、この結果に
基づいて切換器13を切換え、その出力FWを選
択する。 すなわち、出力FWが次の式を満足するように
切換器13が判別器15によつて操作される。 |FW1−FW2|≦K1のとき FW=FW1又はFW2 |FW1−FW2|>K1, |FW2−SF|>K2のとき FW=FW1 |FW1−FW2|>K1, |FW1−SF|>K2のとき FW=FW2 ここで、SFは後述する切換器19の出力、K
1,K2は制御される蒸気発生器について予め実
験により定めた定数である。 換言すれば、切換器13の出力は、常に実際の
給水流量に見合つた値である。 蒸気流量計17a,17bの出す蒸気流量信号
SF1,SF2は判別器21に入力され、別途入力
される切換器13の出力FWと共に使用されて判
別器21は、切換器19を操作する。 判別器21の作用は、判別器15と同様なもの
であり、切換器19の出力SFは、常に実際の蒸
気流量に見合つたものとなる。 蒸気発生器の中の給水の水位を示す水位計31
a,31b,31cの水位信号は、共に判別器3
5に入力され、3個の水位信号は相互に比較さ
れ、切換器33が常に実際の水位に見合う水位信
号を出すように判別器35の出力により切換器3
3が操作される。 切換器33の出す水位信号は、信号発生器3
7,41に入り、これらの中で個別に基準水位と
比較され、更に比例−積分演算がされ、通常時は
信号発生器37の出す水位制御信号L1が切換器
43を介して出力される。 信号発生器37の出す水位制御信号L1は、
又、信号発生器41にも印加され、信号発生器3
7が正常な間は、信号発生器41は、所定の時間
遅れをもつて前記信号L1に追従した水位制御信
号L2を出し、切換時の移行をスムースに行な
う。 判別器39は、切換器33を介して出力される
水位信号と信号発生器37の水位制御信号L1と
を受けて信号発生器37の故障を判別し、信号発
生器37の故障が発見されると、切換器43の出
力端は、入力端43bに接続され、正常な信号発
生器41の水位制御信号L2が切換器43より出
力される。 切換器43の出す水位制御信号L1又はL2と
切換器13の出力FWと切換器19の出力SFとを
受けて、流量制御器51,52は別個に比例−積
分演算を行ない、調整すべき給水流量に見合つた
弁開度信号を出力する。 流量制御器51が正常の時、すなわち切換器5
4の出力端が図示のように入力端54aに接続し
ている間は、流量制御器51の出す弁開度信号が
切換器54の出力となる。更にこの間流量制御器
51の弁開度信号は流量制御器52に印加され、
流量制御器52は、所定の時間遅れをもつて流量
制御器51の出力に追従して弁開度信号を出し、
切換時の移行を円滑に行なう。 流量制御器51と同様に、切換器43の出力と
切換器13,19の夫々の出力FW,SFとを受け
る判別器56は、又、流量制御器51の出す弁開
度信号も受け、流量制御器51の異常を判別し、
切換器54を操作して流量制御器52へ接続を切
換える。 以上、説明した本実施例によれば、給水流量計
11a,11b,蒸気流量計17a,17b及び
水位計31a,31bは夫々の判別器15,2
1,35によつて故障の有無が判別され、切換器
13,19,33は、常に正常な各計器に接続す
るように切換えられるから、各計器のいずれかに
故障が生じても適切な自動制御が継続され、蒸気
発生器内の水位を確実に制御することができる。 更に、信号発生器37,流量制御器51にも
夫々予備の信号発生器41,流量制御器52を併
設して多重化し、常に正常な機器に切換わるか
ら、たとえこれらの機器の一つに故障が生じても
蒸気発生器内の水位を適切に自動制御することが
できる。
The present invention relates to a device for controlling the water level of a steam generator to an appropriate value. Steam generators generally continuously introduce feed water into a can with a built-in heating device, heat the feed water, and extract the generated steam, but if the internal water level fluctuates, it may be difficult to obtain the desired steam. Not only is it not possible to
The device that supplies energy to the heating device may also have various adverse effects. For example, a steam generator in a pressurized water nuclear power plant is a type of heat exchanger that uses the coolant flowing through the reactor core as the primary fluid (heating medium) and the feed water as the secondary fluid (heated medium). However, if the water level of the water supply, which is the body side fluid, fluctuates widely, there is a risk that the above-mentioned problems may occur. For this reason, conventionally, the water supply flow rate has been adjusted using a water supply flow rate signal, a steam flow rate signal, and a water level signal, and thereby the water level of the water supply has been automatically controlled. However, a manual control device was installed in case a device such as a flow meter failed, and if the automatic control device malfunctioned, the water level was switched to manual control and the water level continued to be controlled. In short, there remained the fear that the water level would fluctuate significantly. The present invention has been made in view of the above-mentioned circumstances, and has multiple configurations of water supply flowmeters, steam flowmeters, etc., and is equipped with a failure discriminator to always use normal equipment, so that it is possible to detect failures in any of them. The purpose of the present invention is to provide a water level control device that can continue to automatically control the water level appropriately. The following description will be made based on the illustrated embodiment. The drawing shows a system diagram of an embodiment of the invention. The output ends of two feed water flowmeters 11a and 11b (having the same internal structure) provided in the water supply pipe (not shown) of the steam generator are connected to the input ends 13a and 13b of the switching device 13, respectively. It is connected to the failure discriminator 15. The output ends of the two steam flow meters 17a and 17b provided in the steam pipe (not shown) of the steam generator are
It is connected to the input terminals 19a and 19b of the switching device 19, respectively, and also to the failure discriminator 21. The output terminals of the switching devices 13 and 19 are connected to the discriminator 2, respectively.
1 and 15 separately, and also to a water supply flow rate controller 51, a backup water supply flow rate controller 52, and a discriminator 56, which will be described later. Further, the output terminals of the discriminators 15 and 19 are connected to operating terminals (not shown) of the switching devices 13 and 19, respectively. Among the water level gauges 31a, 31b, 31c of the same structure provided in the body (not shown) of the steam generator, the output ends of the water level gauges 31a, 31b are connected to the switching device 3.
It is connected to the input terminals 33a and 33b of No. 3, respectively, and also to the failure discriminator 35. On the other hand, the discriminator 35 is connected to an operating end (not shown) of the switching device 33 and also to the remaining water level gauge 31c. The output end of the switch 33 is connected to the water level control signal generator 3.
7. The fault discriminator 39 and the standby signal generator 41 are connected to each other, and one of the output ends of the signal generator 37 is connected to the signal generator 41 so that the output of the former can be applied to the latter. ing. The input ends 43a and 43b of the switch 43 are connected to the other output end of the signal generator 37 and the output end of the signal generator 41, respectively, and a discriminator 39 is connected to an operation end (not shown) of the switch 43. , the input end 43
