JPS62182294A - Apparatus for reducing inverse current in electrolytic cell - Google Patents

Apparatus for reducing inverse current in electrolytic cell

Info

Publication number
JPS62182294A
JPS62182294A JP61025316A JP2531686A JPS62182294A JP S62182294 A JPS62182294 A JP S62182294A JP 61025316 A JP61025316 A JP 61025316A JP 2531686 A JP2531686 A JP 2531686A JP S62182294 A JPS62182294 A JP S62182294A
Authority
JP
Japan
Prior art keywords
anode
cathode
current
rectifier
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61025316A
Other languages
Japanese (ja)
Inventor
Kenji Ueda
健二 植田
Akihiro Sakanishi
彰博 坂西
Mitsuru Sakimura
充 崎村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHIYOURIYOU ENG KK
Mitsubishi Heavy Industries Ltd
Choryo Engineering Co Ltd
Original Assignee
CHIYOURIYOU ENG KK
Mitsubishi Heavy Industries Ltd
Choryo Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHIYOURIYOU ENG KK, Mitsubishi Heavy Industries Ltd, Choryo Engineering Co Ltd filed Critical CHIYOURIYOU ENG KK
Priority to JP61025316A priority Critical patent/JPS62182294A/en
Publication of JPS62182294A publication Critical patent/JPS62182294A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To reduce the extent of consumption of the anode and the cathode and to inhibit the progress of deterioration in the electrical characteristics by placing a rectifying means between the electrodes or in the electrical connecting line between the electrodes. CONSTITUTION:An electrolytic cell 2 is provided with the anode 3 and the cathode 4 and the electrodes 3, 4 are connected to the power source 6 of a rectifier through electrical lines 7, 8. A rectifying circuit 18 contg. a rectifying element such as a diode is newly connected to the electrical line 7 as the electrical connecting line between the power source 6 and the anode 3 in series in the forward direction. Seawater is then electrolyzed as an electrolytic soln. for a limited time and the inverse current is measured, the quantity of the inverse current is about 1/3 of the conventional quantity.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は、各種電解橿に配された薄膜型酸化物陽極が、
陰極から電解液を介して陽極へ流れる逆電流により損傷
を受けるのを防ぐ電解槽の逆電流低減装置に関する。
[Detailed Description of the Invention] [Industrial Field of Application 1] The present invention provides a method in which a thin film type oxide anode disposed on various electrolytic rods is
The present invention relates to a device for reducing reverse current in an electrolytic cell that prevents damage caused by reverse current flowing from the cathode to the anode via the electrolyte.

[従来の技術] 従来、各種溶液の電解(例えば海水電解、塩水電解、ソ
ーダ電解等)は第5図(a)、〜(d)に示すような方
法で行っている。同図(a )は、lli極と陰惨が別
個の基板から成つCいるもので、電解液は電解液供給管
1を通り、電解槽2へ入り、陽極3と陰極4で電解され
、電解液排出管5からの次の箇所へ送られる。このとき
の電流は整流器6からの通電線7を通り陽極3から電解
液を介して陰極4へ流れ通電線8を介して整流器6へ戻
る。
[Prior Art] Conventionally, electrolysis of various solutions (for example, seawater electrolysis, saltwater electrolysis, soda electrolysis, etc.) has been carried out by the methods shown in FIGS. 5(a) and 5(d). In the same figure (a), the lli electrode and the yin are made of separate substrates, and the electrolyte passes through the electrolyte supply pipe 1, enters the electrolytic cell 2, is electrolyzed at the anode 3 and the cathode 4, and is electrolyzed. The liquid is sent to the next location from the liquid discharge pipe 5. The current at this time flows from the anode 3 to the cathode 4 through the current-carrying line 7 from the rectifier 6 through the electrolyte, and returns to the rectifier 6 via the current-carrying line 8.

