JPS6219206A - Preparation of high molecular film having high separation performance - Google Patents

Preparation of high molecular film having high separation performance

Info

Publication number
JPS6219206A
JPS6219206A JP60157031A JP15703185A JPS6219206A JP S6219206 A JPS6219206 A JP S6219206A JP 60157031 A JP60157031 A JP 60157031A JP 15703185 A JP15703185 A JP 15703185A JP S6219206 A JPS6219206 A JP S6219206A
Authority
JP
Japan
Prior art keywords
stretching
temperature
film
membrane
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60157031A
Other languages
Japanese (ja)
Other versions
JPH0691943B2 (en
Inventor
Kazuo Hasumi
蓮見 和夫
Kazutaka Murata
一高 村田
Takanori Anazawa
穴沢 孝典
Yoshiyuki Ono
善之 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP60157031A priority Critical patent/JPH0691943B2/en
Publication of JPS6219206A publication Critical patent/JPS6219206A/en
Publication of JPH0691943B2 publication Critical patent/JPH0691943B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

PURPOSE:To obtain film having high permeation rate and separation factor affording high separation performance by a nonporous layer by forming film by extruding molten thermoplastic crystalline polymer, stretching the obtd. film and subjecting closed cells or semiopen pored generated in the film to plasma treatment. CONSTITUTION:Hollow yarn is melt-spun at Tm+10-Tm+50 deg.C wherein Tm is melting point of a thermoplastic crystalline polymer. Suitable draft for melt spinning is 5-10,000. Suitable cooling temp. is Tg-50-Tm-50 deg.C (wherein Tg is glass transition temp. of the polymer. The cooled product is pref. heat- treated further under tension at 1-3 draw ratio at Tg+20-Tm-5 deg.C. Then, porous tissue is formed by the heat-treatment at Tg-50-Tm-10 deg.C and drawing with 1.05-3 draw ratio. It is pref. that stretching with 1.1-5 draw ratio is executed further at below Tm-5 deg.C. Obtd. hollow yarn is subjected to plasma treatment by applying glow discharge. It is not necessary to afford thin film forming ability to the gas to be supplied.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 近年、膜による混合気体の分離、即ち気体隔膜分離技術
は、省エネルギー化、分離装置、操作の簡略化等多くの
点で注目され、空気からの酸素富化空気の製造、C02
の分離回収、燃焼ガスからのCo、H2の回収、廃ガス
からのNO2、S02の除去、C1化学における合成ガ
スH2/COの精製、調整、天然ガスからのHe等の不
活性ガスの分離、回収、等多くの分野での利用が検討さ
れている。これらの分野では気体分離能が高いこと、透
過速度の大きいことが経済性等の面で実用化、普及のポ
イントとなっておシ、これらの点で優れた膜の開発が切
望されている。
[Detailed Description of the Invention] [Field of Industrial Application] In recent years, separation of mixed gases using membranes, that is, gas diaphragm separation technology, has attracted attention for many reasons such as energy saving, separation equipment, and simplification of operation. production of oxygen-enriched air, C02
separation and recovery, recovery of Co and H2 from combustion gas, removal of NO2 and S02 from waste gas, purification and adjustment of synthesis gas H2/CO in C1 chemistry, separation of inert gases such as He from natural gas, Its use in many fields, including collection, is being considered. In these fields, high gas separation ability and high permeation rate are key points for commercialization and widespread use in terms of economic efficiency, etc., and there is a strong desire for the development of membranes that are excellent in these respects.

本発明は、この様な要求に対応するもので、気体分離能
が高く、透過速度の高い、又力学的特性にも優れた膜及
びこれを能率よく製造する方法を提供するものである。
The present invention meets these demands and provides a membrane with high gas separation ability, high permeation rate, and excellent mechanical properties, and a method for efficiently manufacturing the same.

〔従来の技術〕[Conventional technology]

気体隔膜分離の技術分野においては、前述の様に気体分
離能が高いことと同時に、経済性等の面から透過速度の
大きいことが要求されている。この目標を達成するため
には、気体分離能を有する素材を極力薄膜化、例えば厚
さ1μm以下にする事が必須であシ、これにより実用的
な気体透過速度を実現する事ができる。しかるに、かよ
うな薄膜は機械的強度が非常に低い為、多孔質の支持体
の上に薄膜全形成した、いわゆる複合膜の形態で用いら
れるのが通常である。複合膜の製造方法には溶液塗布法
(例えば特開昭5O−41958)、液面展開法(例え
ば特開昭56−168804)、プラズマ重合法(例え
ば特開昭57−91708)、界面重合法等が知られて
おシ、また複合膜と類似の構造を持つが、多孔質層と非
多孔質層が同一素材である、いわゆる不均質膜の製造方
法として、湿式法や溶融法が知られている(例えば本特
許出願人の出願に係る特開昭59−196706および
59−229320 )。
In the technical field of gas diaphragm separation, in addition to high gas separation performance as described above, high permeation rates are required from economical and other standpoints. In order to achieve this goal, it is essential to make the material having gas separation ability as thin as possible, for example, to a thickness of 1 μm or less, and thereby a practical gas permeation rate can be achieved. However, since such a thin film has very low mechanical strength, it is usually used in the form of a so-called composite film, in which the thin film is entirely formed on a porous support. Methods for producing composite membranes include solution coating method (e.g., JP-A-50-41958), liquid surface development method (e.g., JP-A-56-168804), plasma polymerization method (e.g., JP-A-57-91708), and interfacial polymerization method. Wet methods and melting methods are also known as methods for producing so-called heterogeneous membranes, which have a similar structure to composite membranes but whose porous and non-porous layers are made of the same material. (For example, Japanese Patent Laid-Open Nos. 59-196706 and 59-229320 filed by the present applicant).

以上の全ての製造方法に共通する技術的ポイントは、如
何にしてピンホールの発生を抑えつつ非多孔層を薄くす
るかという点にある。換言すればいかにして分離係数を
低下させる事無く気体透過速度を向上させるかという点
にある。特に支持体となる多孔質膜にコーティングその
他の処理を施してその表面に分離活性層(非多孔層)を
形成する方法に於ては、非多孔層の厚さを薄くしようと
すると細孔の陰べいが不完全となって、非多孔層の素材
本来の分離係数よシ犬巾に低い値しか実現できず、結局
実用に耐える分離係数を得るには非多孔層を厚くせざる
を得ないのが現状である。
The technical point common to all of the above manufacturing methods is how to reduce the thickness of the non-porous layer while suppressing the generation of pinholes. In other words, the problem is how to improve the gas permeation rate without reducing the separation coefficient. In particular, in methods in which a porous membrane serving as a support is coated or otherwise treated to form a separation active layer (non-porous layer) on its surface, when attempting to reduce the thickness of the non-porous layer, the pores become smaller. The opacity is incomplete, and the separation coefficient of the non-porous layer is much lower than the original material, and in the end, the non-porous layer has to be made thicker in order to obtain a separation coefficient that can be used for practical purposes. The current situation is that there is no such thing.

−万年均質膜に於ては、多孔質層と非多孔質層を同時に
形成する為、細孔を陰ぺいする必要は無いものの、製膜
方法や支持体の強度等の点から、用いる事のできる素材
に制約があシ、従って分離の系によっては、それに適合
した高い性能を持つ膜を製造できない場合があった。
- In a permanent homogeneous membrane, since a porous layer and a non-porous layer are formed at the same time, there is no need to shade the pores; There are restrictions on the materials that can be used, and therefore, depending on the separation system, it may not be possible to produce a membrane with high performance that is compatible with the separation system.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上のべてきた様に、気体分離膜の分野では目的とする
分離系に関して高い分離能と大きい透過速度の両方を満
足させることが必要である。本発明の目的は穏々の分離
系に適応し、しかも高い分離能と高い透過速度を同時に
実現した膜を製造する事にある。
As described above, in the field of gas separation membranes, it is necessary for the target separation system to satisfy both high separation performance and high permeation rate. The object of the present invention is to produce a membrane that is suitable for mild separation systems and that simultaneously achieves high separation performance and high permeation rate.

