JPS621923A - Concrete pile and its manufacture - Google Patents

Concrete pile and its manufacture

Info

Publication number
JPS621923A
JPS621923A JP60141354A JP14135485A JPS621923A JP S621923 A JPS621923 A JP S621923A JP 60141354 A JP60141354 A JP 60141354A JP 14135485 A JP14135485 A JP 14135485A JP S621923 A JPS621923 A JP S621923A
Authority
JP
Japan
Prior art keywords
concrete
pile
layer
reinforcement
synthetic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60141354A
Other languages
Japanese (ja)
Other versions
JPH0699903B2 (en
Inventor
Chikao Watabe
渡部 愛雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOUSEN ASANO PAUL KK
Original Assignee
TOUSEN ASANO PAUL KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOUSEN ASANO PAUL KK filed Critical TOUSEN ASANO PAUL KK
Priority to JP60141354A priority Critical patent/JPH0699903B2/en
Publication of JPS621923A publication Critical patent/JPS621923A/en
Publication of JPH0699903B2 publication Critical patent/JPH0699903B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Piles And Underground Anchors (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

PURPOSE:To obtain a corrosion-resistant pile having good bending resistance characteristics by a method in which at least six frame reinforcing bars extending to the longitudinal direction are buried in the peripheral layer of the inside concrete layer, and a synthetic resin outer layer is formed on the outside of the concrete layer. CONSTITUTION:At least six frame reinforcing bars 12 of a deformed bar steel are buried at an equal interval in the peripheral layer of the inside concrete layer 11, and a synthetic resin outer layer 10 of polyethylene resin, having a thickness of 2-3mm, is formed on the outside of the concrete layer 11. The corrosion of the bars 12 can thus be well-prevented by the protective action of the layer 10 even when the bars 12 are positioned near the peripheral side of the concrete layer 11. Also, since the bars 12 are positioned near the peripheral side of the layer 11, the bending resistance characteristics of the pile can be enhanced.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔利用される技術分野〕 この発明は大きな横力に耐えるコンクリート杭に関する
ものである。 〔従来技術とその問題点〕 一般に構造物に施工される基礎杭は、構造物の重量を支
持するため鉛直方向つまり杭の軸方向の圧縮力と、地震
時における構造物の水平方向の慣性力による曲げを受け
る。 この5ち鉛直方向の荷重に対してはコンクリート自体が
耐圧縮力に強く、通常の中空鉄筋コンクリート杭や、P
Cコンクリート杭で充分であり、またこれらの支持力の
増強は、断面積を大きくするなどで充分に対拠でき、現
実、周知の前記コンクリート杭より支持地盤の支持力の
方が弱いため鉛直方向力を特に増加させる必要はない。 一方、水平方向の支持力については、杭の頭部と上部構
造物の結合方法、地盤の性質が複雑に絡み、杭のどの部
分に特に大きな横力が作用するかは正確には予測し得な
いところであるが、杭頭が強固に上部の構造物と固定さ
れた場合の曲げモーメント分布図は26図グラフの曲線
A、杭頭が上部構造物にピン止めされているときは曲線
Bのようなものに凡そなることが、理論的にも水平載荷
試験の結果からも確かめられており、各設計指導機関に
おいても、はy統一した計算式で計算して杭の安全性を
検討してよいとされている。 そこでコンクリート杭をこの曲げモーメントに耐えるよ
うにしたいわゆる曲げモーメント杭には大きく分けて2
つあり、その一つは鉄筋コンクリート杭において鉄筋量
を増加させることであり、複合杭がある。 ところが前者のものにおいて、鉄筋として用いるPC鋼
棒や、普通鉄筋を増加する場合、PC鋼棒においては、
これにプレストレスを与える都合上、その両端を杭に固
定する端板を必要とし、その構造が複雑で、応力導入装
置にも特殊な治具を要し、応力導入にも手数を要し、資
材費及び製造行程数が多いため著しく製造コストが高く
つき、かつプレストレスの量が非常に大きくなり、コン
クリート層にクリープが発生し易くなるため、コンクリ
ート層の強度を大きくするためにセメント量を増加させ
なげればならない。また、大きなプレストレスのためコ
ンクリート層自体の耐圧縮力がその分減少し、打撃に対
しては極端に弱くなる。 、また杭頭を切断して切り揃えるときに、PC棒の数が
多いと切断にも手間どるし、このPC鋼棒に&って、コ
ンクリート層にひび割れが発生し易い。 またPC鋼棒はその両端の固定が面倒であるため、普通
鉄筋を増加した所謂PRC杭も開発されているが、鉄筋
は相当に太く(20〜40酊)なり、防錆のためにコン
クリート層の中央部に位置させなければならず、また相
隣る鉄筋との間隔が接近することとなり、コンクリート
中の粗骨材の大きさとの関係で好ましくなく、かつ鉄筋
間の円周方向の引・張力が脆弱化し、打撃時に生じる抗
日周方向引張力や、中掘工法のように内側より圧力を受
けるときに、縦方向のひび割が発生し易(、現実には必
要量の鉄筋を用いることができない。 また鉄筋を用いないで、中空コンクリート杭の外側を4
.5問以上厚肉の鋼管で拘束した鋼管複合杭も知られて
いるが、(例えば特開昭50−86108号)、鋼管は
鉄筋に比較し、この出願時において極めて高価であり、
また杭の長さ方向に対して必要な部分のみ肉厚にするこ
とは、更に加工費が嵩み、結局一段階上の厚みの鋼管を
全長に採用しており、一般に鋼管の厚みは4.5mys
以上のものが使用されており、資材を無駄に使用してい
る。 一般に本件出願時における前記厚みの鋼管を使用した鋼
管コンクリ−1・複合杭は、他のPCコンクリート杭、
普通鉄筋コンクリート杭の2〜4倍の価格に達している
。 前記従来技術の欠点を改良すべく、本件発明者は、軸筋
が外周寄に偏在してなる複合コンクリート杭として、「
外周面が鋼管、強化合成樹脂管のうちの一種よりなる外
套管で拘束して、内部に膨張性コンクリートを遠心力成
形し後膨張させ、前記外套管とコンクリート層にプレス
トレスを与えて形成してなる複合コンクリート杭を前提
条件とし、軸筋を等角間隔をおいて、少なくとも6本以
上前記外套管の内周面に、各軸筋の全長に亘って接触さ
せ前記コンクリート層中の外周寄に偏在させて各々埋設
して成形してなるコンクリート杭」を開発し、かつその
製造方法をも開発し、最も少管として鋼管、強化合成樹
脂管を用い、かつ、コンクリートとじて、膨張性コンク
リートを用いるためコンクリート杭の原価が公知の鋼管
コンクリート複合杭よりは廉価となるが実用化には今−
歩の感がある。また鋼管を使用したものは腐蝕の問題を
避けることはできない。 〔問題点を解決するための手段〕 本件発明は、前記先願を更に改良し、合成樹脂外皮層で
コンクリート層周面を被覆し、コンクリート層とこの外
皮層の境界部に位置する軸筋を外部と遮閉する構造とす
ることにより、これら軸筋の腐蝕、破損を先出類のもの
よりも更に良好に防止し、かつ耐曲げ力を高め、プレス
トレス導入装置を不用化し、設計上の自由度を大幅に高
めた外側の合成樹脂外皮層と内側のコンクリート層の境
界部近傍には、このコンクリート層内に各々埋設された
長手方向に延在する少なくとも6本の軸筋が、等角間隔
をおいて配筋されていることを特徴とするコンクリート
杭及び所定ピッチでスパイラル状に形成されたフープ筋
を一本と、軸筋な少くと一プ筋をその交差部で適宜一体
に固着し、鉄筋篭を形成し、この鉄筋篭を前記フープ筋
の内側にはy接する状態で型枠内にセットし、この型枠
内にコンクリートを注入乃至盛り込み、遠心力成形によ
りコンクリート締め固めを行い、前記鉄筋篭が外周寄に
埋設固定された所定厚さのコンクリート層を型枠内で形
成し杭主体部を得た後この杭主体部を型枠から外し、こ
の杭主体部のコンクリート層外周面全面を薄肉の合成樹
脂外皮層により被覆することを特徴とするコンクリート
杭の製造方法である。 次に、特定発明であるコンクリート杭の代表的な実施態
様を図に基すき説明する。 矛1図、矛2図及び矛3図において、1oは、合成樹脂
外皮層であり、厚さ2乃至3間のポリエチレン樹脂から
なるが、これに限定されるわけではなく、カーボン繊維
入れの樹脂層でもよく、要は通気性及び透水性がなく、
化学的に安定し、杭の建込み時に破損、剥離せず、杭曲
げ破壊状態まで亀裂しない延性を有する合成樹脂外皮層
であれば、樹脂の種類に限定はない。 11は、コンクリート層であり、その外周面は一全周に
亘り前記合成樹脂外皮層1oで被覆されている。12は
、軸筋の一種である異形の棒鋼であり、直径9 txm
乃至32WMで6〜20本程度、好ましくは8乃至12
本の棒鋼12が、長手方向に延在して等角間隔で、相互
密着された前記外側の合成樹脂外皮層10とコンクリー
ト層11の境界部において、コンクリート層11内に各
々埋設配筋されて、コンクリート杭Aとなる。 13は、ピッチ50闘乃至100 mlでスパイラル状
に形成された一本の普通鉄筋製のフープ筋であり、前記
棒鋼12をコンクリート層11に埋設する以前に、各棒
鋼12は、このフープ筋13の内側に亘り相互平行に等
角間隔をおいて配筋され各棒鋼12とフープ筋13の交
差部で溶接等により一体に固着され、鉄筋篭14を形成
している。 この鉄筋篭14が、前記棒鋼12が前記境界部に位置す
る状態でコンクリート層11内に埋設されている。 前記実施態様においては、軸筋12として異形棒鋼を示
したが、丸棒でも、平鋼でもこの発明としては同一であ
り、軸筋12の配置は、第1図のようにコンクリート杭
A全長でも、牙2図のように、コンクリート抗A上端寄
りで最大曲げ力を受ける部分に設けても、この発明のコ
ンクリート杭Aの技術的範囲に属する。 ぐ牙2番目発明のコンクリート杭製造方法発明の実施態
様〉 前記特定発明のコンクリート杭Aの製造方法のr 11
 ) 代表的な実施態様を次に説明する。 先ず、前記フープ筋13を1本と、軸筋の一種である異
形棒鋼12を少くとも6本、好ましくは8本乃至12本
用意し、このフープ筋13の内側に亘り、このフープ筋
13の軸線と平行で、かつ相互に平行に前記各棒鋼12
を等角間隔をおいて配筋し、各棒鋼12とフープ筋13
をその交差部において溶接などにより一体に固着し、鉄
筋篭14を形成する。 次いで、この鉄筋篭14を、前記フープ筋13外局面が
成形型枠B内面にはy接する状態でこの型枠B内にセッ
トした後、この型枠B内にコンクリートを必要量ポンプ
により注入するか、盛り込み型枠Bをその長手軸線回り
で回転させ、遠心成形によりコンクリート締め固めを行
い、鉄筋篭14が外周寄に埋設固定された所定厚さのコ
ンクリート層11を型枠B内で形成し適宜養生によりコ
ンクリート層11を硬化させ杭主体部んを製造するぐ矛
4図参照〉。 このように製造した杭主体部AOを型枠Bから外t  
19  ) し、この杭主体部んのコンクリート層11外局面全面を
薄肉の合成樹脂外皮層10により被覆し、この内側のコ
ンクリート層11と外側の合成樹脂外皮層10を一体に
密着し、軸筋12が偏在した前記コンクリート杭Aを製
造する。 レン等の溶融合成樹脂を巻付は乃至コーティング後冷却
固化する方法が最適であるが、熱収縮性の合成樹脂製チ
ューブをこの杭主体部んに嵌めた後熱収縮させ、コンク
リート層11周面に密着固定しても、合成樹脂液中に杭
主体部Aoを浸漬したり、合成樹脂液を杭主体部AoK
吹付は乃至刷毛塗りしてもこの製造方法の発明の技術的
範囲に属する。 〔効 果〕 先ず、特定発明であるコンクリート杭Aを前記のように
構成することにより次の効果を奏する。 前記コンクリート層11の局面は合成樹脂外皮層10で
被覆され、一体に密着され、鋼管を外套管として利用し
ないため、コンクリート杭Aの製(l乙) 造価格を低減できると共に、このコンクリート杭Aに接
続する地上構造物の耐用年数よりも長期間に亘り耐腐蝕
性を維持する前記合成樹脂外皮層10により、コンクリ
ート層11の外周面寄りに位置する前記軸筋12は一%
41=+外部と完全に連間されているため、軸筋12の
腐蝕をより良好に阻止でき、コンクリートの耐曲げ゛力
特性を設計値に維持できる。 前記軸筋12は、前記合成樹脂外皮層10とコンクリー
ト層11の境界部近傍でコンクリート層11内に埋設さ
れているため、コンクリート層11の最大半径位置に軸
筋12が位置することとなり、最も少ない軸筋12量の
使用で、コンクリート杭の耐曲げ効果を最大限に発揮で
きる。 軸筋12は、等角間隔で少なくとも6本コンクリート層
ll内に埋設配筋されているため、コンクリート杭Aの
軸線周り、どの方向からの曲げ力に対しても、はg同じ
耐力を発揮し、との軸筋12の本数が6本以下の時には
、コンクリート杭の耐横力に方向性が生じる。 前記コンクリート杭Aを地中に中掘工法等により建込み
施工後、その上端を切断し地上構造物と接続する際の杭
頭処理作業においても、外套管として鋼管は存在せず、
コンクリート層11の外周面には薄肉の前記合成樹脂外
