JPS62185372A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS62185372A
JPS62185372A JP61027420A JP2742086A JPS62185372A JP S62185372 A JPS62185372 A JP S62185372A JP 61027420 A JP61027420 A JP 61027420A JP 2742086 A JP2742086 A JP 2742086A JP S62185372 A JPS62185372 A JP S62185372A
Authority
JP
Japan
Prior art keywords
layer
semiconductor
type
forming
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61027420A
Other languages
Japanese (ja)
Inventor
Koji Shirai
浩司 白井
Takeshi Kawamura
健 河村
Rieko Akimoto
理恵子 秋元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61027420A priority Critical patent/JPS62185372A/en
Publication of JPS62185372A publication Critical patent/JPS62185372A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0886Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7809Vertical DMOS transistors, i.e. VDMOS transistors having both source and drain contacts on the same surface, i.e. Up-Drain VDMOS transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

PURPOSE:To obtain a transistor having low ON resistance by projecting a substrate portion directly under a semiconductor element region toward a buried layer side, and maintaining a distance between the surface of the buried layer and the bottom of a semiconductor layer surrounded by the buried layer constant on the entire region. CONSTITUTION:An SiO>=2 mask 2 of width W is formed on a P- type Si substrate 1, a groove of depth D is etched, and a projection 4 is formed directly under the center P of a pattern 2 by W<2D. The mask 2 is removed, an N<+> type drain leading layer 5 is formed from the groove 3, and an N- type drain layer 6 is epitaxially formed. The projection 4 arrives at approx. half of the depth of the layer 6. When a P-type protecting ring 7 is then attached, the distance L between the bottom of the ring 7 and the layer 5 is constant on the entire region. Then, a P-type back gate 8 is attached to the inner periphery of the ring 7, and an annular polysilicon gate electrode 9 is attached through a gate oxide film on the inner periphery. With the electrode 9 as a mask an N<+> type source 10 and an N<+> type drain leading layer 11 are formed, a back gate connecting layer 12 are formed to complete a semiconductor device. According to this configuration, the substantial layer 6 can be reduced to decrease an ON resistance.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は半導体装置及びその製造方法に関し、特に高耐
圧のDMO3l−ランジスタに使用されるものである。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Field of Application) The present invention relates to a semiconductor device and a method for manufacturing the same, and is particularly used for a high-voltage DMO3l-transistor.

(従来の技術) 周知の如く、例えばDMO8+−ランジスクのオン抵抗
を下げる方法としては、1〜ランジスタの各構成部の抵
抗を下げる方法が取られている。しかしながら、トラン
ジスタの降伏電圧を高めるためには、1〜ランジスタを
構成するPN接合のうち少なくとも1つの降伏電圧を高
くしなければならない。ところで、ブレーナ技術を用い
て形成されるPN接合では、その端部での曲率と不I1
1!1tlJ分布により降伏電圧が決定する。しかるに
、この降伏電圧を高めるには、深い不純物拡散を行なう
と同時に拡散を行われる側の濃度を小さくしたり、又は
ドレイン電極と接続する高濃度の拡散層とPN接合の距
離をとらなければならず、いずれの場合もオン抵抗を小
さくするのとは逆の操作を行なうことになる。
(Prior Art) As is well known, a method for lowering the on-resistance of, for example, a DMO8+- transistor is to lower the resistance of each component of the transistor. However, in order to increase the breakdown voltage of the transistor, it is necessary to increase the breakdown voltage of at least one of the PN junctions forming the transistor. By the way, in a PN junction formed using the Brainer technology, the curvature and the irregularity at the end are
The breakdown voltage is determined by the 1!1tlJ distribution. However, in order to increase this breakdown voltage, it is necessary to perform deep impurity diffusion and at the same time reduce the concentration on the diffusion side, or to increase the distance between the high concentration diffusion layer connected to the drain electrode and the PN junction. First, in either case, the operation opposite to that for reducing the on-resistance is performed.

(発明が解決しようとする問題点) しかしながら、従来のDMOSトランジスタにおいては
、電流の流れる部分が、高耐圧化に伴う高抵抗の半導体
層の形成により必要以上に多い。
(Problems to be Solved by the Invention) However, in the conventional DMOS transistor, the number of parts through which current flows is larger than necessary due to the formation of a high-resistance semiconductor layer due to the increase in breakdown voltage.

従って、オン抵抗が必要以上に高くなる。Therefore, the on-resistance becomes higher than necessary.

本発明は上記事情に鑑みてなされたもので、従来と比ベ
オン抵抗を減少できる半導体装置及びその製造方法を提
供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a semiconductor device and a method for manufacturing the same, which can reduce the Veon resistance compared to the conventional semiconductor device.