尚、本明細書において、計量的観点からよシ厳密に記述
しようとする場合には、「気体透過速度」の語に代えて
「気体透過率」の語を用いる場合がちシ、その単位はc
m” (STP )/c1n” ・see ・mHgで
ある。
In addition, in this specification, when attempting to describe more strictly from a metrological point of view, the term "gas permeability" is often used instead of the term "gas permeation rate", and its unit is c.
m” (STP)/c1n”・see・mHg.

〔問題を解決する為の手段〕[Means to solve the problem]

本発明者等は、透過速度と分離係数が共に高い膜を得る
為に、微多孔層(支持体)の表面に分離活性層となる非
多孔層が形成されたいわゆる不均質膜構造を形成し、そ
の非多孔層をさらに高い分離能を発現させるべく改質す
る方法について鋭意研究の結果、その成る種の方法が、
従来の技術では相反する関係とされてい虎。製品におけ
る気体の透過速度と分離係数の双方を同時に向上できる
と共に、本出願人の先行発明に比しても透過速度の面で
の不都合を来たすことなく分離係数を向上できることを
見出し、本発明を完成させるに至った。
In order to obtain a membrane with high permeation rate and separation coefficient, the present inventors formed a so-called heterogeneous membrane structure in which a non-porous layer serving as a separation active layer was formed on the surface of a microporous layer (support). As a result of intensive research into a method for modifying the non-porous layer to achieve even higher separation performance, the method consisting of the following was discovered.
In conventional technology, tigers are considered to have a contradictory relationship. The inventors of the present invention have discovered that it is possible to improve both the gas permeation rate and the separation coefficient in a product at the same time, and that the separation coefficient can be improved without causing any disadvantages in terms of permeation rate compared to the applicant's prior invention. I ended up completing it.

本発明は、熱可塑性の結晶性重合体を溶融押出し製膜し
た後、延伸することによシ製造した独立気泡又は半連通
孔の膜にプラズマ処理を施すことを特徴とする高分子膜
の製造方法に関するものである。すなわち、結晶性重合
体から製造した薄膜状の分離活性層を有する膜をプラズ
マ処理によシ化学修飾することによシ、結晶性重合体本
来の分離係数を、よシ大きな値に向上させるものであシ
、分離係数と透過速度の両立した、優れた分離膜の新規
製造法を提供するものである。
The present invention relates to the production of a polymer membrane, which is characterized by subjecting a closed-cell or semi-open pore membrane produced by melt-extruding a thermoplastic crystalline polymer to a membrane and then subjecting it to plasma treatment. It is about the method. That is, by chemically modifying a membrane having a thin film-like separation active layer manufactured from a crystalline polymer by plasma treatment, the inherent separation coefficient of the crystalline polymer can be improved to a much larger value. The present invention provides a new method for producing an excellent separation membrane that is compatible with both separation coefficient and permeation rate.

さらに詳細には、本発明は、熱可塑性の結晶性重合体を
(1)溶融温度Tm〜(Trf、+200)’C(但し
Tmは結晶融点)、ドラフト比Dfが20≦Df≦10
000の条件にて溶融押し出し、製膜して得た中空糸又
はフィルム’k、(2)(T、−20)〜(Tg+50
)’C(但し、Tgはガラス転移温度)にて、元の長さ
の5〜200ts延伸後(3) (Tg+20)〜(T
r、−10)Cの温度で熱処理を行ない、その後(4)
 (’rg−s o )〜(Tm−10)℃の温度で延
伸倍率1.1〜3.0に延伸し、次いで、(5) ((
4)の延伸温度)〜Tmで熱固定して製造した独立気泡
又は半連通孔の膜にプラズマ処理を施すことを特徴とす
る高分子膜の製造法に関するものである。
More specifically, the present invention provides a thermoplastic crystalline polymer having (1) a melting temperature Tm to (Trf, +200)'C (where Tm is the crystal melting point) and a draft ratio Df of 20≦Df≦10.
Hollow fiber or film 'k obtained by melt extrusion and film formation under the conditions of 000, (2) (T, -20) to (Tg +50
)'C (where Tg is the glass transition temperature), after stretching the original length for 5 to 200ts (3) (Tg+20) to (T
r, -10) heat treatment at a temperature of C, then (4)
It was stretched to a stretching ratio of 1.1 to 3.0 at a temperature of ('rg-s o ) to (Tm-10)°C, and then (5) ((
The present invention relates to a method for producing a polymer membrane characterized by subjecting a closed-cell or semi-open pore membrane produced by heat-setting at a stretching temperature of 4) to Tm to plasma treatment.

本発明で用いる結晶性重合体は、到達結晶化度20%以
上の熱可塑性の結晶性重合体であシ、例えば、ポリエチ
レン、プリプロピレン、ポリ−3−メチル−ブテン−1
、ポリ−4−メチル−インテン−1、等のポリオレフィ
ン、プリスチレン、ポリ−メチルメタクリレートなどの
ビニル重合体、ポリ弗化ビニリデン、4り弗化ビニルエ
チレン/四弗化エチレン共重合体などの弗素系重合体、
ナイロン6、ナイロン66、ナイロン12などのポリア
ミド、ポリエチレンテレフタレート、ポリブチレンテレ
フタレート、ポリエチレン−2,6−ナフタレートなど
のポリエステル、ポリ−4,4−ジオキシジフェニル−
2,2−fロノ!ンカーゲネートなどのポリカーボネー
ト、ポリオキシメチレン、?リメチレンスルフイドなど
のポリエーテル、ポリチオエーテル、ポリフェニレンオ
キシド、ポリフェニレンスルフィドなどのポリフェニレ
ンカル構造をもクポリエーテルエーテルケトン(PEE
K )等を挙げることができる。また、これらの重合体
相互のブレンドや共重合体で、到達結晶化度が20チ以
上のものであっても良い。さらに、他の非晶質ポリマー
とのブレンドや無1機物とのブレンド等、上記重合物f
t7051以上含有する組成物も   C本発明に用い
ることができるし、酸化防止剤、帯電防止剤、防黴剤、
滑剤、表面活性剤等を必要に応じて適量含有することが
できる。
The crystalline polymer used in the present invention is a thermoplastic crystalline polymer having an ultimate crystallinity of 20% or more, such as polyethylene, polypropylene, poly-3-methyl-butene-1
, polyolefins such as poly-4-methyl-inten-1, vinyl polymers such as polystyrene and poly-methyl methacrylate, fluorine such as polyvinylidene fluoride, tetrafluorinated vinylethylene/tetrafluoroethylene copolymer, etc. system polymer,
Polyamides such as nylon 6, nylon 66, and nylon 12, polyesters such as polyethylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, poly-4,4-dioxydiphenyl-
2,2-f Rono! Polycarbonate, polyoxymethylene, such as cargenate? Polyether ether ketone (PEE
K), etc. Further, a blend or copolymer of these polymers may be used, and the achieved crystallinity may be 20 degrees or more. Furthermore, the above polymer f can be blended with other amorphous polymers, blended with inorganic substances, etc.
Compositions containing t7051 or more can also be used in the present invention, and may also contain antioxidants, antistatic agents, antifungal agents,
Appropriate amounts of lubricants, surfactants, etc. may be included as necessary.

中空糸の溶融紡糸温度(もしくはフィルムの溶融押出温
度)(以下、説明の簡略化の為に、特に断らない限シ中
空糸膜の場合について話を進める。
Melt spinning temperature of hollow fiber (or melt extrusion temperature of film) (Hereinafter, in order to simplify the explanation, the case of hollow fiber membrane will be discussed unless otherwise specified.