皮層10のみが接着及び被膜固定されているのみである
ので、この合成樹脂外皮層10を刃物、ホットナイフ、
軽量手持ちグラインダにより容易に切断でき、内側のコ
ンクリート層10を油圧パイルカッターで通常通り破砕
し、コンクリート杭A上端に所定接続寸法軸筋12を容
易に露呈することができる。 よって上記軸筋12を直角に外側に折り曲げたり、上部
構造物と接合するためのL字型アンカー筋Cとの溶接な
どによる接続も容易である。 〔コンクリート杭の実施態様の効果〕 前記軸筋12の外側に所定ピッチでスパイラル状にフー
プ筋13が巻付けられ鉄筋篭14を形成した態様におい
ては、コンクリート杭Aに加わる横力に伴い軸筋12が
コンクリート杭Aの半径方向へ拡張しようとするのをこ
のフープ筋13で抑なく、薄肉の合成樹脂外皮層10で
耐腐蝕効果を光分に発揮できる。 軸筋12として平鋼板を用いた時は、露出した軸筋12
の断面積を大きくとれ、地上構造物との接合用のL字型
アンカー鉄筋Cとの溶接も容易で2本のアンカー鉄筋C
を一本の軸筋12に溶接することもでき、強固な連結が
できる。ぐオフ図参照〉 軸筋12として異形棒鋼を用いた場合には、コンクリー
ト層11との間に滑りが生ずるおそれが全くなく、耐曲
げ力を充分に発揮でき、軸筋12として丸棒を用いた時
には材料費を低減できる。 軸筋12を大きな曲げモーメントを受ける位置に主に埋
設したものにおいては、軸筋12の使用量を少なくして
コンクリート杭Aの耐曲げ力を所期通り得ることができ
る。 前記合成樹脂外皮層10を厚さ2乃至3朋のポリエチレ
ン樹脂で形成したものでは、安価に耐腐t 16 ) 工時においても集りに前記外皮層10は破断せず所期の
効果を長時間維持する。 また前記合成樹脂外皮層10とコンクリート層11との
境界面が相互に接着されておらず、単に密着しているだ
けで、周面方向及び軸方向に前記境界面で滑りを生ずる
態様のもの、例えば熱収縮性チューブより形成した外皮
層10又は、塗着、刷子塗、スプレー、浸漬、溶融樹脂
の巻付けなどによる外皮層10であっても前記境界面に
ラテックス、アスファルトなど合成樹脂外皮層10とコ
ンクリート層11が相互に直接強固に接着しない層を介
在させた態様のものにおいては、杭の運搬時や施工時、
並びに施工後の長年月使用中に1杭のコンクリート層1
1に曲げが生じたり、或は亀裂が生じたとしても、その
近傍部分において前記外皮層10とコンクリート層11
間にすべりを生じ一部の前記外皮層10に外力が集中せ
ず、よつ完全なまでに防げ、る。 〔方法発明の効果〕 先ず前記の特定発明のコンクリート杭Aを製造すること
ができると共に、従来例のようにプレストレス導入装置
を利用しなくとも通常の型枠B内に前記鉄筋篭14をそ
のフープ筋13の外周面を前記型枠Bの内周面に接触さ
せて七ットでき、特に巾約のための治具も必要としない
。 よって、型枠に生コンクリートを充填する方法も、型枠
を閉じる前に盛り込むことも、或は円筒形に組立てた後
端面より注入する何れの方法をも採用できる。更に前述
の通り鉄篭14の外周は型枠Bで直接支持されているか
ら、遠心成形に伴う遠心力は、前記鉄筋篭14自体及び
生コンクリートに作用するが鉄筋篭14は前記の通りに
支持さ位置させたものが形成でき、その作業は従来の鉄
筋コンクリート杭よりも遥かに容易かつ短時間にできる
。 また先願の方法のように外層部に薄肉鋼管や・、合成樹
脂管を使用する方法においては、鉄筋篭の装入時又はそ
の準備段階においてもこれらの管を鉄筋篭や、型枠に衝
突させたりすると、これらが簡単に潰れたり、曲がった
りして、使用不能になるおそれがあり、取扱いには細心
の注意を要し、作業管理がむずかしいが、この方法にお
いては、更に前記合成樹脂外皮層10は杭主体部Aoを
形成後に刷子塗、スプレーなどによる塗着、浸漬、溶融
樹脂の巻付け、熱収縮性合成樹脂チューブを被覆後収縮
させ
[Technical Field of Application] This invention relates to a concrete pile that can withstand large lateral forces. [Prior art and its problems] In general, foundation piles installed on structures have a compressive force in the vertical direction, that is, the axial direction of the pile, to support the weight of the structure, and an inertial force in the horizontal direction of the structure during an earthquake. subject to bending due to Concrete itself has strong compressive strength against this vertical load, and ordinary hollow reinforced concrete piles and P
C concrete piles are sufficient, and their bearing capacity can be increased by increasing the cross-sectional area.In reality, the bearing capacity of the supporting ground is weaker than that of the well-known concrete piles, so it is difficult to increase the bearing capacity in the vertical direction. There is no need to specifically increase the force. On the other hand, the horizontal bearing capacity is complicated by the connection method between the pile head and the superstructure, and the properties of the ground, so it is impossible to accurately predict which part of the pile will receive a particularly large lateral force. However, the bending moment distribution diagram when the pile cap is firmly fixed to the upper structure is curve A in the graph in Figure 26, and curve B when the pile cap is pinned to the superstructure. It has been confirmed both theoretically and from the results of horizontal loading tests that this is the case, and each design guidance organization recommends that the safety of piles be calculated using a unified formula. It is said that Therefore, there are two main types of concrete piles that are made to withstand this bending moment:
One of them is to increase the amount of reinforcing bars in reinforced concrete piles, and there are composite piles. However, in the former case, when increasing the number of PC steel rods used as reinforcing bars or ordinary reinforcing bars, in the case of PC steel bars,
In order to apply prestress to this, an end plate is required to fix both ends to the pile, and its structure is complicated, and the stress introduction device requires a special jig, and it takes time to introduce stress. The manufacturing cost is extremely high due to the large number of material costs and the number of manufacturing steps, and the amount of prestress is also extremely large, making it easy for creep to occur in the concrete layer. Therefore, in order to increase the strength of the concrete layer, the amount of cement is must be increased. Furthermore, due to the large prestress, the compressive strength of the concrete layer itself decreases accordingly, making it extremely weak against impact. Furthermore, when cutting and trimming the pile head, if there are a large number of PC rods, it will take time to cut, and the PC steel rods are likely to cause cracks in the concrete layer. Also, since it is troublesome to fix both ends of PC steel bars, so-called PRC piles with ordinary reinforcing bars have been developed. It must be located in the center of the reinforcing bars, and the spacing between adjacent reinforcing bars becomes close, which is undesirable due to the size of the coarse aggregate in the concrete. The tension weakens, and vertical cracks are likely to occur due to diurnal tensile force generated during impact, or when pressure is applied from the inside as in the medium excavation method. Also, without using reinforcing bars, the outside of the hollow concrete pile can be
.. Steel pipe composite piles restrained by thick steel pipes are also known (for example, Japanese Patent Laid-Open No. 50-86108), but steel pipes are extremely expensive compared to reinforcing bars at the time of this application;
In addition, increasing the wall thickness only in the necessary parts along the length of the pile further increases the processing cost, and in the end, a steel pipe with a thickness one step higher is used for the entire length, and generally the thickness of the steel pipe is 4. 5mys
These materials are being used in a wasteful manner. In general, steel pipe concrete piles and composite piles using steel pipes with the above-mentioned thickness at the time of this application are different from other PC concrete piles,
The price is two to four times that of ordinary reinforced concrete piles. In order to improve the drawbacks of the prior art, the inventor of the present invention developed a composite concrete pile in which the shaft reinforcement is unevenly distributed near the outer periphery.
The outer circumferential surface is restrained by a jacket tube made of one of steel pipes and reinforced synthetic resin pipes, and expandable concrete is centrifugally formed inside and expanded, giving prestress to the jacket tube and concrete layer. The prerequisite is a composite concrete pile consisting of a concrete layer, and at least six shaft reinforcements are placed at equal angular intervals in contact with the inner circumferential surface of the mantle pipe over the entire length of each shaft reinforcement, and the outer circumference in the concrete layer is Developed "concrete piles that are formed by burying and forming concrete piles unevenly distributed in each area," and also developed a method for manufacturing the same, using steel pipes and reinforced synthetic resin pipes as the smallest pipes, and combining them with concrete to create expandable concrete piles. The cost of concrete piles is lower than that of known steel pipe concrete composite piles, but it is still too early to put them into practical use.