[発明の構成] (問題点を解決するための手段) 本願第1の発明は、第1導電型の半導体基板と、この半
導体基板の一生面に形成された第2導電型の高不純物濃
度の埋込み層と、この埋込み層に囲まれるように形成さ
れた第2導電型の低不純物濃度の第1半導体層と、この
第1半導体層の表面に形成された耐圧補正用の第1導電
型の第2半導体層と、この第2半導体層に形成された半
導体素子からなり、前記半導体素子の領域直下に位置す
る前記半導体基板部分を前記埋込み層側に突出させ、前
記埋込み層の表面と第2半導体層の底面間の距離を全て
の!!域で略一定とすることにより、オン抵抗の低減を
図ったものである。
[Structure of the Invention] (Means for Solving the Problems) The first invention of the present application includes a semiconductor substrate of a first conductivity type and a high impurity concentration of a second conductivity type formed on the whole surface of the semiconductor substrate. a buried layer, a first semiconductor layer of a second conductivity type with a low impurity concentration formed so as to be surrounded by the buried layer, and a first semiconductor layer of a first conductivity type for breakdown voltage correction formed on the surface of the first semiconductor layer. The semiconductor substrate includes a second semiconductor layer and a semiconductor element formed in the second semiconductor layer, and the semiconductor substrate portion located directly under the semiconductor element is made to protrude toward the buried layer, and the surface of the buried layer and the second The distance between the bottom surfaces of the semiconductor layers is all! ! The on-resistance is reduced by making it substantially constant within the range.

本願第2の発明は、第1導電型の半導体基板の一生面に
マスク材を用いて該マスク材の幅の1./2よりも浅い
深さの溝を形成するとともに、前記マスク材下の前記基
板にマスク材側に突出する突起を形成する工程と、前記
溝から露出する前記基板表面に第2導電型の高年1IT
l物Wi度の埋込み層を形成する工程と、気相成長を行
ない前記溝内に第1導電型の低不純物濃度の第1半導体
層を形成する工程と、この第1半導体層の表面に底面か
ら前記埋込み層の表面までの距離が略一定の耐圧補正用
の第1導電型の第2半導体層を形成する工程と、この第
2半導体層に半導体素子を形成する工程とを具備し、オ
ン抵抗の減少を図ったものである。
The second invention of the present application uses a mask material on the whole surface of a semiconductor substrate of a first conductivity type, and uses a mask material with a width of 1. forming a groove with a depth shallower than /2, and forming a protrusion protruding toward the mask material side on the substrate under the mask material; 1 IT year
a step of forming a buried layer of low impurity concentration, a step of forming a first semiconductor layer of a first conductivity type with a low impurity concentration in the trench by vapor phase growth, and a step of forming a bottom surface on the surface of the first semiconductor layer. the step of forming a second semiconductor layer of the first conductivity type for withstand voltage correction having a substantially constant distance from This is intended to reduce resistance.

(作用) 本発明によれば、DMOSトランジスタの電流経路に相
当する半導体基板の所定の部分に突起を形成することに
より、実質上の高抵抗層(VG層)を低減でき、もって
オン抵抗が低減できる。
(Function) According to the present invention, by forming a protrusion on a predetermined portion of the semiconductor substrate corresponding to the current path of a DMOS transistor, the substantial high resistance layer (VG layer) can be reduced, thereby reducing the on-resistance. can.

(実施例) 以下、本発明の一実施例を第1図(a)〜(e)及び第
2図を参照して説明する。
(Example) Hereinafter, an example of the present invention will be described with reference to FIGS. 1(a) to (e) and FIG. 2.

