JPS62185746A - Polyamide resin composition - Google Patents

Polyamide resin composition

Info

Publication number
JPS62185746A
JPS62185746A JP2757186A JP2757186A JPS62185746A JP S62185746 A JPS62185746 A JP S62185746A JP 2757186 A JP2757186 A JP 2757186A JP 2757186 A JP2757186 A JP 2757186A JP S62185746 A JPS62185746 A JP S62185746A
Authority
JP
Japan
Prior art keywords
nylon
glass fiber
resin composition
composition
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2757186A
Other languages
Japanese (ja)
Other versions
JPH0786168B2 (en
Inventor
Mitsuo Saka
坂 三男
Minoru Makita
槙田 穣
Fumio Kurihara
文夫 栗原
Shinichi Kimura
木村 慎一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Synthetic Rubber Co Ltd filed Critical Japan Synthetic Rubber Co Ltd
Priority to JP2757186A priority Critical patent/JPH0786168B2/en
Publication of JPS62185746A publication Critical patent/JPS62185746A/en
Publication of JPH0786168B2 publication Critical patent/JPH0786168B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To provide the titled compsn. having excellent resistance to heat and chemicals, mechanical characteristics and dimensional stability, containing polytetramethyleneadipamide, glass fiber an an inorg. filler other than glass fiber. CONSTITUTION:20-97wt% polytetramethyleneadipamide (nylon 4,6) (A) is blended with 5-70wt% glass fiber (B) having a diameter of 0.3-30mum and a length of not shorter than 0.5mm and optionally, not more than 75wt% inorg. fiber (C) other, than the component B (e.g., calcium titanate) in a composition ratio of the component B to the component C of 3/11/1 and in a weight ratio of the component A to the component B + the component C of 80/20-11/89.

Description

【発明の詳細な説明】 a、産業上の利用分野 本発明は、耐熱性、耐薬品性、機械的特性、電気的性質
、特に成形収縮率、吸水後の寸法変化、そり変形量など
の寸法安定性の優れたポリアミド樹脂組成物に関する。
Detailed description of the invention: a. Industrial application field The present invention is applicable to heat resistance, chemical resistance, mechanical properties, electrical properties, especially dimensions such as molding shrinkage rate, dimensional change after water absorption, amount of warpage, etc. The present invention relates to a polyamide resin composition with excellent stability.

b、従来の技術 ポリテトラメチレンアジパミド樹脂(以下ナイロン4.
6と言う)は、優れた耐熱性、強靭性、耐薬品性、摺動
特性を有することから、構造材料として各種用途への実
用化が期待されている。
b. Conventional technology polytetramethylene adipamide resin (hereinafter referred to as nylon 4.
6) has excellent heat resistance, toughness, chemical resistance, and sliding properties, and is expected to be put to practical use as a structural material in various applications.

しかし、ナイロン4.6は (1)  成形時の収縮率が大きい (2)  吸水後の寸法変化が大きい (3)成形後のソリ変形がある という難点を有している。However, nylon 4.6 (1) Large shrinkage rate during molding (2) Large dimensional change after water absorption (3) There is warpage deformation after molding. It has the following drawback.

構造材料の用途の多様化により、成形品は大型化し、複
雑な構造となる傾向にあり、高い寸法精度、剛性、耐熱
性が要求されている。
Due to the diversification of uses for structural materials, molded products tend to become larger and have more complex structures, requiring high dimensional accuracy, rigidity, and heat resistance.

一般に、これらの性能を改善する方法として、炭酸カル
シウム、酸化チタン、炭酸マグネシウム、ケイ酸、クレ
ーなどの無機粉末充填剤を添加する方法がよく用いられ
るが、かかる方法をナイロン4,6に適用すると、耐衝
撃性および加工性の低下を招き、ナイロン4.6の耐衝
撃性とを保持しながら、耐熱性、剛性および寸法安定性
を同時に改善する方法は未だ見出されていなかった。
Generally, as a method of improving these properties, a method of adding inorganic powder fillers such as calcium carbonate, titanium oxide, magnesium carbonate, silicic acid, clay, etc. is often used, but when such a method is applied to nylon 4,6, However, no method has yet been found to simultaneously improve heat resistance, rigidity, and dimensional stability while maintaining the impact resistance of nylon 4.6.

C0発明が解決しようとする問題点 本発明者らは、ナイロン4,6の上記難点を改良するた
めに鋭意検討した結果、ナイロン4,6にある特定のガ
ラス繊維を混合し、さらに必要に応じて他の無機充填剤
を併用することによって、樹脂組成物の剛性、耐熱性、
寸法安定性、耐衝撃性、クリープ特性、摺動特性、ソリ
変形性が配合前の成分から予想される以上に改良される
という驚くべき知見を得て本発明に到達した。
Problems to be Solved by the C0 Invention As a result of intensive studies to improve the above-mentioned drawbacks of nylon 4 and 6, the inventors of the present invention have mixed specific glass fibers with nylon 4 and 6, and further added as needed. By using other inorganic fillers together, the rigidity, heat resistance,
The present invention was achieved based on the surprising finding that dimensional stability, impact resistance, creep properties, sliding properties, and warp deformability are improved more than expected from the ingredients before blending.

d0問題点を解決するための手段 本発明は、 および必要に応じてガラス繊維以外の無機充填剤75重
量%以下 を含有してなることを特徴とするポリアミド樹脂組成物
を提供するものである。
Means for Solving the d0 Problems The present invention provides a polyamide resin composition characterized by: and, if necessary, containing 75% by weight or less of an inorganic filler other than glass fiber.