There is a feeling of walking. Also, those using steel pipes cannot avoid the problem of corrosion. [Means for solving the problem] The present invention further improves the above-mentioned prior application by covering the peripheral surface of the concrete layer with a synthetic resin outer skin layer, and removing the axial reinforcement located at the boundary between the concrete layer and this outer skin layer. By creating a structure that is closed off from the outside, corrosion and damage to these shaft reinforcements are better prevented than those of the previous type, and the bending resistance is increased, prestress introducing devices are no longer required, and the design Near the boundary between the outer synthetic resin skin layer, which has a significantly increased degree of freedom, and the inner concrete layer, at least six axial reinforcements extending in the longitudinal direction, each buried within the concrete layer, are placed at equal angles. Concrete piles characterized by reinforcement arranged at intervals, one hoop reinforcement formed in a spiral shape at a predetermined pitch, and at least one axial reinforcement are fixed together at their intersections as appropriate. Then, a reinforcing bar basket is formed, and this reinforcing bar basket is set in a formwork in a state in which it is in y contact with the inside of the hoop reinforcement, concrete is poured or filled into this formwork, and the concrete is compacted by centrifugal force forming. , a concrete layer of a predetermined thickness in which the reinforcing bar basket is buried and fixed near the outer periphery is formed in a formwork to obtain a pile main part, and then this pile main part is removed from the formwork, and the concrete layer outer periphery of this pile main part is removed. This is a method for manufacturing a concrete pile characterized by covering the entire surface with a thin synthetic resin skin layer. Next, a typical embodiment of a concrete pile, which is a specific invention, will be explained based on the drawings. In Figure 1, Figure 2, and Figure 3, 1o is a synthetic resin outer skin layer made of polyethylene resin with a thickness of 2 to 3, but is not limited to this. It may be a layer, but the point is that it has no air permeability or water permeability,
The type of resin is not limited as long as it is chemically stable and has a ductility that does not break or peel off during pile erection and does not crack to the point of pile bending failure. Reference numeral 11 denotes a concrete layer, the entire outer peripheral surface of which is covered with the synthetic resin outer skin layer 1o. 12 is a deformed steel bar, which is a type of shaft reinforcement, and has a diameter of 9 txm.
About 6 to 20 pieces at 32 WM, preferably 8 to 12 pieces
Two steel bars 12 are embedded in the concrete layer 11 at the boundary between the outer synthetic resin skin layer 10 and the concrete layer 11, which extend in the longitudinal direction and are placed at equal angular intervals. , becomes concrete pile A. Reference numeral 13 denotes a single hoop reinforcement made of ordinary reinforcing steel formed in a spiral shape with a pitch of 50 to 100 ml. Before the steel bars 12 are buried in the concrete layer 11, each steel bar 12 is The reinforcing bars 12 are arranged parallel to each other at equal angular intervals, and are fixed together by welding or the like at the intersections of each steel bar 12 and the hoop reinforcing bar 13, thereby forming a reinforcing bar cage 14. This reinforcing bar cage 14 is buried in the concrete layer 11 with the steel bar 12 located at the boundary. In the embodiment described above, a deformed steel bar is shown as the shaft reinforcement 12, but the present invention is the same whether it is a round bar or a flat steel bar. As shown in Fig. 2, even if the concrete pile A is provided near the upper end of the concrete pile A at a portion that receives the maximum bending force, it falls within the technical scope of the concrete pile A of the present invention. Embodiments of the concrete pile manufacturing method invention of the second invention> r 11 of the manufacturing method of the concrete pile A of the specified invention
) Representative embodiments will be described below. First, prepare one hoop reinforcement 13 and at least 6, preferably 8 to 12 deformed steel bars 12, which are a type of axial reinforcement, and extend the inside of the hoop reinforcement 13. Each of the steel bars 12 is parallel to the axis and parallel to each other.
are arranged at equal angular intervals, and each steel bar 12 and hoop reinforcement 13
are fixed together by welding or the like at their intersections to form a reinforcing bar cage 14. Next, this reinforcing bar basket 14 is set in this formwork B in a state in which the outer surface of the hoop reinforcement 13 is in y contact with the inner surface of the forming formwork B, and then the required amount of concrete is poured into this formwork B using a pump. Alternatively, the filling form B is rotated around its longitudinal axis, concrete is compacted by centrifugal molding, and a concrete layer 11 of a predetermined thickness with the reinforcing bar cage 14 buried and fixed near the outer periphery is formed within the form B. The concrete layer 11 is hardened by appropriate curing to produce the main body of the pile (see Figure 4). The pile main body AO manufactured in this way is removed from the formwork B.
19) Then, the entire outer surface of the concrete layer 11 of the main body of the pile is covered with a thin synthetic resin outer skin layer 10, and the inner concrete layer 11 and the outer synthetic resin outer skin layer 10 are closely adhered together, and the shaft reinforcement is The concrete pile A in which No. 12 is unevenly distributed is manufactured. The best method is to wrap or coat a molten synthetic resin such as Ren, and then cool and solidify. Even if the pile main body AoK is fixed tightly to the