第5図(b)は陽極3の拡大図で基板9(主、としてチ
タン板を使用)と、その片面に貴金属等をコーティング
した部分であるコーティング部10から成っている。
FIG. 5(b) is an enlarged view of the anode 3, which consists of a substrate 9 (mainly made of a titanium plate) and a coating part 10, which is a part coated with a noble metal or the like on one side of the substrate 9.

第5図(C)は、第5図(b)で示した陽極3の基板9
の電解液と接した面を陰極部として、貴金属(酸化物)
等をコーティングしたコーティング部10を陽極部とし
て使用したもので、電解槽2内に数枚並列的に配置して
あり、陽極板3から矢印の方向へ電流が流れ陰極板4に
達する仕組みとなっている。
FIG. 5(C) shows the substrate 9 of the anode 3 shown in FIG. 5(b).
Noble metal (oxide) with the surface in contact with the electrolyte as the cathode.
A coated part 10 coated with the like is used as an anode part, and several pieces are arranged in parallel in the electrolytic cell 2, and the current flows from the anode plate 3 in the direction of the arrow and reaches the cathode plate 4. ing.

第5図((1)においては、電流は基板の両面に貴金属
をコーティングした通電陽極11から、電解液を介して
lliの一部(主として上半分又は下半分)に貴金属を
コーティングした電極12゜13の陰(船部から陽極部
を通り再び電解液を介して、上極14の陰極部へ流れる
。このようにして矢印で示すように、電ff115.1
6を介し通電陰惨17に達する。
In FIG. 5 ((1), current is passed from the current-carrying anode 11 whose both sides of the substrate are coated with noble metal, through the electrolyte to the electrode 12 where part of the lli (mainly the upper or lower half) is coated with noble metal. 13 (flows from the vessel part through the anode part and again via the electrolyte to the cathode part of the upper electrode 14. In this way, as shown by the arrow, the electric current ff115.1
6 and reaches energized gruesome 17.

ところで、航記゛眉解装置の性能を判断する上で基礎と
なる性能項目として設置された陰・陽極の消費電力や、
陽極については、電流効率、電位。
By the way, the power consumption of the installed cathode and anode, which is a basic performance item in determining the performance of the navigation device,
For the anode, current efficiency, potential.

寿命等が挙げられるが、特に陽極の性能は電解装置の性
能を大きく左右する。
For example, the performance of the anode greatly influences the performance of the electrolytic device, including the lifespan.

過去、これらの電解に使用されている陽極の主ルA・・ 流はTi  −Ptであったが、現在では省エビ省コス
ト型重極として薄膜型酸化物電極が主流となりつつある
。この薄膜型酸化物電極は主としてTiを基材として、
その上にPt、lr、Ru。
In the past, the main anode used for these electrolysis was Ti-Pt, but now thin-film oxide electrodes are becoming mainstream as energy-saving and cost-saving heavy electrodes. This thin film type oxide electrode mainly uses Ti as a base material.
On top of that, Pt, lr, Ru.

Pd等の貴金属に少量の卑金属を混入し、塗布焼成した
ものであり、Ti  −Pt電極と比較すると、電気的
特性(電流効率、電極電位等)が優れている。
It is made by mixing a small amount of base metal into a noble metal such as Pd, coating and firing it, and has superior electrical properties (current efficiency, electrode potential, etc.) compared to Ti-Pt electrodes.

[発明が解決しようとする問題点] しかしながら、薄膜型酸化物電極の研究が進むにつれて
、通電をしないままの状態で、陰・陽極を電解液中に浸
漬しておくと、陰極・陽極の電位差によって生じる逆電
流のためにn2化物の還元が起こり、薄膜型酸化物電極
の消耗量を僧加させる等の問題が生じることが明らかと
なった。以下、これらについて図を参照して説明する。
[Problems to be Solved by the Invention] However, as research into thin-film oxide electrodes progresses, it has become clear that if the cathode and anode are immersed in an electrolyte with no current applied, the potential difference between the cathode and anode will increase. It has become clear that reduction of n2 oxide occurs due to the reverse current generated by this process, causing problems such as increased consumption of the thin film type oxide electrode. These will be explained below with reference to the drawings.