本発明に用いるナイロン4,6は、下記式4式%) で示される繰り返し構造単位から実質的になるポリアミ
ドである。
Nylon 4,6 used in the present invention is a polyamide consisting essentially of repeating structural units represented by the following formula (4).

その製造法については、例えば特開昭56−14943
0号、同56−149431号、同58−83029号
、特公昭60−28843号などに述べられている方法
を挙げることができる。
Regarding the manufacturing method, for example, JP-A-56-14943
Examples include methods described in Japanese Patent Publication No. 0, No. 56-149431, No. 58-83029, and Japanese Patent Publication No. 60-28843.

また、本発明による樹脂組成物を得るために最低工、5
、好ましくは2.5〜5.0の相対粘度(ηreL:3
0℃で97%硫酸100m l中のポリマー1gの溶液
で測定)を有するナイロン4.6を使用するのが有利で
ある。
In addition, in order to obtain the resin composition according to the present invention, the minimum processing step is 5.
, preferably a relative viscosity of 2.5 to 5.0 (ηreL:3
It is advantageous to use nylon 4.6, which has a hardness (measured in a solution of 1 g of polymer in 100 ml of 97% sulfuric acid at 0° C.).

なお本発明の組成物中、ナイロン4.6の使用割合は2
0〜97重量%、好ましくは35〜85重量%である。
In addition, in the composition of the present invention, the usage ratio of nylon 4.6 is 2
0 to 97% by weight, preferably 35 to 85% by weight.

20重量%未満では、成形加工性、成形外観が著しく低
下し、一方、97重量%を超えると、耐衝撃性、剛性、
耐熱性、寸法安定性の改良が十分でなく好ましくない。
If it is less than 20% by weight, molding processability and molded appearance will be significantly reduced, while if it exceeds 97% by weight, impact resistance, rigidity,
Heat resistance and dimensional stability are not sufficiently improved and are not preferred.

本発明に適用されるガラス繊維は、熱可塑性樹脂や熱硬
化性樹脂の補強材として一般に用いられているガラス繊
維のうち、直径3〜20μm程度の連続長繊維のストラ
ンドから作られたガラスロービング、ガラスチョツプド
ストランド、ガラス糸あるいは直径0.3〜30μ−程
度のガラスウールで:平均の長さが0.5寵以上、好ま
しくは1〜20m、さらに好ましくは2〜lO鰭のもの
である。
The glass fibers applied to the present invention include glass rovings made from continuous long fiber strands with a diameter of about 3 to 20 μm among glass fibers commonly used as reinforcing materials for thermoplastic resins and thermosetting resins; Glass chopped strands, glass thread, or glass wool with a diameter of about 0.3 to 30 μm: average length of 0.5 m or more, preferably 1 to 20 m, more preferably 2 to 10 fins. .

ガラス繊維の平均の長さが0.5寵より短いと、ナイロ
ン4.6の耐衝撃性、耐熱性、剛性、寸法安定性の改良
が十分でなく好ましくない。
If the average length of the glass fibers is shorter than 0.5 mm, the impact resistance, heat resistance, rigidity, and dimensional stability of nylon 4.6 will not be sufficiently improved, which is undesirable.

なお、本発明で使用するガラス繊維の組成および製造方
法には特に制限はなく、上記形状のものであればいかな
るものでもよいが、好ましくはウレタン、パラフィン、
シランカップリング剤のエマルジョン液で表面処理した
ものや、クロム系、シラン系あるいはチタン系の表面処
理剤で処理したものを用いると、分散性が向上し、一段
とすぐれた本発明の目的とする品質のものが得られる。
The composition and manufacturing method of the glass fiber used in the present invention are not particularly limited, and any glass fiber having the above shape may be used, but preferably urethane, paraffin,
If the surface is treated with an emulsion liquid of a silane coupling agent, or a chromium-based, silane-based, or titanium-based surface treatment agent is used, the dispersibility will be improved and the quality aimed at by the present invention will be further improved. You can get the following.

本発明のポリアミド樹脂組成物において、ガラス繊維の
使用量は、重量組成比で5〜70重量%、好ましくは8
〜60重量%、さらに好ましくは10〜50重量%であ
る。ガラス繊維の配合量が5重量%未満であると耐衝撃
性、耐熱性、剛性、寸法安定性の改良効果が小さく、ま
た70重量%を超えると、成形加工性や成形外観が低下
する。
In the polyamide resin composition of the present invention, the amount of glass fiber used is 5 to 70% by weight, preferably 8% by weight.
~60% by weight, more preferably 10-50% by weight. If the amount of glass fiber blended is less than 5% by weight, the effect of improving impact resistance, heat resistance, rigidity, and dimensional stability will be small, and if it exceeds 70% by weight, moldability and molded appearance will deteriorate.