Spraying or brushing also falls within the technical scope of the invention for this manufacturing method. [Effects] First, by configuring concrete pile A, which is the specified invention, as described above, the following effects are achieved. The surface of the concrete layer 11 is covered with a synthetic resin outer skin layer 10 and is tightly adhered to the outer layer 10, and a steel pipe is not used as a jacket pipe, so that the manufacturing cost of the concrete pile A can be reduced, and the construction cost of the concrete pile A can be reduced. Due to the synthetic resin outer skin layer 10, which maintains corrosion resistance for a longer period than the service life of the above-ground structure connected to the concrete layer 11, the axial reinforcement 12 located near the outer peripheral surface of the concrete layer 11 has a corrosion resistance of 1%.
41=+ Since it is completely connected to the outside, corrosion of the shaft reinforcement 12 can be better prevented, and the bending strength characteristics of the concrete can be maintained at the design value. Since the axial reinforcement 12 is buried in the concrete layer 11 near the boundary between the synthetic resin outer skin layer 10 and the concrete layer 11, the axial reinforcement 12 is located at the maximum radius position of the concrete layer 11. By using a small amount of 12 shaft reinforcements, the bending resistance effect of concrete piles can be maximized. Since at least six axial reinforcements 12 are embedded in the concrete layer 11 at equal angular intervals, they exhibit the same resistance strength against bending forces from any direction around the axis of the concrete pile A. , when the number of axial reinforcements 12 is six or less, directionality occurs in the lateral force resistance of the concrete pile. Even in the pile head treatment work when the concrete pile A is erected underground using a tunneling method or the like, and its upper end is cut and connected to an above-ground structure, there is no steel pipe as the mantle pipe.
Since only the thin synthetic resin outer skin layer 10 is bonded and fixed to the outer circumferential surface of the concrete layer 11, this synthetic resin outer skin layer 10 can be used with a cutlery, a hot knife, etc.
It can be easily cut with a lightweight hand-held grinder, and the inner concrete layer 10 can be crushed as usual with a hydraulic pile cutter to easily expose the shaft bar 12 of a predetermined connection dimension at the upper end of the concrete pile A. Therefore, it is easy to connect the axial reinforcement 12 by bending it outward at a right angle or by welding it to an L-shaped anchor reinforcement C for joining the upper structure. [Effects of embodiments of concrete piles] In the embodiment in which the hoop reinforcements 13 are spirally wound around the outside of the axial reinforcements 12 at a predetermined pitch to form the reinforcing bar cage 14, the axial reinforcements are The hoop reinforcement 13 prevents the concrete pile 12 from expanding in the radial direction of the concrete pile A, and the thin synthetic resin outer skin layer 10 can exhibit a corrosion-resistant effect against light. When a flat steel plate is used as the shaft reinforcement 12, the exposed shaft reinforcement 12
It has a large cross-sectional area, and it is easy to weld with the L-shaped anchor reinforcing bar C for connection to above-ground structures.
It is also possible to weld to a single shaft reinforcement 12, allowing for a strong connection. If a deformed steel bar is used as the shaft reinforcement 12, there is no risk of slipping between the shaft reinforcement 12 and the concrete layer 11, and sufficient bending strength can be exerted. When needed, material costs can be reduced. In the case where the axial reinforcements 12 are mainly buried in positions that receive large bending moments, the amount of axial reinforcements 12 used can be reduced and the bending strength of the concrete pile A can be obtained as expected. When the synthetic resin outer skin layer 10 is made of polyethylene resin with a thickness of 2 to 3 mm, it is inexpensive and corrosion-resistant. maintain. Further, the interface between the synthetic resin outer skin layer 10 and the concrete layer 11 is not bonded to each other, but is merely in close contact with each other, and slippage occurs on the interface in the circumferential direction and the axial direction, For example, even if the outer skin layer 10 is formed from a heat-shrinkable tube, or the outer skin layer 10 is formed by painting, brushing, spraying, dipping, or wrapping with molten resin, the outer skin layer 10 is made of a synthetic resin such as latex or asphalt on the boundary surface. In cases where the concrete layer 11 and the concrete layer 11 are interposed with a layer that does not directly and firmly adhere to each other, during transportation of the pile or during construction,
In addition, during many years of use after construction, concrete layer 1 of 1 pile
1 is bent or cracked, the outer skin layer 10 and the concrete layer 11 in the vicinity
This prevents the external force from concentrating on a portion of the outer skin layer 10 due to slipping between the outer skin layers 10 and 10, which can be completely prevented. [Effects of the method invention] First, the concrete pile A of the specific invention described above can be manufactured, and the reinforcing bar basket 14 can be placed inside the ordinary formwork B without using a prestress introducing device as in the conventional example. The outer circumferential surface of the hoop wire 13 can be brought into contact with the inner circumferential surface of the formwork B, and a jig for width reduction is not particularly required. Therefore, it is possible to adopt any of the following methods: filling the formwork with ready-mixed concrete, filling the formwork before closing it, or pouring the fresh concrete from the rear end surface of a cylindrical assembly. Furthermore, as mentioned above, since the outer periphery of the steel cage 14 is directly supported by the formwork B, the centrifugal force accompanying centrifugal forming acts on the steel cage 14 itself and the ready-mixed concrete, but the steel cage 14 is supported as described above. The construction process is much easier and faster than conventional reinforced concrete piles. In addition, in the method of using thin-walled steel pipes or synthetic resin pipes for the outer layer as in the method of the previous application, there is a possibility that these pipes will collide with the reinforcing bar cage or formwork during the charging of the reinforcing bar cage or the preparation stage thereof. If this method is used, they may easily be crushed or bent, making them unusable, requiring careful handling and making work management difficult. After forming the main body part Ao of the pile, the skin layer 10 is applied by brush coating, spraying, etc., dipping, wrapping with molten resin, covering with a heat-shrinkable synthetic resin tube, and then shrinking.