a is in contact. The output ends of the flow rate controller 51 and the standby flow rate controller 52, whose input ends are connected to the output end of the changeover device 43, are respectively connected to the input ends 54a and 54b of the changeover device 54, and the output ends of the changeover device 54 are connected to the output ends of the changeover device 54. The end is connected to a water supply flow rate control valve (not shown). The plurality of input terminals of the failure discriminator 56 whose output terminals are connected to the operating terminal (not shown) of the switching device 54 are connected to the respective output terminals of the switching devices 13 and 19 as described above, and the output terminals of the switching device 43 The terminal and the output terminal of the flow rate controller 51 are connected to each other, and the outputs of these four devices are received to perform a failure determination operation, which will be described later. The other output end of the flow rate controller 51, which is connected to the output end of the changeover device 43 and the output ends of the other changeover devices 13 and 19, is connected to the input end of the flow rate controller 52. The input terminals of are connected to the output terminals of switching devices 13 and 19, respectively. In this embodiment having the above-described configuration, the water supply flow rate signals FW1 and FW output by the water supply flowmeters 11a and 11b are
2 are both applied as inputs to the discriminator 15 to determine whether the flowmeters 11a, 11b are out of order, and based on this result, the switch 13 is switched to select its output FW. That is, the switch 13 is operated by the discriminator 15 so that the output FW satisfies the following equation. When |FW1-FW2|≦K1 FW=FW1 or FW2 |FW1-FW2|>K1, |FW2-SF|>K2 When FW=FW1 |FW1-FW2|>K1, |FW1-SF|>K2 When FW=FW2 Here, SF is the output of the switching device 19, which will be described later, and K
1 and K2 are constants determined in advance through experiments for the steam generator to be controlled. In other words, the output of the switching device 13 is always a value commensurate with the actual water supply flow rate. Steam flow signals output by steam flow meters 17a and 17b
SF1 and SF2 are input to the discriminator 21, and are used together with the separately input output FW of the switch 13, so that the discriminator 21 operates the switch 19. The action of the discriminator 21 is similar to that of the discriminator 15, and the output SF of the switch 19 always corresponds to the actual steam flow rate. Water level gauge 31 indicating the water level of the feed water in the steam generator
The water level signals of a, 31b, and 31c are all sent to the discriminator 3.
5, the three water level signals are compared with each other, and the output of the discriminator 35 is used to select the switch 3 so that the switch 33 always outputs a water level signal that corresponds to the actual water level.
3 is operated. The water level signal output by the switch 33 is transmitted to the signal generator 3.
7 and 41, the water level is individually compared with a reference water level, and further proportional-integral calculations are performed. Normally, the water level control signal L1 produced by the signal generator 37 is outputted via the switch 43. The water level control signal L1 output by the signal generator 37 is
It is also applied to the signal generator 41, and the signal generator 3
7 is normal, the signal generator 41 outputs the water level control signal L2 that follows the signal L1 with a predetermined time delay, thereby making the transition smooth. The discriminator 39 receives the water level signal outputted via the switch 33 and the water level control signal L1 of the signal generator 37, and determines whether the signal generator 37 is malfunctioning, and the malfunction of the signal generator 37 is discovered. Then, the output end of the switch 43 is connected to the input end 43b, and the normal water level control signal L2 of the signal generator 41 is outputted from the switch 43. Upon receiving the water level control signal L1 or L2 output from the switch 43, the output FW of the switch 13, and the output SF of the switch 19, the flow rate controllers 51 and 52 separately perform proportional-integral calculations to adjust the water supply to be adjusted. Outputs a valve opening signal commensurate with the flow rate. When the flow rate controller 51 is normal, that is, the switching device 5
4 is connected to the input end 54a as shown, the valve opening signal output from the flow rate controller 51 becomes the output of the switching device 54. Furthermore, during this time, the valve opening signal of the flow rate controller 51 is applied to the flow rate controller 52,
The flow rate controller 52 outputs a valve opening signal following the output of the flow rate controller 51 with a predetermined time delay,
Smooth transition during switching. Similar to the flow rate controller 51, the discriminator 56 that receives the output of the switching device 43 and the outputs FW and SF of the switching devices 13 and 19, respectively, also receives the valve opening signal output from the flow rate controller 51, and determines the flow rate. Determine the abnormality of the controller 51,
The connection to the flow rate controller 52 is switched by operating the switch 54. According to the present embodiment described above, the water supply flowmeters 11a, 11b, the steam flowmeters 17a, 17b, and the water level meters 31a, 31b are connected to the discriminators 15, 2, respectively.
1 and 35 determine whether there is a failure, and the switching devices 13, 19, and 33 are always switched to connect to each normal meter, so even if a failure occurs in any of the meters, the appropriate automatic Control is continued and the water level within the steam generator can be reliably controlled. Furthermore, the signal generator 37 and flow rate controller 51 are also provided with a spare signal generator 41 and flow rate controller 52, respectively, for multiplexing and are always switched to the normal device, so even if one of these devices breaks down, Even if this occurs, the water level in the steam generator can be appropriately and automatically controlled.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本発明の実施例の系統図である。 11a,11b……給水流量計、17a,17
b……蒸気流量計、13,19,33……切換
器、13a,13b,19a,19b,33a,
33b……入力端、15,21,35……判別
器、31a,31b,31c……水位計、37,
41……信号発生器、51,52……流量制御
器。
The drawing is a system diagram of an embodiment of the invention. 11a, 11b...water supply flow meter, 17a, 17
b...Steam flow meter, 13, 19, 33...Switcher, 13a, 13b, 19a, 19b, 33a,
33b...Input end, 15, 21, 35...Discriminator, 31a, 31b, 31c...Water level gauge, 37,
41...Signal generator, 51, 52...Flow rate controller.