フィルム押出しやインフレーシ目ンの場合モ話は同様で
ある。)は重合体の融点Tmよシ高く、融点を200℃
以上越えないことが好ましい。好適な紡糸温度−は重合
体の結晶化速度、重合体の分子量、冷却条件、紡糸速度
やドラフト比、それに後の工程の処理条件によって異な
シ、一般的に言って、結晶化速度の遅い重合体や低分子
量の重合体を用いる場合、紡糸速度やドラフト比が比較
的小さい場合等には、(Tm+lO)〜(Trn+50
)℃の低い温度が好ましい。融点よ9200℃以上高い
温度では気体の透過速度が大きな膜を得ることは困難で
ある。
The story is similar for film extrusion and inflation. ) is higher than the melting point Tm of the polymer, and the melting point is 200°C.
It is preferable not to exceed this. The suitable spinning temperature varies depending on the crystallization rate of the polymer, the molecular weight of the polymer, the cooling conditions, the spinning speed and draft ratio, and the treatment conditions of subsequent steps. When coalescing or using a low molecular weight polymer, when the spinning speed and draft ratio are relatively low, (Tm+lO) to (Trn+50
)°C is preferred. At temperatures higher than the melting point by 9200°C or more, it is difficult to obtain a membrane with a high gas permeation rate.

ドラフト比(=引取速度/吐出速度)は5〜10ooo
が好ましい。紡糸温度に於ける溶融粘度が7000ポイ
ズ以上である様な高分子量の重合体の場合には5〜20
0の比較的低いドラフト比が適当であるが、一般的には
50以上が好ましlA糾1/’=候厘市参上咋R1凸八
パノ1−pe IvlτハI―八ヱ量へ重合体を用いて
徐冷する場合には、500以上の高ドラフトが必要であ
る。また一般的に、吐出糸を急冷する場合には、徐冷す
る場合に比べてドラフト比を低くすることができる。ド
ラフト比がこの範囲外でも、本発明の膜を製造すること
は可能であるが、高い気体透過性能が望めない他に、製
造が困難になるデメリットが生ずる。
Draft ratio (= take-up speed/discharge speed) is 5 to 10ooo
is preferred. 5 to 20 in the case of high molecular weight polymers with a melt viscosity of 7000 poise or more at the spinning temperature.
A relatively low draft ratio of 0 is suitable, but generally a draft ratio of 50 or more is preferred. When slow cooling is performed using a high draft of 500 or more, a high draft of 500 or more is required. Additionally, in general, when the discharge yarn is rapidly cooled, the draft ratio can be lowered compared to when it is slowly cooled. Although it is possible to produce the membrane of the present invention even when the draft ratio is outside this range, there are disadvantages in that high gas permeation performance cannot be expected and production becomes difficult.

押出し速度は、比較的任意に選択できる。遅過ぎ、ある
いは速過ぎる条件では糸切れが生じ易くなるが、装置的
な要求に合せて決定できる。
The extrusion speed can be chosen relatively arbitrarily. If the speed is too slow or too fast, thread breakage is likely to occur, but this can be determined depending on the equipment requirements.

中空糸紡糸用ノズルは、円環型、馬蹄型、ブリッジ型等
の通常の中空糸紡糸用ノズルを用いることができる。フ
ィルム押出用ダイはTダイやインフレーシ冒ン用の円環
状ダイ等、通常用いられるフィルム、シート用ダイを用
いることができる。
As the hollow fiber spinning nozzle, a conventional hollow fiber spinning nozzle such as an annular type, a horseshoe type, a bridge type, etc. can be used. As the film extrusion die, a commonly used film or sheet die such as a T die or an annular die for inflation extrusion can be used.

中空糸の外径は、ノズル寸法やドラフト等によって5〜
5000μmに設定することが好ましい。
The outer diameter of the hollow fiber varies from 5 to 5 depending on the nozzle dimensions, draft, etc.
It is preferable to set it to 5000 μm.

5μm以下および5oooμm以上では透過速度の大き
な膜を得ることが困難となる。中空糸又はフィルムの[
厚木、@I横に1−で1〜1000n市に設定すること
が好ましい。この範囲外では良好な多孔質膜が生成しに
<<、気体透過速度が小さくなる。
If it is less than 5 μm or more than 500 μm, it becomes difficult to obtain a membrane with a high permeation rate. Hollow fiber or film [
It is preferable to set Atsugi, 1-1000n city with 1- next to @I. Outside this range, a good porous membrane will not be formed and the gas permeation rate will be low.

本発明により製造された膜を気体分離膜として用いる場
合には、フィルム(平膜)状よシ、表面積の大きくとれ
る中空糸が有利であシ、その外径は20〜500μm1
膜厚は1〜50μmがよシ好ましい。
When the membrane produced according to the present invention is used as a gas separation membrane, it is advantageous to use a film (flat membrane) or a hollow fiber with a large surface area, and its outer diameter is 20 to 500 μm.
The film thickness is preferably 1 to 50 μm.

ノズルより押出された吐出糸は冷却固化させる。The thread extruded from the nozzle is cooled and solidified.

冷却は空気中全吐出糸が自走する事で自動的に行なわれ
るが、さらに積極的な冷却操作を加える事がよシ好まし
い。冷却方法としては送風の他、チルロールや水(又は
湯)による冷却等通常の冷却方法を用いることができる
。冷却温度は、重合体の結晶化速度にもよるが、一般的
には(Tg−50)〜(Tm−50)℃が好ましい。
Cooling is performed automatically by the self-propulsion of all discharge threads in the air, but it is preferable to add a more active cooling operation. As a cooling method, in addition to blowing air, ordinary cooling methods such as cooling with a chill roll or water (or hot water) can be used. The cooling temperature is generally preferably (Tg-50) to (Tm-50)°C, although it depends on the crystallization rate of the polymer.

以上の様にして得られた中空糸は熱処理を行う。The hollow fibers obtained as described above are subjected to heat treatment.

Iリオレフインの様に結晶化速度の速い重合体の場合に
は、徐冷条件の紡糸工程に於て、結晶化が進行している
ため、必ずしも熱処理は必要ではないが、ポリエステル
の様に結晶化の遅い重合体では熱処理を行うことが必要
である。またポリオレフィン等の場合であっても紡糸条
件では冷却を行っておき、別工程として熱処理を行う方
が膜性能や製品の均一化の面からは有利である。熱処理
温度は(Tg+20)〜(Tm−s)℃が適当である。
In the case of polymers with a fast crystallization rate such as I-lyolefin, crystallization progresses during the spinning process under slow cooling conditions, so heat treatment is not necessarily necessary. For slow polymers it is necessary to carry out heat treatment. Even in the case of polyolefin, it is advantageous in terms of membrane performance and product uniformity to perform cooling during spinning conditions and heat treatment as a separate step. The appropriate heat treatment temperature is (Tg+20) to (Tm-s)°C.

熱処理を高温・長時間の条件で必要以上に行い過ぎると
、多孔質膜にピンホール(連通細孔)が発生し、分離係
数の向上が見られなくなるので好ましくな−0また熱処
理は延伸倍率(DR)1.0〜3.0の緊張下で行うこ
とが好ましい。弛緩あるいは無緊張下での熱処理は、ピ
ンホールの発生を伴うので好ましくない。
If the heat treatment is carried out at a high temperature and for a long time for a longer time than necessary, pinholes (communicating pores) will occur in the porous membrane, and no improvement in the separation coefficient will be observed. DR) It is preferable to carry out under a tension of 1.0 to 3.0. Heat treatment under relaxed or untensioned conditions is undesirable because it involves the generation of pinholes.