【成形する方法など適宜選択して実施でき、実用性が極めて高い。 〔方法発明の実施態様の効果〕[The molding method can be selected and implemented as appropriate, and is extremely practical. [Effects of embodiments of method invention]

前記外皮層10を刷子、スプレーなど塗布する方法にお
いては、特別な装置を必要としないし、肉厚は塗布回数
により自由に定められる。 溶融合成樹脂を押し出しながら杭主体部??A。 K巻付ける方法においては一度に所期の肉厚の外皮層1
0が成形できる。 浸漬方法は大きな浸漬槽を必要とするが、前記外皮層1
0の形成が短時間にできる。 熱収縮性合成樹脂チューブを用いる方法は外皮層10の
肉厚が一定し、杭主体部A、との結合も単なる圧接であ
り、成形後の前記外皮層】Oが杭の取扱中や、施工後に
おいても杭の変形によっては前記外皮層10が破断し難
いものが得られる。 外皮層]0の成形時に非腐蝕性の補強繊維を混合したり
、ラミネートする方法を付加した方法は更に前記外皮層
10が丈夫なものが得られる。
In the method of applying the outer skin layer 10 with a brush, spray, etc., no special equipment is required, and the thickness can be determined freely depending on the number of times of application. Pile main body while extruding molten synthetic resin? ? A. In the K-wrapping method, the outer skin layer 1 of the desired thickness is
0 can be molded. Although the dipping method requires a large dipping tank, the outer skin layer 1
0 can be formed in a short time. In the method of using a heat-shrinkable synthetic resin tube, the thickness of the outer skin layer 10 is constant, and the connection with the pile main body A is simply a pressure welding, and the outer skin layer 10 after molding is used during handling of the pile or during construction. Even after the pile is deformed, the outer skin layer 10 is difficult to break. A method in which non-corrosive reinforcing fibers are mixed or laminated during molding of the outer skin layer 10 makes the outer skin layer 10 more durable.