Claims (1)

【特許請求の範囲】[Claims] 1 蒸気発生器の給水管に設けられた少くとも2
個の給水流量計、同給水流量計の各々に連絡した
第1の切換器、前記蒸気発生器の蒸気導出管に設
けられた少くとも2個の蒸気流量計、同蒸気流量
計の各々に連絡した第2の切換器、前記蒸気発生
器に設けられた少くとも3個の水位計、2個の前
記水位計に連絡した第3の切換器、同第3の切換
器に連絡した水位制御信号発生器及び同水位制御
信号発生器と前記第1の切換器と前記第2の切換
器とに夫々連絡した給水流量制御器を有し、前記
第1,第2,第3の切換器に計器故障判別器を連
絡して設けたことを特徴とする蒸気発生器の水位
制御装置。
1 At least 2 pipes installed in the water supply pipe of the steam generator
a first switching device connected to each of the feed water flow meters, at least two steam flow meters provided in the steam outlet pipe of the steam generator, and a first switching device connected to each of the feed water flow meters; a second switching device connected to the steam generator; at least three water level gauges provided on the steam generator; a third switching device communicating with the two water level gauges; and a water level control signal communicating with the third switching device. a water supply flow rate controller connected to the generator, the water level control signal generator, the first switching device, and the second switching device, respectively; and a meter connected to the first, second, and third switching devices. A water level control device for a steam generator, characterized in that a fault discriminator is connected and provided.
JP1635281A 1981-02-06 1981-02-06 Water level controller for steam generator Granted JPS57131904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1635281A JPS57131904A (en) 1981-02-06 1981-02-06 Water level controller for steam generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1635281A JPS57131904A (en) 1981-02-06 1981-02-06 Water level controller for steam generator