熱処理の方法としては加熱ローラー、熱風炉、赤外炉、
高周波加熱等通常用いられる加熱方式を採用できる。ま
た乾熱方式だけでなくスチームや湿式加熱であってもさ
しつかえない。
Heat treatment methods include heated rollers, hot air ovens, infrared ovens,
Commonly used heating methods such as high frequency heating can be used. In addition to the dry heating method, steam or wet heating may also be used.

以上の処理をし念中空糸もしくはフィルムは、延伸する
ことによって膜内部に空隙全発生させ、多孔質を形成さ
せる(この工程を冷延伸工程と呼ぶことにする)。延伸
倍率は1.05〜3.0が適当である。冷延伸温度は、
低過ぎると表面薄膜層が破れ、ピンホールが生じるから
(T、−50)〜(Tm−10)℃が好ましい。この温
度範囲に於て、重合体の到達結晶化度が低い場合や、冷
却、熱処理条件によって、結晶が十分発達していない場
合はど、冷延伸はより低温で行う必要がある。重合体の
種類によっても異なるが、一般的に言って、結晶化度が
約30−以下ではTg+ 10℃以下で冷延伸を行う必
要がある。よシ高温での延伸は、ボイドを生成させず、
気体透過率の向上が見られない。
After the above treatment, the hollow fiber or film is stretched to generate all the voids inside the membrane and to form a porous structure (this process will be referred to as a cold stretching process). A suitable stretching ratio is 1.05 to 3.0. The cold stretching temperature is
If it is too low, the surface thin film layer will be torn and pinholes will occur, so (T, -50) to (Tm-10)C is preferable. In this temperature range, when the ultimate crystallinity of the polymer is low, or when crystals are not sufficiently developed due to cooling and heat treatment conditions, cold stretching must be performed at a lower temperature. Although it varies depending on the type of polymer, generally speaking, if the degree of crystallinity is about 30 or less, it is necessary to cold stretch at Tg+10°C or less. Stretching at high temperatures does not create voids,
No improvement in gas permeability was observed.

逆に、結晶化速度が速く、到達結晶化度が高込重合体(
例えばアイソタクチックポリプロピレン)の場合や、熱
処理を比較的十分に行った場合には、1g以上で延伸す
ることが好ましい。低温での延伸は、連通細孔を発生さ
せ、分離係数が低下する。
On the other hand, the crystallization rate is faster and the achieved crystallinity is higher than that of high-density polymers (
For example, in the case of isotactic polypropylene) or in the case of relatively sufficient heat treatment, it is preferable to stretch at 1 g or more. Stretching at low temperatures generates communicating pores and reduces the separation coefficient.

さらに気体透過率を増す為に、冷延伸に引続いて緊張を
緩めることなく、冷延伸温度よシ高くTrn  5℃以
下の温度で延伸を行って本白い(との工程を熱延伸工程
と呼ぶことにする)、延伸倍率DRは冷延伸と熱延伸を
合せて1.1〜5.0が適当である。小さ過ぎると内部
の空隙が十分開かず、また太き過ぎるとピンホールが発
生すると共に、結晶構造の破壊によ)気体透過しにくく
な夛、気体分離性能の劣る膜となる。
In order to further increase the gas permeability, following cold stretching, stretching is performed at a temperature higher than the cold stretching temperature, Trn 5°C or less, without loosening the tension. ), the appropriate stretching ratio DR for cold stretching and hot stretching is 1.1 to 5.0. If it is too small, the internal voids will not be sufficiently opened, and if it is too thick, pinholes will occur, and the crystal structure will be destroyed, resulting in a membrane that is difficult to pass through and has poor gas separation performance.

冷・熱延伸は自由中−軸延伸でも、一定巾一軸延伸であ
っても良いし、中空糸又はフィルムをローラーによシ連
続的に延伸しても良い。延伸温度がTg付近以下の低温
に於ては延伸速度が速すぎると非多孔層にピンホールが
多く発生する。一般には延伸速度は1〜10000%/
秒が好ましい。
The cold/hot stretching may be free medium-axial stretching, constant width uniaxial stretching, or the hollow fiber or film may be continuously stretched using rollers. If the stretching speed is too high at a low stretching temperature of around Tg or lower, many pinholes will occur in the non-porous layer. Generally, the stretching speed is 1 to 10,000%/
Seconds are preferred.

また連続延伸に於ては延伸区間を短くする、直径の小さ
なローラーを用する、延伸パー全使用する等の方法によ
シ、延伸点を固定、または延伸範囲を狭くすることが、
製品の均一化の点で有利である。
In addition, in continuous stretching, it is possible to fix the stretching point or narrow the stretching range by shortening the stretching section, using rollers with a small diameter, using the entire stretching machine, etc.
This is advantageous in terms of product uniformity.

冷・熱延伸によっては、中空糸の断面積はほとんど低下
しない、従って見掛は密度が低下することになる。これ
は膜内部に空隙が生じ、多孔質になったことを示してい
る。
The cross-sectional area of the hollow fibers hardly decreases depending on the cold/hot stretching, so the apparent density decreases. This indicates that voids were created inside the membrane, making it porous.

冷・熱延伸によシ生じた独立気泡や半連通孔が、応力を
解いても固定されるように、冷延伸温度〜Tm℃の温度
で熱固定を行う。熱固定温度は冷延伸の温度以上である
ことが必要である。熱固定時間は1秒以上緊張下で行う
ことが望ましい。熱固定の条件で熱延伸を行った場合に
は、別途の熱固定は必ずしも必要でない。この場合は、
熱延伸工程が即ち熱固定であることになる。また、熱延
伸を行った場合は無緊張下で熱固定を行っても性能上の
劣下は僅少である。
Heat setting is carried out at a temperature between the cold drawing temperature and Tm° C. so that the closed cells and semi-open pores generated by the cold/hot drawing are fixed even after the stress is released. The heat setting temperature needs to be higher than the cold stretching temperature. It is desirable that the heat fixation time is 1 second or more under tension. When hot stretching is performed under heat setting conditions, separate heat setting is not necessarily necessary. in this case,
The hot stretching process is therefore heat setting. Furthermore, when hot stretching is performed, there is little deterioration in performance even if heat setting is performed without tension.

以上の様にして得た独立気泡又は半連通孔の膜にプラズ
マ処理を施す。
The membrane with closed cells or semi-open pores obtained as described above is subjected to plasma treatment.

本発明におけるプラズマ処理は、グロー放電によシ発生
するプラズマを利用するもので、プラズマ発生条件は、
必要とする最終的膜性能や導入ガスによシ異るが、圧力
が0.01〜8 Torr 、高周波電力が50〜20
0W、ガス供給速度が0.001〜100m1/min
の範囲が望ましい。また供給するガスに関しては、無機
ガス状物質は空気、酸素、窒素、炭酸ガス、アンモニア
、ノ・ログンガス等、有機ガス状物質は、アクリル酸、
スチレン、酢酸ビニル、塩化ビニル、4−メチルピリジ
ン、アリルアルコール、ベンゾニトリル、メタクリロニ
トリル、アクリロニトリル、ピリジン、4−エチルピリ
ジン、N−メチル−2−ピロリドン、ブタジェン、イソ
プレン、ジエチルアミン、エチレンジアミン、エチレン
、プロピレンジメチルシロキサン等が例示される。
The plasma treatment in the present invention utilizes plasma generated by glow discharge, and the plasma generation conditions are as follows:
Although it depends on the final membrane performance required and the introduced gas, the pressure is 0.01 to 8 Torr, and the high frequency power is 50 to 20 Torr.
0W, gas supply rate 0.001-100m1/min
A range of is desirable. Regarding the gases to be supplied, inorganic gaseous substances include air, oxygen, nitrogen, carbon dioxide, ammonia, gas, etc.; organic gaseous substances include acrylic acid,
Styrene, vinyl acetate, vinyl chloride, 4-methylpyridine, allyl alcohol, benzonitrile, methacrylonitrile, acrylonitrile, pyridine, 4-ethylpyridine, N-methyl-2-pyrrolidone, butadiene, isoprene, diethylamine, ethylenediamine, ethylene, Examples include propylene dimethylsiloxane.