また、本発明の樹脂組成物に必要に応じて添加される無
機充填剤は、固体であれば形状は制限されず、粉末、繊
維状粉末、繊維、ウィスカー、バルーンなどの形をとり
得るが、経済性などを考慮すれば粉末状のものが好まし
い。具体的には、たとえばクレー、焼成りレー、タルク
、カタルボ、シリカ、アルミナ、酸化マグネシウム、チ
タン酸カリウム、ケイ酸カルシウム、アスベスト、アル
ミン酸ナトリウム、アルミン酸カルシウム、アルミノ硅
酸ナトリウム、珪酸マグネシウム、水酸化アルミニウム
、水酸化カルシウム、硫酸バリウム、硫酸カリウム、ガ
ラスバルーン、カーボンブランク、酸化亜鉛、三酸化ア
ンチモン、金属粉、金属ウィスカー、マイカ、カオリン
、グラファイト、酸化チタン、炭素繊維、炭酸カルシウ
ム、炭酸亜鉛、ハイドロタルサイト、酸化鉄などが挙げ
られる。かかる充填剤は、本発明の効果をさらに高める
ために、各種の表面処理がなされたものであってもよい
Further, the shape of the inorganic filler added as necessary to the resin composition of the present invention is not limited as long as it is solid, and may take the form of powder, fibrous powder, fiber, whisker, balloon, etc. In consideration of economical efficiency, a powdered material is preferable. Specifically, for example, clay, calcined clay, talc, catalbo, silica, alumina, magnesium oxide, potassium titanate, calcium silicate, asbestos, sodium aluminate, calcium aluminate, sodium aluminosilicate, magnesium silicate, water. Aluminum oxide, calcium hydroxide, barium sulfate, potassium sulfate, glass balloon, carbon blank, zinc oxide, antimony trioxide, metal powder, metal whiskers, mica, kaolin, graphite, titanium oxide, carbon fiber, calcium carbonate, zinc carbonate, Examples include hydrotalcite and iron oxide. Such fillers may be subjected to various surface treatments in order to further enhance the effects of the present invention.

これらは一種、または二種以上で使用することができる
These can be used alone or in combination of two or more.

好ましい充填剤は、チタン酸カリウム、カオリン、マイ
カ、タルク、炭酸カルシウム、さらに好ましい充填剤は
チタン酸カリウム、カオリンである。特にチタン酸カリ
ウムが好ましい。チタン酸カリウムを使用すると、一段
とすぐれた摺動特性の組成物が得られる。
Preferred fillers are potassium titanate, kaolin, mica, talc, calcium carbonate, and more preferred fillers are potassium titanate and kaolin. Particularly preferred is potassium titanate. The use of potassium titanate results in compositions with improved sliding properties.

上記充填剤の使用割合は75重量%以下であり、好まし
くは3〜72重量%、さらに好ましくは10〜50重量
%である。3重量%以上にすると寸法安定性、ソリ変形
性の改良効果が得られ好ましい。一方、72重量%を超
えると成形加工性、成形外観および耐衝撃性が著しく低
下して好ましくない。
The proportion of the filler used is 75% by weight or less, preferably 3 to 72% by weight, more preferably 10 to 50% by weight. When the amount is 3% by weight or more, it is preferable because it improves dimensional stability and warp deformability. On the other hand, if it exceeds 72% by weight, molding processability, molded appearance and impact resistance will significantly deteriorate, which is not preferable.

なお本発明の樹脂組成物において、ガラス繊維中)と無
機充填剤を併用する場合、両者の組成比は371〜1/
1の範囲が好ましい。またこれらの充填剤組成物とナイ
t:I74.6 (a)との組成は、80/20〜11
/8911/89ましく、さらに好ましくは15/85
〜70/30重量%(いずれも合計100重量%)の範
囲である。
In addition, in the resin composition of the present invention, when a glass fiber) and an inorganic filler are used together, the composition ratio of both is 371 to 1/
A range of 1 is preferred. Moreover, the composition of these filler compositions and Knight: I74.6 (a) is 80/20 to 11
/8911/89, more preferably 15/85
~70/30% by weight (all 100% by weight in total).

ガラス繊維と無機充填剤との混合組成物の配合量がこの
範囲内であると、耐熱性、剛性、寸法安定性、耐衝撃性
、摺動性、クリープ特性およびソリ変形性などと成形加
工性、成形外観との物性バランスが一段と優れたものが
得られる。
When the blending amount of the mixed composition of glass fiber and inorganic filler is within this range, heat resistance, rigidity, dimensional stability, impact resistance, sliding property, creep property, warp deformability, etc., and moldability are improved. , a product with an even better balance of physical properties and molded appearance can be obtained.

本発明の各成分を混合する方法は特に制限するものでは
ないが、例えばナイロン4.6とガラス繊維、さらに必
要に応じて無機充填剤とをヘンシェルミキサー、タンブ
ラ−などで混合し、そしてさらにバッチ・ニーダ−、バ
ンバリーミキサ−1車軸または2軸スクリユ一押出機で
溶融混合することによって得られる。
The method of mixing each component of the present invention is not particularly limited, but for example, nylon 4.6, glass fiber, and if necessary, an inorganic filler are mixed in a Henschel mixer, tumbler, etc., and then in a batch. - Obtained by melt-mixing in a kneader, Banbury mixer, one-axle or two-screw extruder.