まず、例えばP−型のシリコン基板1上の所定の位置に
、マスク材としての幅(W)50譚のシ、  リコン酸
化膜(S i 02 gりパターン2を形成したく第1
図(a)図示)。つづいて、このパターン2を用いて前
記基板1を弗硝酸又はKOH等により選択的にエツチン
グし、深さくD)30IRの溝3を形成した。ここで、
溝3を形成する際にW<20となるようにすることによ
り、前記パターン2の中心Pの直下に位置する前記基板
1に上方に突出する理想的な突起4が形成された(第1
図(b)及び第2図図示)。なお、W>2Dの条件で溝
を形成すると、十分な高さくH)の突起が形成されず、
オン抵抗の低減が十分でない。次いで、前記パターン2
を除去した後、溝3から露出する前記基板1の表面にn
型不純物を導入し、N+型の埋込み層(ドレイン引出し
rIA域)5を形成した(第1図(C)図示)。更に、
エピタキシャル成長を行なうことにより、前記埋込み層
5上にドレイン領域としてのN−型の第1半導体層(V
G層)6を形成した。なお、前記突起4はこのVGli
6の深さの半分程までに達することになる。しかる後、
n型不純物の拡散により前記VG層6の表面に中央部が
開孔したP型の第2半導体!(ガードリング)7を形成
した(第1図(d)図示)。ここで、同図(d)におい
て、前記突起4の存在により、前記埋込み[5の表面と
ガードリングツ底面間の距1111iLは全ての領域で
等しくなった。
First, at a predetermined position on, for example, a P-type silicon substrate 1, a silicon oxide film (Si02g) pattern 2 having a width (W) of 50 mm as a mask material is formed.
Figure (a) shown). Subsequently, using this pattern 2, the substrate 1 was selectively etched with fluoronitric acid or KOH to form a groove 3 having a depth of D) 30IR. here,
By setting W<20 when forming the groove 3, an ideal protrusion 4 protruding upward was formed on the substrate 1 located directly below the center P of the pattern 2 (first
Figure (b) and Figure 2 (illustration). Note that if the groove is formed under the condition of W>2D, the protrusion H) will not be formed with sufficient height,
On-resistance reduction is not sufficient. Next, the pattern 2
After removing n, the surface of the substrate 1 exposed from the groove 3 is
A type impurity was introduced to form an N+ type buried layer (drain extraction rIA region) 5 (as shown in FIG. 1C). Furthermore,
By performing epitaxial growth, an N- type first semiconductor layer (V
G layer) 6 was formed. Note that the protrusion 4 is connected to this VGli
It will reach about half of the depth of 6. After that,
A P-type second semiconductor in which a hole is opened in the center on the surface of the VG layer 6 due to diffusion of n-type impurities! (Guard ring) 7 was formed (as shown in FIG. 1(d)). Here, in the same figure (d), due to the presence of the protrusion 4, the distance 1111iL between the surface of the embedding [5] and the bottom surface of the guard ring became equal in all regions.

以下、周知の技術を用いる。即ち、まず前記ガードリン
ク7の内周縁側にVG層6にまたがるようにp型不純物
拡散を行ない、リング状の第3半導体層(バックゲート
領域)8を形成する。つづいて、前記基板1上にバック
ゲート領域8のリング内周縁部に沿ってゲート酸化膜(
図示せず)を介して多結晶シリコンからなるリング状の
ゲート電慟9を形成した。次いで、このグー1− if
 ffi 9をマスクとしてセルファラインによりn型
不純物を前記バックグー1〜領[8の表面に導入し、N
+型のソース領域10を形成するとともに、前記基板1
、埋込み層5及びVG16にまたがるようにドレイン電
極の取出しためのN+拡散層11を形成した。次いで、
前記バツクゲート領域8の表面にガードリング7にまた
がるP“型のバックゲートのコンタクト領域12を形成
し、DMOSトランジスタを製造した(第1図(e)図
示)。
Hereinafter, a well-known technique will be used. That is, first, a p-type impurity is diffused to the inner peripheral edge side of the guard link 7 so as to straddle the VG layer 6, thereby forming a ring-shaped third semiconductor layer (back gate region) 8. Subsequently, a gate oxide film (
A ring-shaped gate electrode 9 made of polycrystalline silicon was formed via a polycrystalline silicon (not shown). Next, this goo 1-if
Using ffi 9 as a mask, n-type impurities were introduced into the surfaces of the background regions 1 to 8 using Selfa Line, and
While forming a + type source region 10, the substrate 1
, an N+ diffusion layer 11 for taking out the drain electrode was formed so as to span the buried layer 5 and the VG 16. Then,
A P" type back gate contact region 12 spanning the guard ring 7 was formed on the surface of the back gate region 8, and a DMOS transistor was manufactured (as shown in FIG. 1(e)).

上記実施例によれば、埋込み層5を形成するための溝3
を形成する際、第2図に示す如くマスク材としての51
02膜パターン2の幅Wを、)苫3の深さDに対しW 
< 2 Dなる条件で行なうため、高さ1」がVG層6
の深さの半分程までに達した突起4が基板1の所定の位
@(DMOSトランジスタの電流の経路)に形成され、
VG層6、ガードリンク7の形成後、埋込み層5の表面
とガードリンク7の底面間の距離しを等しくできる。従
って、実買上のVG層6は突起4の高さの平均分削減さ
れると考えられ、オン抵抗を従来よりも低減できる。事
実、低減率は従来のトランジスタと比べ20〜30%で
あった。
According to the above embodiment, the groove 3 for forming the buried layer 5
51 as a mask material as shown in FIG.
02 The width W of the film pattern 2 is W relative to the depth D of the toma 3.
< 2D, so the height 1" is the VG layer 6.
A protrusion 4 reaching about half the depth of is formed at a predetermined position on the substrate 1 (the current path of the DMOS transistor),
After forming the VG layer 6 and the guard link 7, the distance between the surface of the buried layer 5 and the bottom surface of the guard link 7 can be made equal. Therefore, it is thought that the actual VG layer 6 is reduced by the average height of the protrusions 4, and the on-resistance can be reduced compared to the conventional one. In fact, the reduction rate was 20-30% compared to conventional transistors.