本発明におけるプラズマ処理は、前記熱処理、延伸等の
工程によシ製造した独立気泡又は半連通孔の膜の分離活
性層を化学修飾し、分離係数を向上させることが目的で
あシ、従来から知られている連通孔の多孔質膜上にプラ
ズマ重合薄膜を形成させる方法と異なシ、供給するガス
は薄膜形成能力を有する必要がない。又、その目的から
、好ま  Cしい供給ガスの穏類も、分離すべき対象に
よシ選択される。一般に気体分離や有機液体の分離に用
いる場合に特に有効な供給ガスは、無機ガスとしては空
気、酸素、炭酸ガス、アンモニア、フッ素、塩素、酸化
イオウ類、酸化チッ素類、硫化水素、有機ガスとしては
、ビニル系、ニトリル系、ジエン系化合物、スルフォン
化合物、アミン類有機・・ログン化合物である。
The purpose of the plasma treatment in the present invention is to chemically modify the separation active layer of the closed-cell or semi-open pore membrane produced by the heat treatment, stretching, etc. steps, and to improve the separation coefficient. Unlike the known method of forming a plasma polymerized thin film on a porous membrane with communicating holes, the supplied gas does not need to have the ability to form a thin film. Also, for that purpose, moderate species of the feed gas are also selected depending on what is to be separated. In general, particularly effective supply gases when used for gas separation or organic liquid separation include air, oxygen, carbon dioxide, ammonia, fluorine, chlorine, sulfur oxides, nitrogen oxides, hydrogen sulfide, and organic gases. These include vinyl-based, nitrile-based, diene-based compounds, sulfone compounds, amine organic compounds, and rogone compounds.

本発明の膜の形状は、使用目的に応じて任意に選ぶこと
ができる。例えば中空系、チェープラー、平膜状の形態
にすることが可能である。また、膜強度を向上させる為
の構造を導入したシ、膜厚に変化をつける等、必要に応
じ種々の形態にすることができる。中空糸(チー−プラ
ーも含む)の外径は5〜5000μmが適当であシ、2
0〜500μmがよフ好ましい。外径5μm以下あるい
は5000μm以上の中空糸状の不均質膜t−製造する
ことも可能であるが、製造コスト、膜性能等に於て劣り
たものとなシ、メリットが無い、膜厚は1〜1000μ
mが適当である。1μm以下では力学的強度が得にくく
、1000μm以上では透過速度の低下を招く。膜厚に
関して、平膜(フィルム)の場合も同様である。
The shape of the membrane of the present invention can be arbitrarily selected depending on the intended use. For example, it can be in the form of a hollow system, a Chepler, or a flat membrane. In addition, it can be made into various forms as required, such as by introducing a structure to improve the film strength or by changing the film thickness. The outer diameter of the hollow fiber (including Cheapler) is suitably 5 to 5000 μm.
0 to 500 μm is more preferable. Although it is possible to manufacture a hollow fiber-like heterogeneous membrane with an outer diameter of 5 μm or less or 5000 μm or more, it is inferior in manufacturing cost, membrane performance, etc., and there is no merit. 1000μ
m is appropriate. If it is less than 1 μm, it is difficult to obtain mechanical strength, and if it is more than 1000 μm, the permeation rate will decrease. Regarding the film thickness, the same applies to the case of a flat film.

(作用〕 本発明の膜を用いることのできる気体分離の系としては
、例えば空気から酸素富化空気の製造、燃焼廃ガスから
のCo、H2の回収、廃ガスからのNo□、S02の除
去、C0102ノ分離、H2/COノ分離、H2102
の分離、H・等の不活性気体の分離回収、メタン/エタ
ンの分離等が挙げられるが、これらに限定されるもので
はない。
(Function) Gas separation systems in which the membrane of the present invention can be used include, for example, production of oxygen-enriched air from air, recovery of Co and H2 from combustion waste gas, and removal of No□ and S02 from waste gas. , CO102 separation, H2/CO separation, H2102
Examples include, but are not limited to, separation of inert gases such as H., separation and recovery of inert gases, and separation of methane/ethane.

本発明の膜はまた、液体に溶解した気体の選択的除去、
混合気体中の選ばれた気体の液体への選択的溶解、混合
液体からの選ばれた液体の分離C所謂ノ4−ペーパレー
ジ諺ン)等、非多孔Wj−膜tv透過によって実現され
る分離、濃縮に用いることができる。
The membranes of the invention also provide selective removal of gases dissolved in a liquid.
Separation achieved by non-porous membrane permeation, such as selective dissolution of selected gases in a gas mixture into liquids, separation of selected liquids from mixed liquids (so-called paperage proverbs), etc. Can be used for concentration.

特に本発明の方法に従えば気体分離の活性層である非多
孔質薄膜の厚さを従来の膜の1/10以下にすることが
できる上、この薄膜をプラズマ処理によシ化学修飾する
ことによシ、本出願人の先行発明に係る膜における高い
透過速度を保持したまま、分離係数を改善することがで
きる。従って本発明の方法によって製造される膜は、従
来両立させることが困難であった高分離係数と高い透過
速度を同時に保持することができる。
In particular, according to the method of the present invention, the thickness of the non-porous thin film that is the active layer for gas separation can be reduced to 1/10 or less of that of conventional membranes, and this thin film can be chemically modified by plasma treatment. Therefore, the separation coefficient can be improved while retaining the high permeation rate in the membranes according to the applicant's prior invention. Therefore, the membrane produced by the method of the present invention can simultaneously maintain a high separation coefficient and a high permeation rate, which have been difficult to achieve in the past.

〔実施例〕〔Example〕

以下実施例をあげて説明する。 This will be explained below by giving examples.

実施例1 メルトインデックス(ASTM D −1238による
)3.5のぼりプロピレンを直径5履の1スリツi・タ
イプの中空糸紡糸用ノズルを用いて、紡糸温度240℃
、引取速度120m/分、ドラフト比300で溶融紡糸
を行い、外径195μm1膜厚22μmの中空糸を得た
。この時ノズル下5〜55αの範囲を、温度20℃、風
速1m/秒の横風でもって急冷した。次に温度35℃に
て延伸倍率DR=1.3になるよう、ローラー系を用い
て連続的に非晶延伸を行い、次いで、糸の緊張を解くこ
と無く、140℃の熱風循環恒温槽中に導入し、定長で
1秒間滞留させることによシ熱処理を行った。熱処理し
た中空糸は続いて、温度35℃、ローラー間10(7)
にてD R1,2だけ冷延伸し、緊張を解くこと無く1
40℃にてD R1,3だけ熱延伸を行い、さらに、そ
の長さを保ったまま140℃にて10秒間熱固定を行っ
た。得られた中空糸は外径163μm1膜厚18μmで
あった。この中空系の内、外表面を走査型電子顕微鏡で
観測すると連通孔は認められず独立気泡であると推定さ
れる。
Example 1 Propylene with a melt index (according to ASTM D-1238) of 3.5 was spun at a temperature of 240° C. using a 1-slit I-type hollow fiber spinning nozzle with a diameter of 5 shoes.
Melt spinning was performed at a take-up speed of 120 m/min and a draft ratio of 300 to obtain hollow fibers with an outer diameter of 195 μm and a membrane thickness of 22 μm. At this time, the area 5 to 55[alpha] below the nozzle was rapidly cooled with a cross wind at a temperature of 20[deg.] C. and a wind speed of 1 m/sec. Next, continuous amorphous stretching was carried out using a roller system at a temperature of 35°C so that the stretching ratio DR=1.3, and then, without releasing the tension of the thread, it was placed in a hot air circulation constant temperature bath at 140°C. The heat treatment was carried out by introducing the sample into a tube and retaining it at a constant length for 1 second. The heat-treated hollow fibers were then heated at a temperature of 35°C between rollers of 10(7)
cold-stretched by DR1 and 2 at
Hot stretching was performed at 40° C. by DR1,3, and then heat setting was performed at 140° C. for 10 seconds while maintaining the length. The obtained hollow fiber had an outer diameter of 163 μm and a membrane thickness of 18 μm. When observing the inner and outer surfaces of this hollow system using a scanning electron microscope, no communicating pores were observed, and it is assumed that the cells are closed cells.