本発明において、ガラス繊維とナンロン4,6を混合す
る方法はとくに制限するものではないが、たとえばガラ
ス繊維が長さ0.5鶴〜1011程度のガラスチョツプ
ドストランドあるいはガラスウールの場合には加熱ロー
ル、バンバリーミキサ−1もしくは溶融押出機により機
械的に混練する方法、あるいは溶媒に溶解したナイロン
4.6の溶液に添加して攪拌し、均一に分散したのち、
溶媒を加熱留去する溶液混合法などが適用できる。また
、ガラス繊維がガラスロービングあるいはガラス糸の場
合には、ナイロン4.6を溶融してそれらの表面を均一
に被覆する方法、ナイロン4.6を溶媒に溶解させて比
較的粘稠な溶液を作成してガラス繊維の表面を均一に被
覆したのち、溶媒を加熱留去する方法などが適用できる
In the present invention, the method of mixing glass fibers and Nanlon 4, 6 is not particularly limited, but for example, when the glass fibers are chopped glass strands or glass wool with a length of about 0.5 to 1011 mm, Mechanically kneading with heated rolls, Banbury mixer 1 or melt extruder, or adding to a solution of nylon 4.6 dissolved in a solvent and stirring to disperse uniformly,
A solution mixing method in which the solvent is distilled off by heating can be applied. In addition, when the glass fiber is glass roving or glass thread, there are two methods: melting nylon 4.6 to uniformly coat the surface, and dissolving nylon 4.6 in a solvent to form a relatively viscous solution. A method can be applied in which the surface of the glass fiber is coated uniformly after the glass fiber is prepared, and then the solvent is distilled off by heating.

このようにして製造された均一なポリアミド樹脂組成物
は、平均的な大きさが0.5鶴より小さくならない様配
慮して粉砕されるか切断されて、直接各種成形機に供給
されるか、あるいは造粒機によりペレット状に再造粒さ
れたのち、各種成形機に供給される。
The homogeneous polyamide resin composition produced in this way is crushed or cut, taking care not to have an average size smaller than 0.5 cranes, and is then directly supplied to various molding machines. Alternatively, it is re-granulated into pellets by a granulator and then supplied to various molding machines.

本発明のポリアミド樹脂組成物には、必要に応じて他の
添加剤として、例えば安定剤、滑剤、充填剤、発泡剤お
よび発泡助剤、帯電防止剤、難燃剤、着色剤などを使用
することは自由である。
In the polyamide resin composition of the present invention, other additives such as stabilizers, lubricants, fillers, foaming agents and foaming aids, antistatic agents, flame retardants, colorants, etc. may be used as necessary. is free.

その他必要に応じて、下記に示すポリマー成分を含有す
ることができる。たとえばポリブタジェン、ブタジェン
−スチレン共重合体、アクリルゴム、エチレン−プロピ
レン重合体、EPDM、スチレン−ブタジェンブロック
重合体、スチレン−ブタジェン−スチレンブロック重合
体、スチレン−ブタジェン−スチレンラジアルテレブロ
ック重合体、ポリプロピレン、ブタジェン−アクリロニ
トリル共重合体、ABS樹脂、ABS樹脂、ポリ塩化ビ
ニル、ポリカーボネート、スチレン−アクリロニトリル
共重合体、PET 。
Other polymer components shown below may be contained as necessary. For example, polybutadiene, butadiene-styrene copolymer, acrylic rubber, ethylene-propylene polymer, EPDM, styrene-butadiene block polymer, styrene-butadiene-styrene block polymer, styrene-butadiene-styrene radial teleblock polymer, polypropylene , butadiene-acrylonitrile copolymer, ABS resin, ABS resin, polyvinyl chloride, polycarbonate, styrene-acrylonitrile copolymer, PET.

PBT 、ポリアセタール、エポキシ樹脂、ポリフッ化
ビニリデン、ポリスルフォン、エチレン−酢酸ビニル共
重合体、ポリイソプレン、天然ゴム、塩素化ブチルゴム
、塩素化ポリエチレン、PPS樹脂、ポリエーテル、エ
ーテルケトン、ppo 樹脂、スチレン−メタクリル酸
メチル共重合体、スチレン−無水マレイ酸共重合体など
である。
PBT, polyacetal, epoxy resin, polyvinylidene fluoride, polysulfone, ethylene-vinyl acetate copolymer, polyisoprene, natural rubber, chlorinated butyl rubber, chlorinated polyethylene, PPS resin, polyether, etherketone, PPO resin, styrene- Examples include methyl methacrylate copolymer and styrene-maleic anhydride copolymer.

また、本発明の樹脂組成物に、必要に応じてナイロン4
,6以外の他のポリアミドを併用してもよい。
In addition, nylon 4 is optionally added to the resin composition of the present invention.
, 6 may be used in combination with other polyamides.

たとえばナイロン6、ナイロン6.6、ナイロン6.1
0゜テレフタル酸とトリメチルへキサメチレンジアミン
の共重合体、ポリ (メタキシリレンアジパミド)など
のキシリレンジアミンと脂肪族カルボン酸の共重合体な
どである。
For example, nylon 6, nylon 6.6, nylon 6.1
These include copolymers of 0° terephthalic acid and trimethylhexamethylene diamine, and copolymers of xylylene diamine and aliphatic carboxylic acids such as poly(methaxylylene adipamide).