また、上記実施例に係るDMOSトランジスタは、第1
図(e)に示す如く、P4″型のシリコン基板1の表面
にN+型の埋込み層(ドレイン引出し領域)5を設け、
この埋込み1Ii5上に該埋込み層5に囲まれるように
N+型のVG層6を設け、更にこのVG層6の表面にP
型のガードリング7を設け、かつ前記ガードリンク7の
中央の開口部直下に位置する基板部分に埋込み層5の表
面とガードリング7の底面との距離しが等しくなるよう
な突起4を設けた構造となっている。従って、前述した
と同様、オン抵抗の減少が可能となる。
Further, the DMOS transistor according to the above embodiment has a first
As shown in Figure (e), an N+ type buried layer (drain extraction region) 5 is provided on the surface of a P4'' type silicon substrate 1,
An N+ type VG layer 6 is provided on this buried layer 1Ii5 so as to be surrounded by the buried layer 5, and a P layer is further provided on the surface of this VG layer 6.
A molded guard ring 7 is provided, and a protrusion 4 is provided in a portion of the substrate located directly below the central opening of the guard link 7 so that the distance between the surface of the buried layer 5 and the bottom surface of the guard ring 7 is equal. It has a structure. Therefore, as described above, it is possible to reduce the on-resistance.

[発明の効果] 以上詳述した如く本発明によれば、従来と比ベオン抵抗
を減少できる高信頼性のDMoSトランジスタなどの半
導体装置及びその製造方法を提供できる。
[Effects of the Invention] As detailed above, according to the present invention, it is possible to provide a highly reliable semiconductor device such as a DMoS transistor, which can reduce the Veon resistance compared to the conventional device, and a method for manufacturing the same.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(e>は本発明の一実施例に係るD M
 OS +−ランジスタの製造方法を工程順に示す断面
図、第2図は本発明に係るDMO81〜ランジスタの要
旨を説明するための断面図である。 1・・・P4型のシリコン基板、2・・・SiO2膜パ
ターン(マスク材)、3・・・溝、4・・・突起、5・
・・N+型の埋込み層(ドレイン引出し’ala) 、
6・・・VG層(第1半導体層)、7・・・ガードリン
グ(第2半導体層)、8・・・バックグー1−領域、9
・・・ゲート電極、10・・・N“型のソース領域、1
1・・・N+型の拡散層、12a、12b・・・P+型
のソースバックゲートのコンタクト。
FIGS. 1(a) to (e) show D M according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view showing a method for manufacturing an OS+- transistor in order of steps, and FIG. 2 is a cross-sectional view for explaining the gist of the DMO 81 to transistor according to the present invention. DESCRIPTION OF SYMBOLS 1... P4 type silicon substrate, 2... SiO2 film pattern (mask material), 3... Groove, 4... Protrusion, 5...
・・N+ type buried layer (drain extraction 'ala),
6...VG layer (first semiconductor layer), 7...Guard ring (second semiconductor layer), 8...Background 1-region, 9
...Gate electrode, 10...N" type source region, 1
1...N+ type diffusion layer, 12a, 12b...P+ type source back gate contact.

Claims (2)