この中空糸を、巻き取ローラー系を設置したプラズマ処
理用ペルジャーの中にいれ、3007/Gの排気速度の
ロータリーポンプでペルジャー内を0、 OI Tor
rまで減圧にした。次にスチレンを器内に導入し圧力ヲ
1.0±0. I Torrに保つ。次に高周波電源よ
り 13.56 MHzを光計、マツチングネットワー
クを介して電極に加え、帛計の反射波表示を最少にする
様にネットワークを調整する。
This hollow fiber was placed in a Pel jar for plasma treatment equipped with a take-up roller system, and the inside of the Pel jar was pumped to 0 and OI Tor using a rotary pump with a pumping speed of 3007/G.
The pressure was reduced to r. Next, styrene was introduced into the vessel and the pressure was reduced to 1.0±0. Keep at I Torr. Next, 13.56 MHz from a high frequency power source was applied to the optical meter and the electrodes via a matching network, and the network was adjusted to minimize the reflected wave display on the meter.

次に巻き取シローラーを回転させ電極間を中空糸が通過
する速度を5 cm /分に設定し中空糸を連続的に処
理する。処理を終了後アルゴンガスによルベルジャー内
を常圧にもどし、1晩放置後ペルジヤー内から中空糸を
取シ出した。
Next, the winding roller is rotated and the speed at which the hollow fiber passes between the electrodes is set to 5 cm 2 /min to continuously process the hollow fiber. After the treatment was completed, the inside of the Leberger was returned to normal pressure with argon gas, and after being left overnight, the hollow fiber was taken out from the Leberger.

製造した中空糸の酸素及び窒素の透過率及び分離係数を
測定した。測定条件はI KII/α2の圧力で中空糸
の内側を加圧し、外側へ透過してくるガスの流ilヲ測
定した。膜面積は中空糸の断面の顕微鏡観察よシ求めた
。測定結果は透過率Q(0□)=6.8 X 10  
(tYR” (STP)/m” ・see・mHg )
、α(0□/N2) = 4.6であった。
The oxygen and nitrogen permeability and separation coefficient of the produced hollow fibers were measured. The measurement conditions were to pressurize the inside of the hollow fiber at a pressure of IKII/α2, and measure the flow of gas permeating to the outside. The membrane area was determined by microscopic observation of the cross section of the hollow fiber. The measurement result is transmittance Q (0□) = 6.8 x 10
(tYR” (STP)/m”・see・mHg)
, α(0□/N2) = 4.6.

実施例2 スチレンのかわりにベンゾニトリルを用いる以外は実施
例1と同様の方法で中空糸を製造した〇実施例3 スチレンのかわ勺にアニリンを用いる以外は実施例1と
同様の方法で中空糸を製造した。
Example 2 Hollow fibers were produced in the same manner as in Example 1, except that benzonitrile was used instead of styrene. Example 3 Hollow fibers were produced in the same manner as in Example 1, except that aniline was used as the styrene filler. was manufactured.

実施例4 スチレンのかわシに炭酸ガスを用いる以外は実施例1と
同様の方法で中空糸を製造した。
Example 4 Hollow fibers were produced in the same manner as in Example 1 except that carbon dioxide gas was used to remove styrene.

実施例5 スチレンのかわシに塩素ガスを用いる以外は実施例1と
同様の方法で中空糸を製造した。
Example 5 Hollow fibers were produced in the same manner as in Example 1 except that chlorine gas was used to remove styrene.

実施例6 事及び処理温度が145℃である事以外は実施例1と全
く同様にして製造した。得られた膜全電子顕微鏡で観察
したところ中空糸外表面には細孔は認められなかったが
、内表面には長径的0.4μm1短径約0.2μmの細
孔が多数観察された。以下実施例1と同様の方法で行な
った。
Example 6 A sample was produced in exactly the same manner as in Example 1, except that the processing temperature was 145°C. When the obtained membrane was observed using a total electron microscope, no pores were observed on the outer surface of the hollow fibers, but many pores with a major axis of 0.4 μm and a minor axis of about 0.2 μm were observed on the inner surface. The following procedure was carried out in the same manner as in Example 1.

実施例7 メルトインデックス(ASTMD −1238による)
26のポリ−4−メチルペンテン−1を直径5咽の1ス
リツトタイプの中空糸紡糸用ノズルを用いて、紡糸温度
295℃、引取速度420m1分、ドラフト比2000
で溶融紡糸を行い、外径65μm1膜厚9.0μmの中
空糸を得た。この時ノズル下5〜55crRの範囲を、
温度20℃、風速1〜4ンの横風でもって急冷した。次
に温度35℃にて延伸倍率D R= 1.3になるよう
、ローラー系を用いて連続的に非晶延伸を行い、次いで
、糸の緊張を解くこと無(,190℃の熱風循環恒温槽
中に導入し、定長で1秒間滞留させることによシ熱処理
<+C−J−11111加厘1蟲出自吟1a t−11
1−イ 泊血ワC℃、ローラー間10crnにてD R
1,2だ゛け冷延伸し、緊張を解くこと無く130℃に
てl) R1,3だけ熱延伸を行い、さらに、その長さ
を保ったまま190℃にて3秒間熱固定を行った。得ら
れ念中空糸は外径56μm1膜厚7,9μmであった。
Example 7 Melt index (according to ASTM D-1238)
26 poly-4-methylpentene-1 was spun using a 1-slit type hollow fiber spinning nozzle with a diameter of 5 mm at a spinning temperature of 295°C, a take-up speed of 420 ml/min, and a draft ratio of 2000.
Melt spinning was performed to obtain hollow fibers with an outer diameter of 65 μm and a membrane thickness of 9.0 μm. At this time, the range of 5 to 55 crR below the nozzle,
It was rapidly cooled at a temperature of 20° C. with a cross wind at a wind speed of 1 to 4 mph. Next, continuous amorphous stretching was carried out using a roller system at a temperature of 35°C so that the stretching ratio D R = 1.3. Heat treatment by introducing it into a tank and retaining it for 1 second at a fixed length
1-A Dry blood at C℃, 10 crn between rollers
Cold-stretched for 1 and 2 times, then hot-stretched for R1 and 3 at 130°C without releasing the tension, and then heat-set for 3 seconds at 190°C while maintaining that length. . The obtained hollow fiber had an outer diameter of 56 μm and a membrane thickness of 7.9 μm.

この中空糸の内、外表面を走査型電子顕微鏡で観測する
と連通孔は認められず独立気泡であると推定される。
When the inner and outer surfaces of the hollow fibers were observed using a scanning electron microscope, no communicating pores were observed, and it was assumed that the fibers were closed cells.

以下スチレンを用いるかわシにジメチルスルホキシドを
用いる以外は実施例1と同様の方法で中空糸を製造した
A hollow fiber was produced in the same manner as in Example 1 except that dimethyl sulfoxide was used instead of styrene.