本発明はその優れた性質を有することから、自動車エン
ジンカバー、サイレンサー、ブレーキマスターシリンダ
ー、エアーダクト、各種外装、VTR用コネクター、光
フアイバーコネクターなどのコネクター、ドアハンドル
、ベアリングリテーナ−、チェーンテンショナー、ブレ
ーキレバー、窓枠断熱フレーム、マグネットスイッチ、
ラジェタータンク、スプロケットホイル、ウィンドサー
フィン部品、釣具部品などの成形品を提供できる。
Due to its excellent properties, the present invention can be used for automobile engine covers, silencers, brake master cylinders, air ducts, various exteriors, VTR connectors, connectors such as optical fiber connectors, door handles, bearing retainers, chain tensioners, brakes, etc. Lever, window frame insulation frame, magnetic switch,
We can provide molded products such as radiator tanks, sprocket foils, windsurfing parts, and fishing gear parts.

e、実施例 実施例1〜3 直径約13μmの連続長繊維のストランドから作られた
平均の長さ3龍のチョツプドストランド(旭ファイバー
グラス■製03− MA −FT2)とナイロン4.6
を、表−1に示した割合で同時にタンブラ−で混合し、
次に、押出機を用いて300〜330℃のシリンダ一温
度条件で溶融混合した。
e. Examples Examples 1 to 3 Chopped strands with an average length of 3 lengths (03-MA-FT2 manufactured by Asahi Fiberglass ■) made from strands of continuous long fibers with a diameter of about 13 μm and nylon 4.6
were simultaneously mixed in a tumbler in the proportions shown in Table 1,
Next, the mixture was melt-mixed using an extruder at a cylinder temperature of 300 to 330°C.

その混合物を、射出成形機により成形し、テストピース
を作製した。
The mixture was molded using an injection molding machine to produce a test piece.

得られたテストピースについて下記の評価方法で各物性
の評価を行ない、表−1に示す結果を得た。
Each physical property of the obtained test piece was evaluated using the following evaluation method, and the results shown in Table 1 were obtained.

表−1に示した結果から、本発明の組成物は、本発明の
目的とする物性のものが得られていることがわかった。
From the results shown in Table 1, it was found that the composition of the present invention had the physical properties targeted by the present invention.

比較例1.2 実施例1で使用したガラス繊維、ナイロン4.6を用い
て、表−■に示した組成比率で樹脂組成物を調製し、そ
の物性を実施例1と同様の方法で評価した。
Comparative Example 1.2 Using the glass fiber and nylon 4.6 used in Example 1, a resin composition was prepared at the composition ratio shown in Table -■, and its physical properties were evaluated in the same manner as in Example 1. did.

その結果を表−1に示した。The results are shown in Table-1.

比較例1は、ガラス繊維を含存しない本発明の範囲外の
組成物であり、耐熱性、剛性、耐衝撃性、寸法安定性が
ともに十分でない。
Comparative Example 1 is a composition that does not contain glass fiber and is outside the scope of the present invention, and has insufficient heat resistance, rigidity, impact resistance, and dimensional stability.

比較例2はガラス繊維が本発明の範囲を超えている組成
物であり、成形加工性が劣る。
Comparative Example 2 is a composition in which the glass fiber exceeds the range of the present invention, and the moldability is poor.

比較例3 実施例2のガラス繊維に代えて、炭酸カルシウムを用い
て組成物を調製し、その物性を評価した。その結果を表
−1に示す。
Comparative Example 3 A composition was prepared using calcium carbonate in place of the glass fiber of Example 2, and its physical properties were evaluated. The results are shown in Table-1.

ガラス繊維を用いた実施例2の組成物に比べ、比較例3
の組成物は、耐熱性、剛性、耐衝撃性、寸法安定性が劣
る。
Compared to the composition of Example 2 using glass fiber, Comparative Example 3
The composition has poor heat resistance, rigidity, impact resistance, and dimensional stability.

比較例4 実施例2のガラス繊維に代えてシリカを用いて組成物を
調製し、その物性を評価した。その結果を表−1に示し
た。
Comparative Example 4 A composition was prepared using silica in place of the glass fiber of Example 2, and its physical properties were evaluated. The results are shown in Table-1.

実施例2に比べ、比較例4の組成物は、耐熱性、剛性、
耐衝撃性、寸法安定性が劣る。
Compared to Example 2, the composition of Comparative Example 4 had better heat resistance, stiffness,
Poor impact resistance and dimensional stability.

比較例5.6 比較例5として、本発明の範囲外のナイロンであるナイ
ロン6.6単独の物性を評価し、その結果を表−1に示
した。一方、比較例6として、ナイロン6.6に実施例
2で使用した。ガラス繊維を、実施例2と同一量使用し
た組成物を調製し、その物性を評価した。
Comparative Example 5.6 As Comparative Example 5, the physical properties of nylon 6.6 alone, which is a nylon outside the scope of the present invention, were evaluated, and the results are shown in Table 1. On the other hand, as Comparative Example 6, nylon 6.6 was used in Example 2. A composition was prepared using the same amount of glass fiber as in Example 2, and its physical properties were evaluated.