【図面の簡単な説明】[Brief explanation of the drawing]

図は、この発明に係るもので、牙1図は、特定発明のコ
ンクリート杭の代表的な実施態様の一部縦断面図、矛2
図は、他の実施態様の矛1図同様の一部縦断面図、23
図は、171図の3−3線に沿う横断面図、矛4図は、
111図の杭主体部の成形工程を示す概略図、115図
は、この杭主体部外周面に押出成形機より押出した溶融
樹脂をコーティングする工程を示す概略図、牙6図は杭
の受ける曲げモーメント分布図、および第7図は、軸筋
と地上構造物との接合状態を示す縦断面図である図中の
主な記号の説明 A・・・・・・コンクリート杭、ん・・・・・・杭主体
部、10・・・合成樹脂外皮層、11・・・コンクリー
ト層、12・・・軸筋、      13・・・フープ
筋。
The figures relate to this invention, and Figure 1 is a partial vertical cross-sectional view of a typical embodiment of the concrete pile of the specified invention, and Figure 2 is a partial longitudinal sectional view of a typical embodiment of the concrete pile of the specified invention.
The figure is a partial longitudinal sectional view similar to figure 1 of another embodiment, 23
The figure is a cross-sectional view along line 3-3 of figure 171, and figure 4 is
Fig. 111 is a schematic diagram showing the process of forming the main body of the pile, Fig. 115 is a schematic diagram showing the process of coating the outer peripheral surface of the main body of the pile with molten resin extruded from an extrusion molding machine, and Fig. 6 shows the bending that the pile undergoes. The moment distribution diagram and Figure 7 are longitudinal cross-sectional views showing the state of connection between the shaft reinforcement and the above-ground structure. Explanation of the main symbols in the figures ... Main body of pile, 10... Synthetic resin outer skin layer, 11... Concrete layer, 12... Shaft reinforcement, 13... Hoop reinforcement.