Publications (2)

Publication Number Publication Date
JPS57131904A JPS57131904A (en) 1982-08-16
JPS6219641B2 true JPS6219641B2 (en) 1987-04-30

Family

ID=11913961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1635281A Granted JPS57131904A (en) 1981-02-06 1981-02-06 Water level controller for steam generator

Country Status (1)

Country Link
JP (1) JPS57131904A (en)

Also Published As

Publication number Publication date
JPS57131904A (en) 1982-08-16

Similar Documents

Publication Publication Date Title
US4804515A (en) Distributed microprocessor based sensor signal processing system for a complex process
US5566709A (en) Fluid plant and its operating method
JPS59212902A (en) Multiplexing controller
US4302288A (en) Fluid level control system
EP0088572B1 (en) Systems for monitoring abnormal transient conditions in pressurised water nuclear reactor installations
US6055945A (en) Full range feedwater control system for pressurized water reactor steam generators
JP2625569B2 (en) Signal processing apparatus and method for nuclear power plant
JPS6219641B2 (en)
JPS6027882B2 (en) Automatic rearrangement device for water supply for steam generators
JPH0631814B2 (en) Variable delay device for reactor trip
JP2599026B2 (en) Steam drum water level control method when water supply control valve is switched
JPS625402A (en) Plant controller
JPH0464099A (en) Feed water controller of steam generation plant
JPH10253007A (en) Feedwater flow-rate controller of heat exchanger-type steam generator
JPH0377404B2 (en)
JPS592562Y2 (en) Redundant input signal source switching device
JP2574779B2 (en) Water level control device for feed water heater
JP2607609B2 (en) Operation control method for steam turbine plant
JPH1014174A (en) Cooler water supply device of rotary electric machine
JPH08106301A (en) Plant process control system
JP2594984B2 (en) Moisture separator drain tank water level controller
SU1064049A1 (en) Method and apparatus for controlling pumping plant
JPH0666411A (en) Double instrumentation detection circuit for steam temperature at outlet of superheater of boiler
JPS6383802A (en) Process controller
JPS59211109A (en) Control system for water supply