その結果、比較例5.6の組成物は、実施例2と比べ、
ガラス繊維添加による改良効果が少ないことがわかる。
As a result, the composition of Comparative Example 5.6 compared to Example 2,
It can be seen that the improvement effect of adding glass fiber is small.

実施例4.5、比較例7 ナイロン4.6に長さの異なるガラス繊維を配合して、
その改善効果を調べた結果を表−2に示した。
Example 4.5, Comparative Example 7 Nylon 4.6 was blended with glass fibers of different lengths,
Table 2 shows the results of investigating the improvement effect.

すなわち、長さの異なる三種のガラス繊維を実施例2と
同様の方法でそれぞれ30重量%になるように混合し、
押出機を用いて300〜330℃のシリンダ一温度条件
で溶融混合した。その混合物を射出成形機によりテスト
ピースを成形し、表−2にその物性結果を示した。
That is, three types of glass fibers with different lengths were mixed in the same manner as in Example 2 so that each had a concentration of 30% by weight,
The mixture was melt-mixed using an extruder at a cylinder temperature of 300 to 330°C. The mixture was molded into test pieces using an injection molding machine, and the physical properties are shown in Table 2.

表−2より明らかなごとく、ガラス繊維の長さが短かす
ぎると、耐衝撃性、耐熱性、剛性、寸法安定性の改良効
果が十分でなく好ましくない。
As is clear from Table 2, if the length of the glass fiber is too short, the effects of improving impact resistance, heat resistance, rigidity, and dimensional stability will not be sufficient, which is undesirable.

実施例6.7.8.9 ナイロン4.670重量%に直径13μm、平均の長さ
3龍のガラスチョツプドストランドで表面処理を施して
いないものおよびウレタン、パラフィン、シランカップ
リング剤などで予め表面処理したもの各々30重量%を
、実施例1.2と同様の方法で加熱混練し、得られた組
成物を射出成形機により成形してテストピースを作製し
、その物性を評価した。表−3にその結果を示した。
Example 6.7.8.9 Glass chopped strands made of 4.670% by weight nylon with a diameter of 13 μm and an average length of 3 mm, without surface treatment, and with urethane, paraffin, silane coupling agent, etc. 30% by weight of each of the previously surface-treated samples was heated and kneaded in the same manner as in Example 1.2, and the resulting composition was molded using an injection molding machine to prepare a test piece, and its physical properties were evaluated. The results are shown in Table-3.

表−3かられかる様に、表面処理をしたガラス繊維を用
いたものは、耐熱性、剛性、耐衝撃性、寸法安定性が一
段と優れた組成物が得られる。
As shown in Table 3, when surface-treated glass fibers are used, a composition with even better heat resistance, rigidity, impact resistance, and dimensional stability can be obtained.

実施例10〜12 直径約13μmの連続長繊維のストランドから作られた
平均の長さ3龍のガラス繊維チョツプドストランドと無
機充填剤およびナイロン4.6を、表−1に示した割合
で同時にタンブラ−で混合し、次に2軸押比機を用いて
、300〜330℃のシリンダ一温度条件で溶融混合し
た。
Examples 10 to 12 Chopped glass fiber strands with an average length of 3 mm made from strands of continuous fibers with a diameter of about 13 μm, an inorganic filler, and nylon 4.6 were mixed in the proportions shown in Table 1. At the same time, they were mixed in a tumbler, and then melt-mixed using a twin-screw press ratio machine at a cylinder temperature of 300 to 330°C.

その混合物を射出成形機により成形してテストピースを
作製した。
The mixture was molded using an injection molding machine to prepare a test piece.

得られたテストピースについて各物性の評価を行ない、
表−4にその結果を示した。
The obtained test piece was evaluated for each physical property,
The results are shown in Table-4.

この結果から、本発明の組成物は、本発明の目的とする
物性を示している。
From this result, the composition of the present invention exhibits the physical properties aimed at by the present invention.

なお、そり変形量および成形外観は次の方法で評価した
The amount of warp deformation and the molded appearance were evaluated by the following method.

実施例13.14 実施例11の場合と同様の方法で、表−4に示す組成比
で樹脂組成物を調製し、その物性を評価した。
Example 13.14 In the same manner as in Example 11, resin compositions were prepared at the composition ratios shown in Table 4, and their physical properties were evaluated.

その結果、実施例13は、実施例11に使用したチタン
酸カリウムの代わりに、カオリンを使用した場合で、目
的とする物性を示している。また、実施例14は無機充
填剤を二種用いた場合で、一種の無機充填剤を使用した
実施例12とはソ゛同レベルの物性を示している。
As a result, Example 13 uses kaolin instead of the potassium titanate used in Example 11, and exhibits the desired physical properties. Further, Example 14 uses two types of inorganic fillers, and exhibits physical properties at the same level as Example 12, which uses one type of inorganic filler.

r 比較例8〜10 ナイロン4,6とガラス繊維またはナイロン4,6と無
機充填剤を、表−5に示した組成比で、各々タンブラ−
で混合し、次に2軸押比機を用いて300〜330℃の
シリンダ一温度条件で溶融混合した。
r Comparative Examples 8 to 10 Nylon 4,6 and glass fiber or nylon 4,6 and inorganic filler were each tumbled in the composition ratio shown in Table 5.
and then melt-mixed using a twin-screw press ratio machine at a cylinder temperature of 300 to 330°C.