Claims (1)

【特許請求の範囲】 1)外側の合成樹脂外皮層と内側のコンクリート層の境
界部近傍には、このコンクリート層内に各々埋設された
長手方向に延在する少くとも6本の軸筋が、等角間隔を
おいて配筋されていることを特徴とするコンクリート杭
。 2)前記軸筋は、その外側に所定ピッチでスパイラル状
にフープ筋が巻付けられ鉄筋篭をこのフープ筋と共に形
成する軸筋である特許請求の範囲第1項記載のコンクリ
ート杭。 3)前記フープ筋の外周面は前記合成樹脂外皮層の内周
面に沿い接触し、コンクリート層に埋設されている特許
請求の範囲第2項記載のコンクリート杭。 4)前記軸筋は、異形鉄筋、丸棒、平鋼、のうちの一種
である特許請求の範囲第1項又は第2項記載のコンクリ
ート杭。 5)前記合成樹脂外皮層は、厚さ2mm乃至3mmのポ
リエチレン樹脂層としてある特許請求の範囲第1項又は
第4項記載のコンクリート杭。 6)前記軸筋が、前記杭において大きな曲げモーメント
を受ける位置に主に埋設してある特許請求の範囲第1項
又は第4項記載のコンクリート杭。 7)所定ピッチでスパイラル状に形成されたフープ筋を
一本と、軸筋を少くとも6本用意し、このフープ筋の内
側に亘り各軸筋を相互平行に等角間隔をおいて配筋し、
各軸筋とフープ筋をその交差部で適宜一体に固着し、鉄
筋篭を形成し、この鉄筋篭を前記フープ筋外周面が型枠
内面にほゞ接する状態で型枠内にセットし、この型枠内
にコンクリートを注入乃至盛り込み、遠心力成形により
コンクリート締め固めを行い、前記鉄筋篭が外周寄に埋
設固定された所定厚さのコンクリート層を型枠内で形成
し杭主体部を得た後、この杭主体部を型枠から外し、こ
の杭主体部のコンクリート層外周面全面を薄肉の合成樹
脂外皮層により被覆することを特徴とするコンクリート
杭の製造方法。 8)前記合成樹脂外皮層の成形方法は、熱収縮性の合成
樹脂製チューブを杭主体部に嵌めた後熱収縮させ、接着
固定する方法、溶融樹脂を杭主体部に巻付け乃至コーテ
ィング後冷却固化させる方法、合成樹脂液中に杭主体部
を浸漬する方法のうちの一種である特許請求の範囲第7
項記載のコンクリート杭の製造方法。 9)前記合成樹脂外皮層の厚さを2mm乃至3mmに成
形する特許請求の範囲第7項記載のコンクリート杭の製
造方法。 10)前記軸筋として異形鉄筋、丸棒、平鋼のうちの一
種を使用する特許請求の範囲第7項又は第8項記載のコ
ンクリート杭の製造方法。 11)前記フープ筋として、ピッチ50乃至100m/
m、直径4m/m乃至9m/mのスパイラル状の普通鉄
線を用いて、軸筋として直径9m/m乃至32m/mの
異形鉄筋を用いる特許請求の範囲第7項又は第8項記載
のコンクリート杭の製造方法。
[Scope of Claims] 1) Near the boundary between the outer synthetic resin skin layer and the inner concrete layer, there are at least six axial reinforcements each embedded in the concrete layer and extending in the longitudinal direction, A concrete pile characterized by reinforcement arranged at equal angular intervals. 2) The concrete pile according to claim 1, wherein the axial reinforcement is an axial reinforcement in which a hoop reinforcement is wound spirally at a predetermined pitch on the outside of the axial reinforcement to form a reinforcing bar cage together with the hoop reinforcement. 3) The concrete pile according to claim 2, wherein the outer circumferential surface of the hoop reinforcement is in contact with the inner circumferential surface of the synthetic resin outer skin layer and is embedded in the concrete layer. 4) The concrete pile according to claim 1 or 2, wherein the shaft reinforcement is one of deformed reinforcing bars, round bars, and flat steel. 5) The concrete pile according to claim 1 or 4, wherein the synthetic resin outer skin layer is a polyethylene resin layer with a thickness of 2 mm to 3 mm. 6) The concrete pile according to claim 1 or 4, wherein the shaft reinforcement is mainly buried in a position where the pile receives a large bending moment. 7) Prepare one hoop reinforcement formed in a spiral shape at a predetermined pitch and at least six axial reinforcements, and arrange the axial reinforcements parallel to each other at equal angular intervals across the inside of the hoop reinforcement. death,
Each axial bar and hoop bar are appropriately fixed together at their intersections to form a reinforcing bar cage, and this reinforcing bar cage is set in the formwork with the outer circumferential surface of the hoop bar substantially touching the inner surface of the formwork. Concrete was poured or filled into the formwork, the concrete was compacted by centrifugal force forming, and a concrete layer of a predetermined thickness with the reinforcing bar cage buried and fixed near the outer periphery was formed in the formwork to obtain the main body of the pile. Thereafter, the main body of the pile is removed from the formwork, and the entire outer peripheral surface of the concrete layer of the main body of the pile is covered with a thin synthetic resin outer skin layer. 8) The method for forming the synthetic resin outer skin layer includes a method in which a heat-shrinkable synthetic resin tube is fitted into the main body of the pile, then heat-shrinked and fixed by adhesive, or a method in which molten resin is wrapped around the main body of the pile or cooled after coating. Claim 7, which is one of the methods of solidifying the pile and immersing the main body of the pile in a synthetic resin liquid.
Method for manufacturing concrete piles as described in Section 1. 9) The method for manufacturing a concrete pile according to claim 7, wherein the synthetic resin outer skin layer is formed to have a thickness of 2 mm to 3 mm. 10) The method for manufacturing a concrete pile according to claim 7 or 8, wherein one of deformed reinforcing bars, round bars, and flat steel is used as the shaft reinforcement. 11) The hoop line has a pitch of 50 to 100 m/
Concrete according to claim 7 or 8, in which a spiral regular iron wire with a diameter of 4 m/m to 9 m/m is used, and a deformed reinforcing bar with a diameter of 9 m/m to 32 m/m is used as the shaft reinforcement. Method of manufacturing piles.
JP60141354A 1985-06-27 1985-06-27 Concrete pile manufacturing method Expired - Lifetime JPH0699903B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60141354A JPH0699903B2 (en) 1985-06-27 1985-06-27 Concrete pile manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60141354A JPH0699903B2 (en) 1985-06-27 1985-06-27 Concrete pile manufacturing method