実施例8 メルトインデックス0.9、密度0.96の?リエチレ
ンを温度180℃にて、巾20cW1のTダイより溶融
押出しし、スリット出口から5crttの位置をエアナ
イフを用いて急冷し、引取速度50rn/m1n1ドラ
フト250で巻取る事によシ、厚さ41μmのフィルム
を得た。このフィルムを35℃にて、連続的にD R1
,5だけ非晶延伸し、緊張を保ったまま90℃の熱風恒
温槽中に10秒間通して熱処理した後、25℃;DRl
、6の条件で冷延伸を行ない、その長さを変化させずに
120℃の熱風恒温槽中に10秒間滞留させて熱固定を
行なった。
Example 8 Melt index 0.9, density 0.96? By melt extruding polyethylene through a T-die with a width of 20cW1 at a temperature of 180°C, rapidly cooling it using an air knife at a position 5crtt from the slit exit, and winding it at a take-up speed of 50rn/m1n1 draft 250, the thickness is 41μm. obtained the film. This film was continuously subjected to D R1 at 35°C.
, 5, and heat-treated by passing it through a hot air constant temperature bath at 90°C for 10 seconds while maintaining the tension, and then 25°C; DRl.
Cold stretching was carried out under the conditions of ., 6, and heat setting was carried out by retaining the film in a hot air constant temperature bath at 120° C. for 10 seconds without changing its length.

得られたフィルムをプラズマ処理用ペルジャーに入れ、
スチレンの他に硫化水素と酸素の体積比1:1の混合ガ
スを用いる以外は実施例1と同様の方法でプラズマ処理
を行なった。
Place the obtained film in a Pel jar for plasma treatment,
Plasma treatment was performed in the same manner as in Example 1, except that a mixed gas of hydrogen sulfide and oxygen at a volume ratio of 1:1 was used in addition to styrene.

以上実施例2〜8で得られた中空糸(又はフィルム)に
ついて実施例1と全く同様の方法で酸素及び窒素の透過
性能を測定した。
The oxygen and nitrogen permeation performance of the hollow fibers (or films) obtained in Examples 2 to 8 was measured in exactly the same manner as in Example 1.

比較例1 内径200μm1外径250μmのポリプロピレン多孔
質中空糸(ポリプラスチックス(株)製、シェラオード
6112)を実施例1と同様に巻き取ジロー2−を設置
したプラズマ処理用ペルジャーの中に入れ、以下実施例
1と同様にプラズマ処理を行ない、中空糸を製造した。
Comparative Example 1 A polypropylene porous hollow fiber (manufactured by Polyplastics Co., Ltd., Sierra Ord 6112) having an inner diameter of 200 μm and an outer diameter of 250 μm was placed in a Pel jar for plasma treatment equipped with a winding roller 2- in the same manner as in Example 1. Thereafter, plasma treatment was performed in the same manner as in Example 1 to produce hollow fibers.

比較例2.3.4                「
中空糸の電極間通過速度が各々1cnt/分、0.1の
7分、0.01m/分である以外は比較例1と同様の方
法で中空糸を製造した。
Comparative example 2.3.4 “
Hollow fibers were produced in the same manner as in Comparative Example 1, except that the interelectrode passing speeds of the hollow fibers were 1 cnt/min, 0.1 7 min, and 0.01 m/min, respectively.

比較例5 実施例1でポリプロピレンを紡糸、延伸、熱処理によシ
作成した中空糸(プラズマ処理前)につき実施例1と同
様に酸素及び窒素の透過率と分離係数を測定した。
Comparative Example 5 The permeability and separation coefficient of oxygen and nitrogen were measured in the same manner as in Example 1 for the hollow fiber (before plasma treatment) prepared by spinning, stretching, and heat treating polypropylene in Example 1.

比較例6 実施例6で用いた、プラズマ処理前の中空糸の酸素及び
窒素の透過特性を測定した。
Comparative Example 6 The oxygen and nitrogen permeation characteristics of the hollow fiber used in Example 6 before plasma treatment were measured.

比較例7 実施例7で用いた、プラズマ処理前の中空糸の水素及び
窒素の透過特性を測定した。
Comparative Example 7 The hydrogen and nitrogen permeation characteristics of the hollow fiber used in Example 7 before plasma treatment were measured.

比較例8 実施例8で用いたプラズマ処理前のフィルムの酸素及び
窒素の透過特性を測定した。
Comparative Example 8 The oxygen and nitrogen permeation characteristics of the film used in Example 8 before plasma treatment were measured.

〔発明の効果〕〔Effect of the invention〕

比較例に示した様に連通孔の多孔質膜をプラズマ処理し
プラズマ重合膜を生成させる方法では活性層が薄膜のと
きはピンホールが生じ高い分離係数が得られず、結局透
過率と分離係数のともに優れた漢は得られなかったが、
本発明の方法によればピンホールのない薄膜が容易に得
られ、しかもプラズマ処理の際導入する無機又は有機が
ス化合物を選定することにより透過率が大なるに加え分
離係数も大きい分離膜を容易に製造できる。
As shown in the comparative example, in the method of plasma-treating a porous membrane with communicating pores to generate a plasma-polymerized membrane, pinholes occur when the active layer is a thin film, making it impossible to obtain a high separation coefficient. Although neither of them had a superior Han,
According to the method of the present invention, a thin film without pinholes can be easily obtained, and by selecting an inorganic or organic compound to be introduced during plasma treatment, a separation membrane with high transmittance and a large separation coefficient can be obtained. Easy to manufacture.

特に、本出願人の特開昭59−229320に記載され
た膜の製造法に比して、本発明の方法は、混合気体中で
最大透過率を有する成分の透過率を低下させることなく
、他の成分の透過率を顕著に低下させることが可能であ
り、その結果として分離係数を顕著に増加させることが
できる。
In particular, compared to the membrane manufacturing method described in JP-A-59-229320 of the present applicant, the method of the present invention does not reduce the permeability of the component having the maximum permeability in the gas mixture. It is possible to significantly reduce the transmittance of other components and, as a result, to significantly increase the separation factor.

Claims (1)

【特許請求の範囲】 1、熱可塑性の結晶性重合体を、(1)溶融温度T_m
〜(T_m+200)℃(但し、T_mは結晶融点)、
ドラフト比D_fが、20≦D_f≦10000の条件
にて溶融押出し製膜して得た中空糸又はフィルムを、(
2)(T_g−20)〜(T_g+50)℃(但しT_
gはガラス転移温度)にて元の長さの5〜200%延伸
後、(3)(T_g+20)〜(T_m−10)℃の温
度で熱処理を行い、その後(4)(T_g−50)〜(
T_m−10)℃の温度で延伸倍率1.1〜3.0にて
延伸し、次いで、(5)((4)の延伸温度)〜T_m
で熱固定して製造した独立気泡又は半連通孔の膜に、プ
ラズマ処理を施すことを特徴とする高分離能高分子膜の
製造方法。 2、プラズマ処理が、無機又は有機ガス状物質の存在下
に行なわれる特許請求の範囲第1項記載の方法。 3、無機ガス状物質が、空気、酸素、炭酸ガス、アンモ
ニア、フッ素、塩素、酸化イオウ類、酸化窒素類、硫化
水素である特許請求の範囲第2項記載の方法。 4、有機ガス状物質が、ビニル系、ニトリル系、ジエン
系化合物、スルフォン化合物、アミン類、有機ハロゲン
化合物である特許請求の範囲第2項記載の方法。
[Claims] 1. A thermoplastic crystalline polymer having (1) a melting temperature T_m
~(T_m+200)°C (where T_m is the crystal melting point),
A hollow fiber or film obtained by melt extrusion film forming under the condition that the draft ratio D_f is 20≦D_f≦10000 is
2) (T_g-20) ~ (T_g+50)℃ (However, T_
After stretching 5 to 200% of the original length at (g is the glass transition temperature), heat treatment is performed at a temperature of (3) (T_g + 20) to (T_m - 10) °C, and then (4) (T_g - 50) to (
Stretching at a stretching ratio of 1.1 to 3.0 at a temperature of T_m-10)°C, then (5) (stretching temperature of (4)) to T_m
1. A method for producing a high-resolution polymer membrane, which comprises subjecting a closed-cell or semi-open-pore membrane produced by heat-setting to plasma treatment. 2. The method according to claim 1, wherein the plasma treatment is performed in the presence of an inorganic or organic gaseous substance. 3. The method according to claim 2, wherein the inorganic gaseous substance is air, oxygen, carbon dioxide, ammonia, fluorine, chlorine, sulfur oxides, nitrogen oxides, or hydrogen sulfide. 4. The method according to claim 2, wherein the organic gaseous substance is a vinyl, nitrile, diene compound, sulfone compound, amine, or organic halogen compound.
JP60157031A 1985-07-18 1985-07-18 Method for producing high resolution polymer membrane Expired - Lifetime JPH0691943B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60157031A JPH0691943B2 (en) 1985-07-18 1985-07-18 Method for producing high resolution polymer membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60157031A JPH0691943B2 (en) 1985-07-18 1985-07-18 Method for producing high resolution polymer membrane