(A)陰・陽極が整流器を通して接続されている場合 第5図(a )に示したように陽極3と陰極4に整流器
が接続された場合を考える。電解時の陽極3の電位をE
工、陰11i4の電位をE2とすると、整流器の電源を
切った時の陰・陽極間には、E=21−E2  (E2
 <O)   ・・・・・・(1)の電圧負荷があり、
陰極4から電解液を介して陽#13へ逆電流が流れ、陽
極3の還元が生じる。この逆電流の大きさと総電流量は
電極と電解液との界面に形成される電気二重層に蓄えら
れた電荷と整流器抵抗、電解液抵抗及び電極の分極抵抗
に左右され、第6図に示したような曲線となる。
(A) Case where the cathode and anode are connected through a rectifier Consider the case where a rectifier is connected to the anode 3 and cathode 4 as shown in FIG. 5(a). The potential of anode 3 during electrolysis is E
If the potential of the negative electrode 11i4 is E2, then E=21-E2 (E2
<O) ...There is a voltage load of (1),
A reverse current flows from the cathode 4 to the anode #13 via the electrolyte, and the anode 3 is reduced. The magnitude of this reverse current and the total amount of current depend on the electric charge stored in the electric double layer formed at the interface between the electrode and the electrolyte, the rectifier resistance, the electrolyte resistance, and the polarization resistance of the electrode, as shown in Figure 6. The result will be a curve like this.

このようにして生じる逆電流によって陽極3はj!元消
耗し、その消耗量は整流器の出力電源を切ってから電解
液に浸しておく時間に比例して多くなる。
The reverse current generated in this way causes the anode 3 to j! The amount of consumption increases in proportion to the time the rectifier is immersed in the electrolyte after the output power is turned off.

(B)陰・陽極が1枚の基材上に存在する場合第5図−
(c)、(d)に示したように1枚の基材上に陰・陽極
が存在する電極を設置した、電解装置を考え、電解をス
トップする前後の電流の流れを第7図に示す。第7図(
a)は1枚の基材の表と裏が各々陽極、陰極となってい
る電極の電解時の電流の流れを矢印で示したもので、第
7図(b)は電解中断後の電流の流れを示したものであ
る。第7図(C)は1枚の基材の片面の上と下、及び両
面の上と下が陰極、陽極となっているときの電解時の電
流方向を示し、第7図(d )は電解中断後の電流方向
を示したものである。なお、電解中断後の電流は、第7
図(1))、(d)で示したような矢印の方向に流れる
だけでなく、迷走電流等も考慮しなければならず、より
複雑となる。
(B) When the anode and cathode are on one substrate Figure 5-
Considering an electrolysis device in which an electrode with a cathode and an anode is installed on a single substrate as shown in (c) and (d), the flow of current before and after stopping electrolysis is shown in Figure 7. . Figure 7 (
Figure 7 (a) shows the flow of current during electrolysis in an electrode in which the front and back sides of a single substrate serve as an anode and cathode, respectively, and Figure 7 (b) shows the current flow after electrolysis is interrupted. This shows the flow. Figure 7 (C) shows the current direction during electrolysis when the top and bottom of one side of one base material and the top and bottom of both sides serve as cathodes and anodes, and Figure 7 (d) shows the direction of current during electrolysis after discontinuing electrolysis. This shows the direction of current. Note that the current after discontinuing electrolysis is the 7th
In addition to flowing in the direction of the arrows as shown in Figures (1) and (d), stray currents and the like must also be taken into consideration, making the process more complicated.