【特許請求の範囲】[Claims] (1)第1導電型の半導体基板と、この半導体基板の一
主面に設けられた第2導電型の高不純物濃度の埋込み層
と、この埋込み層に囲まれるように形成された第2導電
型の低不純物濃度の第1半導体層と、この第1半導体層
の表面に形成された耐圧補正用の第1導電型の第2半導
体層と、この第2半導体層に形成された半導体素子とか
らなり、前記半導体素子の領域直下に位置する前記半導
体基板部分が前記埋込み層側に突出し、前記埋込み層の
表面と前記第2半導体層の底面間の距離が全ての領域で
略一定になつていることを特徴とする半導体装置。
(1) A semiconductor substrate of a first conductivity type, a buried layer with a high impurity concentration of a second conductivity type provided on one main surface of the semiconductor substrate, and a second conductivity type formed so as to be surrounded by the buried layer. a first semiconductor layer of a type having a low impurity concentration, a second semiconductor layer of a first conductivity type for breakdown voltage correction formed on the surface of the first semiconductor layer, and a semiconductor element formed in the second semiconductor layer. The semiconductor substrate portion located directly below the region of the semiconductor element protrudes toward the buried layer, and the distance between the surface of the buried layer and the bottom surface of the second semiconductor layer is approximately constant in all regions. A semiconductor device characterized by:
(2)第1導電型の半導体基板の一主面にマスク材を用
いて該マスク材の幅の1/2よりも浅い深さの溝を形成
するとともに、前記マスク材下の前記基板にマスク材側
に突出する突起を形成する工程と、前記溝から露出する
前記基板表面に第2導電型の高不純物濃度の埋込み層を
形成する工程と、気相成長を行ない前記溝内に第1導電
型の低不純物濃度の第1半導体層を形成する工程と、こ
の第1半導体層の表面に底面から前記埋込み層の表面ま
での距離が略一定の耐圧補正用の第1導電型の第2半導
体層を形成する工程と、これらの第2半導体層に半導体
素子を形成する工程とを具備することを特徴とする半導
体装置の製造方法。
(2) Forming a groove with a depth shallower than 1/2 of the width of the mask material using a mask material on one principal surface of the semiconductor substrate of the first conductivity type, and forming a groove in the substrate below the mask material using the mask material. a step of forming a protrusion protruding toward the material side; a step of forming a buried layer of a second conductivity type with a high impurity concentration on the surface of the substrate exposed from the groove; and a step of forming a first conductivity type in the groove by vapor phase growth. forming a first semiconductor layer of a type with a low impurity concentration; and a second semiconductor of a first conductivity type for voltage proof correction with a substantially constant distance from the bottom surface to the surface of the buried layer on the surface of the first semiconductor layer. A method for manufacturing a semiconductor device, comprising the steps of forming a layer and forming a semiconductor element on these second semiconductor layers.
JP61027420A 1986-02-10 1986-02-10 Semiconductor device and manufacture thereof Pending JPS62185372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61027420A JPS62185372A (en) 1986-02-10 1986-02-10 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61027420A JPS62185372A (en) 1986-02-10 1986-02-10 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS62185372A true JPS62185372A (en) 1987-08-13

Family

ID=12220603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61027420A Pending JPS62185372A (en) 1986-02-10 1986-02-10 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS62185372A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0657940A3 (en) * 1993-12-08 1995-12-06 At & T Corp Dielectrically isolated semiconductor devices having improved characteristics.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0657940A3 (en) * 1993-12-08 1995-12-06 At & T Corp Dielectrically isolated semiconductor devices having improved characteristics.
US5557125A (en) * 1993-12-08 1996-09-17 Lucent Technologies Inc. Dielectrically isolated semiconductor devices having improved characteristics

Similar Documents

Publication Publication Date Title
JP4123636B2 (en) Silicon carbide semiconductor device and manufacturing method thereof
US20060063335A1 (en) Semiconductor device
US8017494B2 (en) Termination trench structure for mosgated device and process for its manufacture
JPS5840345B2 (en) thyristor
EP0462270B1 (en) Method of using a semiconductor device comprising a substrate having a dielectrically isolated semiconductor island
KR100503936B1 (en) Semiconductor device
JP3372176B2 (en) Semiconductor device and manufacturing method thereof
US7132725B2 (en) Semiconductor device
EP0756760B1 (en) Semiconductor device with guard ring and process for its production
WO2006082618A1 (en) Semiconductor device and method for manufacturing the same
JP3493681B2 (en) Buried avalanche diode
JPS62185372A (en) Semiconductor device and manufacture thereof
JPH09283646A (en) Semiconductor integrated circuit
JP3171296B2 (en) Buried gate type semiconductor device and manufacturing method thereof
US20240234585A1 (en) Semiconductor device
JP3048261B2 (en) Method for manufacturing semiconductor device
KR0163924B1 (en) A lateral transistor and method of fabricating thereof
JP2014112704A (en) Semiconductor device manufacturing method
KR100275950B1 (en) A method for isolating active region
JPH06338514A (en) Semiconductor device
JPH07321347A (en) Manufacture of semiconductor device containing high-concentration p-n junction plane
JP2010239016A (en) Semiconductor device and manufacturing method thereof
JPH09270470A (en) Semiconductor integrated circuit
JPS63136660A (en) Semiconductor device and manufacture thereof
KR19980082597A (en) Method for manufacturing device isolation region of bipolar transistor