Publications (2)

Publication Number Publication Date
JPS6219206A true JPS6219206A (en) 1987-01-28
JPH0691943B2 JPH0691943B2 (en) 1994-11-16

Family

ID=15640673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60157031A Expired - Lifetime JPH0691943B2 (en) 1985-07-18 1985-07-18 Method for producing high resolution polymer membrane

Country Status (1)

Country Link
JP (1) JPH0691943B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0299381A2 (en) * 1987-07-11 1989-01-18 Dainippon Ink And Chemicals, Inc. Membrane-type artificial lung and method of using it
JP2002253939A (en) * 2001-03-05 2002-09-10 Mitsubishi Rayon Co Ltd Method for manufacturing hollow fiber membrane
US6878276B2 (en) 2001-12-11 2005-04-12 Zenon Environmental Inc. Methods of making stretched filtering membranes and modules
WO2008126464A1 (en) * 2007-03-30 2008-10-23 Fujifilm Corporation Void-containing resin molded product, process for producing the molded product, and reflector plate
WO2013183342A1 (en) * 2012-06-08 2013-12-12 積水化学工業株式会社 Process for producing polypropylene-based material, and polypropylene-based material
US9061250B2 (en) 2009-06-26 2015-06-23 Bl Technologies, Inc. Non-braided, textile-reinforced hollow fiber membrane
US9221020B2 (en) 2010-09-15 2015-12-29 Bl Technologies, Inc. Method to make yarn-reinforced hollow fiber membranes around a soluble core
JP2017500185A (en) * 2013-12-16 2017-01-05 サビック グローバル テクノロジーズ ビー.ブイ. Plasma-treated polymer membrane
US9643129B2 (en) 2011-12-22 2017-05-09 Bl Technologies, Inc. Non-braided, textile-reinforced hollow fiber membrane
CN111530241A (en) * 2020-04-13 2020-08-14 北京科技大学 SO is separated and recovered from flue gas2With NOxApparatus and method of
CN115674628A (en) * 2022-12-30 2023-02-03 四川卓勤新材料科技有限公司 Polyethylene ultrathin film and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5955309A (en) * 1982-09-24 1984-03-30 Shin Etsu Chem Co Ltd Composite molding for separating gas
JPS59229320A (en) * 1983-05-23 1984-12-22 Dainippon Ink & Chem Inc Preparation of heterogeneous film by melting, stretching

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5955309A (en) * 1982-09-24 1984-03-30 Shin Etsu Chem Co Ltd Composite molding for separating gas
JPS59229320A (en) * 1983-05-23 1984-12-22 Dainippon Ink & Chem Inc Preparation of heterogeneous film by melting, stretching

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0299381A2 (en) * 1987-07-11 1989-01-18 Dainippon Ink And Chemicals, Inc. Membrane-type artificial lung and method of using it
JP2002253939A (en) * 2001-03-05 2002-09-10 Mitsubishi Rayon Co Ltd Method for manufacturing hollow fiber membrane
JP4522600B2 (en) * 2001-03-05 2010-08-11 三菱レイヨン株式会社 Method for producing hollow fiber membrane
US6878276B2 (en) 2001-12-11 2005-04-12 Zenon Environmental Inc. Methods of making stretched filtering membranes and modules
WO2008126464A1 (en) * 2007-03-30 2008-10-23 Fujifilm Corporation Void-containing resin molded product, process for producing the molded product, and reflector plate
US8329287B2 (en) 2007-03-30 2012-12-11 Fujifilm Corporation Void-containing resin molded product, production method therefor, and reflective plate
US9061250B2 (en) 2009-06-26 2015-06-23 Bl Technologies, Inc. Non-braided, textile-reinforced hollow fiber membrane
US9221020B2 (en) 2010-09-15 2015-12-29 Bl Technologies, Inc. Method to make yarn-reinforced hollow fiber membranes around a soluble core
US9643129B2 (en) 2011-12-22 2017-05-09 Bl Technologies, Inc. Non-braided, textile-reinforced hollow fiber membrane
WO2013183342A1 (en) * 2012-06-08 2013-12-12 積水化学工業株式会社 Process for producing polypropylene-based material, and polypropylene-based material
JPWO2013183342A1 (en) * 2012-06-08 2016-01-28 積水化学工業株式会社 Method for producing polypropylene material and polypropylene material
JP2017500185A (en) * 2013-12-16 2017-01-05 サビック グローバル テクノロジーズ ビー.ブイ. Plasma-treated polymer membrane
CN111530241A (en) * 2020-04-13 2020-08-14 北京科技大学 SO is separated and recovered from flue gas2With NOxApparatus and method of
CN115674628A (en) * 2022-12-30 2023-02-03 四川卓勤新材料科技有限公司 Polyethylene ultrathin film and preparation method thereof
CN115674628B (en) * 2022-12-30 2023-05-02 四川卓勤新材料科技有限公司 Polyethylene ultra-thin film and preparation method thereof

Also Published As

Publication number Publication date
JPH0691943B2 (en) 1994-11-16

Similar Documents

Publication Publication Date Title
US4664681A (en) Heterogeneous membrane and process for production thereof
US4620956A (en) Process for preparing microporous polyethylene film by uniaxial cold and hot stretching
CA1167211A (en) Process for preparing hollow microporous polypropylene fibers
US5435955A (en) Process of producing porous polypropylene hollow fiber and film
US4541981A (en) Method for preparing a uniform polyolefinic microporous hollow fiber
US4919856A (en) Process for producing membranes for use in gas separation
US4290987A (en) Process for preparing microporous hollow fibers
JPS6219206A (en) Preparation of high molecular film having high separation performance
JPS6335726B2 (en)
JPH0211619B2 (en)
JPWO2007010832A1 (en) Vinylidene fluoride resin hollow fiber porous membrane
US4530809A (en) Process for making microporous polyethylene hollow fibers
JPS6279806A (en) Porous separation membrane and its production
JPS6245318A (en) Preparation of gas separation membrane
KR940001854B1 (en) Microporous membranes having increased pore densities and process for making the same
JPS6342006B2 (en)
JPH04265132A (en) Production of porous hollow fiber membrane
JP2572895B2 (en) Manufacturing method of porous hollow fiber membrane
JPS61146811A (en) Production of porous hollow fiber of thermoplastic resin
JPH0450053B2 (en)
JPS59229320A (en) Preparation of heterogeneous film by melting, stretching
JPH06246140A (en) Production of heterogeneous hollow yarn membrane
JP3475363B2 (en) Method for producing porous membrane
JPH0415014B2 (en)
JPS6186239A (en) Manufacture of porous thermoplastic film