さらに1枚の基材上に陰・陽極の存在する電極は、電解
液を排出した優の、濡れた状態の電極でも、十分逆電流
は流れ得るため、前記(A)の場合より条件は厳しく、
従って消耗量も大きくなる。
Furthermore, in the case of an electrode in which a cathode and an anode exist on a single substrate, a sufficient reverse current can flow even if the electrode is in a wet state after draining the electrolyte, so the conditions are stricter than in the case of (A) above. ,
Therefore, the amount of consumption also increases.

次に前記(A>、(B)(第5図(a)、〜(d )参
照)の各状態で電極の電気的特性及び消耗量がどのよう
に変化するかを、以下に示す試験条件及び方法で試験を
行い調査した。
Next, we examined how the electrical characteristics and amount of wear of the electrodes change in each state of (A>, (B) (see Figures 5 (a) to (d)) using the test conditions shown below. Tests were conducted and investigated using the following methods.

陽極面積:30sX40Inm (Pt 、Ir 、Ru主成分) 陰・陽極間距離:3m、  陰極:チタン電解液:海 
水 電解液温度:25℃前後 電源を切る頻度 :(a)の場合・・・1回/日(c)
、(b)の場合・・・1回/2日電解液流速二〇、1m
/sea 試験方法:〈a)・・・15A/dm2で通電を行い1
回/日X1Hだけ電源を 切る。(62回) (C)、((1)・・・15A、/dm2で通電を行い
1回/2日X2Hだけ゛電源 を切る。(9回) この時の、試験前後の電流効率、陽)11.消耗量の変
化を表、1に示す。
Anode area: 30s x 40Inm (Pt, Ir, Ru main components) Distance between cathode and anode: 3m, Cathode: Titanium Electrolyte: Sea
Water electrolyte temperature: around 25℃ Frequency of turning off the power: In case of (a)... once/day (c)
, In the case of (b)... 1 time/2 days Electrolyte flow rate 20.1 m
/sea Test method: <a)... Apply current at 15A/dm2 and
Turn off the power for 1 hour per day. (62 times) (C), ((1)... energize at 15A, /dm2 and turn off the power for 1/2 days x 2 hours. (9 times) At this time, the current efficiency before and after the test, )11. Table 1 shows the changes in consumption.

この結果からもわかるように、電気的特性は劣化し、電
極の消耗量も5〜15%となっている。
As can be seen from this result, the electrical characteristics deteriorated, and the amount of electrode consumption was 5 to 15%.

このように陽極の性能低下が生じると、a)電流効率の
低下及び電位の上昇に伴いランニングコストが増大する
When the anode performance deteriorates in this way, a) running costs increase due to a decrease in current efficiency and an increase in potential.

b)消耗量の増加により電極寿命が短かくなる。b) The electrode life is shortened due to increased wear.

などの問題が生じて来る。Such problems arise.

なお、各種電解槽において電解液を入れたままの状態で
、電解を中断する頻度は多く、上記問題に対する解決は
急務である。
In addition, in various electrolytic cells, electrolysis is often interrupted while the electrolyte remains in the tank, and there is an urgent need to solve the above problem.

そこで、この発明は逆電流の発生に起因するランニング
コストの増加及び電極消耗量の増加を抑制し得る解歩春
伊巷装置を提供することを目的とする。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a spring-loading device capable of suppressing an increase in running costs and an increase in electrode consumption due to the generation of reverse current.

[問題点を解決するための手段] 上記目的を達成するため、本発明は陽極と陰(框、又は
同一板上に陽極と陰(Φを配し、これらに整流器電源を
接続し電解を(テう装置において、上記整流器と陰極及
び陽極とを接続する電気回路に整流手段を設けて構成す
る。
[Means for Solving the Problems] In order to achieve the above object, the present invention arranges an anode and a cathode (Φ) on a frame or the same board, connects a rectifier power supply to these, and performs electrolysis ( In such a device, a rectifying means is provided in an electric circuit connecting the rectifier to the cathode and the anode.