得られた樹脂組成物を実施例11と同様の方法で評価し
、その結果を表−5に示す。
The obtained resin composition was evaluated in the same manner as in Example 11, and the results are shown in Table 5.

比較例8はナイロン4.6単独の場合で、目的とする物
性を示しておらず好ましくない。
Comparative Example 8 is a case in which nylon 4.6 is used alone, which is not preferable because it does not exhibit the desired physical properties.

また比較例9および10は、ガラス繊維あるいは無機充
填剤の各々一種をナイロン46に混合した場合で、ガラ
ス繊維と無機充填剤を併用した実施例12に比較して、
耐熱性、剛性、耐衝撃性、成形収縮率、成形加工性、成
形外観およびそり変形量の物性バランスが劣り好ましく
ない。比較例11 表−5に示した組成比で、すなわちガラス繊維の含有率
が8重量%未満の樹脂組成物を調製し、その物性を実施
例11と同様の方法で評価した結果、耐熱性、剛性、耐
衝撃性およびそり変形量が劣り、目的とする物性が得ら
れず好ましくないことがわかった。
Comparative Examples 9 and 10 are cases in which one type of glass fiber or inorganic filler is mixed with nylon 46, and compared to Example 12 in which glass fiber and inorganic filler are used together,
The physical property balance of heat resistance, rigidity, impact resistance, molding shrinkage rate, molding processability, molded appearance, and amount of warp deformation is poor, making it unfavorable. Comparative Example 11 A resin composition was prepared with the composition ratio shown in Table 5, that is, the glass fiber content was less than 8% by weight, and its physical properties were evaluated in the same manner as in Example 11. As a result, heat resistance, It was found that the rigidity, impact resistance, and amount of warpage were poor, and the desired physical properties could not be obtained, making it undesirable.

比較例12〜14 表−5に示す配合処方でガラス繊維の含有率および無機
充填剤の含有率が、本発明の範囲より多い樹脂組成物を
調製し、その物性を実施例11と同様の方法で評価した
。その結果を表−5に示した。
Comparative Examples 12 to 14 Resin compositions with glass fiber content and inorganic filler content exceeding the range of the present invention were prepared using the formulation shown in Table 5, and their physical properties were evaluated in the same manner as in Example 11. It was evaluated by The results are shown in Table-5.

いずれの組成物も耐熱性、剛性、耐衝撃性、寸法安定性
および成形加工性、成形外観の物性バランスが劣り好ま
しくない。
All of these compositions are unfavorable because of their poor physical property balance in heat resistance, rigidity, impact resistance, dimensional stability, moldability, and molded appearance.

比較例15 ナイロン4.6以外の他のポリアミド樹脂を用いて、ガ
ラス繊維と無機充填剤を併用した場合である。すなわち
ナイロン6.6とガラス繊維、無機充填剤を、表−5に
示した組成比で同時に混合し、押出機を用いて300〜
330℃のシリンダ一温度条件で溶融混合した。
Comparative Example 15 This is a case where a polyamide resin other than nylon 4.6 was used in combination with glass fiber and an inorganic filler. That is, nylon 6.6, glass fiber, and inorganic filler were mixed at the same time in the composition ratio shown in Table 5, and 300~
The mixture was melted and mixed at a cylinder temperature of 330°C.

得られた組成物を実施例2と同様の方法で評価して、そ
の結果を表−5に示した。
The obtained composition was evaluated in the same manner as in Example 2, and the results are shown in Table 5.

実施例2と比較してナイロン6.6の場合は、目的とす
る物性の改良効果が小さく好ましくない。
Compared to Example 2, the use of nylon 6.6 is not preferable because the effect of improving the desired physical properties is small.

f、 発明の効果 本発明の樹脂組成物は、特定の形状のガラス繊維を特定
の量用いることにより、耐熱性、剛性、耐衝撃性および
寸法安定性が改良され、物性バランスが優れた樹脂組成
物を得ることができる。
f. Effects of the Invention The resin composition of the present invention has improved heat resistance, rigidity, impact resistance, and dimensional stability by using a specific amount of glass fibers of a specific shape, resulting in a resin composition with an excellent balance of physical properties. can get things.

また、上記組成物にガラス繊維以外の無機充填剤を配合
することにより耐熱性、剛性、耐衝撃性、成形収縮率、
そり変形量および成形加工性、成形外観がさらに改良さ
れ、物性バランスが優れた樹脂組物を得ることができる
In addition, by blending an inorganic filler other than glass fiber into the above composition, heat resistance, rigidity, impact resistance, molding shrinkage rate,
The amount of warpage, molding processability, and molded appearance are further improved, and a resin composite with an excellent balance of physical properties can be obtained.