Publications (2)

Publication Number Publication Date
JPS621923A true JPS621923A (en) 1987-01-07
JPH0699903B2 JPH0699903B2 (en) 1994-12-07

Family

ID=15290021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60141354A Expired - Lifetime JPH0699903B2 (en) 1985-06-27 1985-06-27 Concrete pile manufacturing method

Country Status (1)

Country Link
JP (1) JPH0699903B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101787698A (en) * 2010-03-24 2010-07-28 陕西长嘉实业发展有限公司 Anti-corrosion inclusion bored concrete pile used for saline soil foundation and construction method thereof
JP2014047514A (en) * 2012-08-30 2014-03-17 Shimizu Corp Ready-made pile
CN114351697A (en) * 2021-12-06 2022-04-15 东南大学 Super-large-diameter prestressed concrete tubular pile for offshore wind power and construction method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5873219A (en) * 1981-10-27 1983-05-02 Olympus Optical Co Ltd Logarithmic compression amplifier
JPS6027140U (en) * 1983-07-26 1985-02-23 旭化成株式会社 Concrete pile with thin outer shell steel pipe

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5873219A (en) * 1981-10-27 1983-05-02 Olympus Optical Co Ltd Logarithmic compression amplifier
JPS6027140U (en) * 1983-07-26 1985-02-23 旭化成株式会社 Concrete pile with thin outer shell steel pipe

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101787698A (en) * 2010-03-24 2010-07-28 陕西长嘉实业发展有限公司 Anti-corrosion inclusion bored concrete pile used for saline soil foundation and construction method thereof
JP2014047514A (en) * 2012-08-30 2014-03-17 Shimizu Corp Ready-made pile
CN114351697A (en) * 2021-12-06 2022-04-15 东南大学 Super-large-diameter prestressed concrete tubular pile for offshore wind power and construction method thereof
CN114351697B (en) * 2021-12-06 2023-09-12 东南大学 Super-large-diameter prestressed concrete tubular pile for offshore wind power and construction method thereof

Also Published As

Publication number Publication date
JPH0699903B2 (en) 1994-12-07

Similar Documents

Publication Publication Date Title
US6123485A (en) Pre-stressed FRP-concrete composite structural members
US5599599A (en) Fiber reinforced plastic ("FRP")-concrete composite structural members
US6519909B1 (en) Composite reinforcement for support columns
US6295782B1 (en) Stay-in-place form
US6219991B1 (en) Method of externally strengthening concrete columns with flexible strap of reinforcing material
US5271193A (en) Concrete products and methods of fabrication
US20160145882A1 (en) Reinforcement and repair of structural columns
US20100031607A1 (en) Splice System for Fiber-Reinforced Polymer Rebars
KR101405024B1 (en) Manufacturing Method of Concrete Strengthening Steel Tube Pile
JPS621923A (en) Concrete pile and its manufacture
JPH0369715A (en) Corrosion resistant pile and method of execution of work thereof
JP3350447B2 (en) Fiber sheet for reinforcement and repair
US20240077165A1 (en) Lightweight strong pipe for new construction and repair of pipes
US11591810B2 (en) Reusable and adjustable-size form for repair and reinforcement of structures
JPH0432903B2 (en)
JPS59114322A (en) High-strength concrete pile
JP2678990B2 (en) High strength structure
JP3038298B2 (en) High strength structure
JP3719795B2 (en) Composite joint pile and manufacturing method thereof
JPS61233117A (en) Axial reinforcement omnipresence-type composite concrete pile and its manufacture
CN220013356U (en) Thin-wall steel pipe concrete combined pier column
HU186805B (en) Load-bearing casing surface for supporting structures
JPH055019B2 (en)
JPS6233380B2 (en)
CN217710682U (en) Anti-pulling pipe pile with steel strand core

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term