[作 用] このような構成の本装置は陽極と陰極の間、又は陽極と
陰極の電気的接続線路に整流手段を設けであるので、こ
れら電極には片方向だけに電流が流れることになる。従
って、整流器電源を切った後に発生する逆電流は整流手
段により抑制されることになり、該逆電流の陽極への流
入は抑えることができる。これによって上記問題点を解
決することができるようになる。又、本発明装置は、整
流手段として例えば、半導体ダイオード(整流素子等)
を用いることにより電解の中止と同時に発生する逆電流
に対して大きな抵抗が得られ、逆電流の大幅な低減が可
能になる。
[Function] Since this device with such a configuration is provided with a rectifying means between the anode and the cathode or on the electrical connection line between the anode and the cathode, current flows through these electrodes in only one direction. . Therefore, the reverse current generated after the rectifier power is turned off is suppressed by the rectifier, and the flow of the reverse current into the anode can be suppressed. This makes it possible to solve the above problems. Further, the device of the present invention uses, for example, a semiconductor diode (rectifying element, etc.) as the rectifying means.
By using , it is possible to obtain a large resistance against the reverse current that occurs at the same time as electrolysis is stopped, and it becomes possible to significantly reduce the reverse current.

[実施例] 次に第1図を参照して、本発明の第1の実施例を説明す
る。22丁3加り・1ヒ14−駒IJ l”l−雪玉を
討(1イハク141jJ心73本実施例は、整流器6と
陽極3の電気的接続線路である通電線7にダイオード等
の整流素子による整流回路18を新たに直列に順方向接
続したちのである。ここで整流回路18は通[18に取
り付けても良い。
[Example] Next, a first example of the present invention will be described with reference to FIG. 22 chicks, 1 hill 14 -piece IJ L "L -snowball (1 Ichuku 141JJ 73 This example is a diode line 7, which is an electrical connection track of rectifier 6 and an anodial 3. A rectifier circuit 18 using a rectifier element is newly connected in series in the forward direction.The rectifier circuit 18 may be attached to the through hole [18].

以上の構成において、Z角氷を電解液として作動させ、
一定時間電解した後、電源を切った瞬間から60分間に
流れた逆電流を計測した結果を第3図に示す。曲線(イ
)は従来法での逆電流の経時変化、曲線(ロ)は本実施
1ソ1での逆電流の経時変例では市販の整流素子を組み
込み実施したが、回路の組み方や、又は素子(板)の種
類を変えると、さらに低減でき得る。このように逆電流
の低減により、次の効果を得た。
In the above configuration, the Z ice cube is operated as an electrolyte,
Figure 3 shows the results of measuring the reverse current flowing for 60 minutes from the moment the power was turned off after electrolysis for a certain period of time. Curve (a) shows the change in reverse current over time in the conventional method, and curve (b) shows the change in reverse current over time in Example 1 of this Example, in which a commercially available rectifier was incorporated. It can be further reduced by changing the type of element (plate). By reducing the reverse current in this way, the following effects were obtained.

(1)消耗量の低減 (2電気的特性の劣化進行の抑制 (3)  ランニングコスト上昇の抑制次に、第2図を
参照して、本発明の第2の実施例を説明する。第2図(
a >は陽極3の基板9に整流板1つを取り付けたもの
で第2図(b)は陰所4に整流板20を取り付けたもの
である。さらに第2図(C)は1枚の基板9の表と裏が
各々陽(歌、陰(モとなった電極の陰極部10と陰極部
9との間に整流板21を取り付けたもので第2図(d 
)は第5図(d )で説明した部分的に陽極と陰帰にな
っているtl造の電極の陽極部と陰(Φ部の間に整流板
(又は整流部)22を取り付けて、この整流板22で陽
極部と陰極部間の逆流電流を抑えるようにしたものであ
る。
(1) Reduction of consumption amount (2) Suppression of progression of deterioration of electrical characteristics (3) Suppression of increase in running costs Next, a second embodiment of the present invention will be described with reference to FIG. 2. figure(
2(b) shows a case in which one rectifying plate is attached to the substrate 9 of the anode 3, and a rectifying plate 20 is attached to the shaded area 4. Furthermore, in FIG. 2(C), a rectifying plate 21 is attached between the cathode part 10 and the cathode part 9 of the electrodes, where the front and back sides of one substrate 9 are positive and negative, respectively. Figure 2 (d
) is achieved by attaching a rectifying plate (or rectifying part) 22 between the anode part and the negative (Φ part) of the TL structure electrode which is partially anode and negative as explained in Fig. 5(d). The rectifying plate 22 suppresses backflow current between the anode portion and the cathode portion.