したがって本発明の樹脂組成物は、優れた物性バランス
を存することから、高度の品質を要求される自動車の外
装、内装材、部品、電気・電子関連の各種部品、ハウジ
ングなどの成形品を提供するもので、産業上の利用価値
はきわめて大きい。
Therefore, since the resin composition of the present invention has an excellent balance of physical properties, it can be used for molded products such as automobile exteriors, interior materials, parts, various electric/electronic parts, and housings that require a high level of quality. It has extremely great industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例に係る樹脂組成物のそり変形
量の測定方法を示す説明図である。 1・・・・・・テストピース、3・・・・・・500g
の重り、4・・・・・・基台。
FIG. 1 is an explanatory diagram showing a method for measuring the amount of warp deformation of a resin composition according to an example of the present invention. 1...Test piece, 3...500g
Weight, 4...base.

Claims (3)

【特許請求の範囲】[Claims] (1)(a)ポリテトラメチレンアジパミド20〜97
重量% (b)平均長さが0.5mm以上のガラス繊維5〜70
重量% および必要に応じてガラス繊維以外の無機充填剤75重
量%以下 を含有してなることを特徴とするポリアミド樹脂組成物
(1) (a) Polytetramethylene adipamide 20-97
Weight% (b) Glass fibers with an average length of 0.5 mm or more 5-70
1. A polyamide resin composition comprising 75% by weight or less of an inorganic filler other than glass fiber, if necessary.
(2)無機充填剤が3〜72重量%である特許請求の範
囲第1項記載のポリアミド樹脂組成物。
(2) The polyamide resin composition according to claim 1, wherein the inorganic filler is 3 to 72% by weight.
(3)無機充填剤がチタン酸カルシウムおよび/または
タルクである特許請求の範囲第1項記載のポリアミド樹
脂組成物。
(3) The polyamide resin composition according to claim 1, wherein the inorganic filler is calcium titanate and/or talc.
JP2757186A 1986-02-10 1986-02-10 Polyamide resin composition Expired - Lifetime JPH0786168B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2757186A JPH0786168B2 (en) 1986-02-10 1986-02-10 Polyamide resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2757186A JPH0786168B2 (en) 1986-02-10 1986-02-10 Polyamide resin composition

Publications (2)

Publication Number Publication Date
JPS62185746A true JPS62185746A (en) 1987-08-14
JPH0786168B2 JPH0786168B2 (en) 1995-09-20

Family

ID=12224695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2757186A Expired - Lifetime JPH0786168B2 (en) 1986-02-10 1986-02-10 Polyamide resin composition

Country Status (1)

Country Link
JP (1) JPH0786168B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6321708A (en) * 1986-07-14 1988-01-29 株式会社東海理化電機製作所 Insulating material for slide switch
US5332778A (en) * 1990-08-21 1994-07-26 Basf Aktiengesellschaft Production of reinforced polytetramethyleneadipamide
JP2002104914A (en) * 2000-09-22 2002-04-10 Kuraray Co Ltd Method for producing dental material and prosthetic material for dental use
JP2011183638A (en) * 2010-03-08 2011-09-22 Mag Isover Kk Composite molding material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6321708A (en) * 1986-07-14 1988-01-29 株式会社東海理化電機製作所 Insulating material for slide switch
JPH0586602B2 (en) * 1986-07-14 1993-12-13 Tokai Rika Co Ltd
US5332778A (en) * 1990-08-21 1994-07-26 Basf Aktiengesellschaft Production of reinforced polytetramethyleneadipamide
JP2002104914A (en) * 2000-09-22 2002-04-10 Kuraray Co Ltd Method for producing dental material and prosthetic material for dental use
JP2011183638A (en) * 2010-03-08 2011-09-22 Mag Isover Kk Composite molding material
US9364976B2 (en) 2010-03-08 2016-06-14 Mr. Masanori Fujita Composite forming material

Also Published As

Publication number Publication date
JPH0786168B2 (en) 1995-09-20

Similar Documents

Publication Publication Date Title
US5414042A (en) Reinforced polyamide resin composition and process for producing the same
CA2014243A1 (en) Polyamide resin composition
JP2005506431A (en) Impact resistant polymer composition
JP2941159B2 (en) Reinforced polyamide resin composition and method for producing the same
JPS62185746A (en) Polyamide resin composition
JPS63137956A (en) Polyamide resin for molding
JPH0649356A (en) Polyphenylene sulfide resin composition
JPH10212408A (en) Polyphenylene sulfide resin composition
JPS5968368A (en) Resin composition
JPS62230846A (en) Polyamide resin composition
JPS62156160A (en) Polyamide resin composition
JP2000309707A (en) Aromatic polysulfone resin composition and its molded article
JPH10182965A (en) Flame-retardant polyamide resin composition
JPS63156856A (en) Polyamide resin molded article
JPS62156161A (en) Resin composition
JP2004131544A (en) Polyamide resin composition
JP3385103B2 (en) Resin composition
JP2884634B2 (en) Method for producing thermoplastic resin composition
JPH04268373A (en) Polyamide resin composition
JPH0264158A (en) Polyarylene sulfide resin composition
JPH0645752B2 (en) Thermostable resin composition
JP2004204105A (en) Flame-retardant and impact-resistant polyamide resin composition
JP2613300B2 (en) Resin composition
JPH02142852A (en) Flame-retarding polyamide resin composition
JPH08134345A (en) Resin composition

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term