以上の構成において、電極での通電路中に整流板が介在
することにより、その逆電流抑止作用によって、電解を
中断した後、陰極部から海水を介して陽極部へ流れる逆
電流の低減が可能となり、その結果第1の実施例と同様
の効果を得ることができる。又、その効果は、1枚の基
板上に陽極と陰極が存在する電極において特に多大であ
る。
In the above configuration, by intervening the rectifying plate in the current flow path at the electrode, its reverse current inhibiting effect makes it possible to reduce the reverse current flowing from the cathode to the anode through seawater after electrolysis is interrupted. As a result, the same effect as the first embodiment can be obtained. Further, the effect is particularly great in an electrode in which an anode and a cathode are present on one substrate.

次に、第4図を参照して、本発明の第3の実施例を説明
する。本実施例は整流板又は整流回路に関する発明で、
整流板の代わりに陰極部9と陽極部10の間に整流素子
23を取り付け、隙間にプラスチック24を流し込んで
固定した図を示したものである。
Next, a third embodiment of the present invention will be described with reference to FIG. This embodiment is an invention related to a rectifier plate or a rectifier circuit,
This figure shows a rectifying element 23 installed between the cathode section 9 and the anode section 10 instead of the rectifying plate, and plastic 24 poured into the gap to fix it.

このようにしても上述と同様の効果が得られる。Even in this case, the same effect as described above can be obtained.

[発明の効果] 以上詳述したように本発明は整流器からの通電線や電極
に整流作用を有する回路又は、整流板を取り付けるか一
体化することによって電解を中断すると同時に発生する
陰極から陽極への逆電流の低減を図るようにしたもので
あり、これによって、11)消耗量の低減、(2)電気
的特性の劣化進行の抑制、(3)ランニジグコメ1−上
冒の抑制等を図ることができる。
[Effects of the Invention] As described in detail above, the present invention provides a circuit that has a rectifying effect or a rectifying plate on the current-carrying wires and electrodes from the rectifier. This aims to reduce the reverse current of 11) consumption, (2) suppress progress of deterioration of electrical characteristics, and (3) suppress runny jig rice 1 - overflow. I can do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図1i 45よび第2図(a )〜(d、)は本発
明H’Rの第1の実施例および第2の実施例を示す概略
構成図、第3図(J本発明第1の実施例を実施した時の
逆電流の経時変化を示す線図、第4図は整流板等の役割
をする電極の概略図、第5図(a)。 (c)、(d)は従来の電解槽の1例を示す概略構成図
、第5図(b )は陽極を示す説明図、第6図は海水を
介して、陰極から陽極へ流れる逆電流の経時変化を示す
線図、第7図<a >〜(d )は電解をストップする
前後の電流の流れを説明する概略図である。 1・・・電解液供給管、2・・・電解槽、3・・・陽極
、4・・・陰極、5・・・電解液排出管、6・・・整流
器、7.8・・・電気線路(通電線)、9・・・基板、
10・・・貴金属等をコーティングした部分、11・・
・通電陽極、12.13.14.15.16・・・電極
、17・・・通電陰極、18・・・整流回路、19,2
0,21゜22・・・整流板、23・・・整流子、24
・・・プラスチック等。 出願人復代理人 弁理士 鈴江武彦 第1図 (a)    (b)   (c)   (d)第3図
1i 45 and FIGS. 2(a) to 2(d) are schematic configuration diagrams showing the first and second embodiments of the present invention H'R, and FIG. Fig. 4 is a schematic diagram of an electrode that serves as a rectifying plate, etc., and Fig. 5 (a) is a diagram showing the change in reverse current over time when the embodiment is implemented. (c) and (d) are conventional 5(b) is an explanatory diagram showing the anode, FIG. 6 is a diagram showing the change over time of the reverse current flowing from the cathode to the anode via seawater, and FIG. Figures 7 <a> to (d) are schematic diagrams explaining the flow of current before and after stopping electrolysis. 1... Electrolyte supply pipe, 2... Electrolytic cell, 3... Anode, 4 ... Cathode, 5... Electrolyte discharge pipe, 6... Rectifier, 7.8... Electric line (current carrying line), 9... Board,
10... Part coated with precious metal etc., 11...
- Current-carrying anode, 12.13.14.15.16... Electrode, 17... Current-carrying cathode, 18... Rectifier circuit, 19, 2
0,21°22... Rectifying plate, 23... Commutator, 24
...Plastic, etc. Applicant Sub-Agent Patent Attorney Takehiko Suzue Figure 1 (a) (b) (c) (d) Figure 3

Claims (1)

【特許請求の範囲】[Claims] 陽極と陰極、又は同一板上に陽極と陰極を配し、これら
に整流器電源を接続し、電解を行う装置において、上記
整流器と、陰極及び陽極とを接続する電気回路に整流手
段を設けてなることを特徴とする電解槽の逆電流の低減
装置。
A device in which an anode and a cathode, or an anode and a cathode are arranged on the same plate, and a rectifier power source is connected to them to perform electrolysis, wherein a rectifying means is provided in the electric circuit connecting the rectifier, the cathode, and the anode. A device for reducing reverse current in an electrolytic cell, characterized by:
JP61025316A 1986-02-07 1986-02-07 Apparatus for reducing inverse current in electrolytic cell Pending JPS62182294A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61025316A JPS62182294A (en) 1986-02-07 1986-02-07 Apparatus for reducing inverse current in electrolytic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61025316A JPS62182294A (en) 1986-02-07 1986-02-07 Apparatus for reducing inverse current in electrolytic cell

Publications (1)

Publication Number Publication Date
JPS62182294A true JPS62182294A (en) 1987-08-10

Family

ID=12162588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61025316A Pending JPS62182294A (en) 1986-02-07 1986-02-07 Apparatus for reducing inverse current in electrolytic cell

Country Status (1)

Country Link
JP (1) JPS62182294A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013031522A1 (en) * 2011-08-31 2013-03-07 株式会社日立製作所 Water electrolysis device
JP2014073437A (en) * 2012-10-03 2014-04-24 Japan Organo Co Ltd Electric deionized water production device and operating method thereof
JP2015120944A (en) * 2013-12-20 2015-07-02 旭化成株式会社 Electrolysis cell and electrolysis tank
WO2017188421A1 (en) * 2016-04-27 2017-11-02 デノラ・ペルメレック株式会社 Electrode for electrolysis, manufacturing method of electrode for electrolysis and electrolytic cell
JP2019099905A (en) * 2017-11-30 2019-06-24 株式会社豊田中央研究所 Electrolysis system
US11008663B2 (en) 2017-11-30 2021-05-18 Kabushiki Kaisha Toyota Chuo Kenkyusho Electrolysis system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013031522A1 (en) * 2011-08-31 2013-03-07 株式会社日立製作所 Water electrolysis device
JP2014073437A (en) * 2012-10-03 2014-04-24 Japan Organo Co Ltd Electric deionized water production device and operating method thereof
JP2015120944A (en) * 2013-12-20 2015-07-02 旭化成株式会社 Electrolysis cell and electrolysis tank
WO2017188421A1 (en) * 2016-04-27 2017-11-02 デノラ・ペルメレック株式会社 Electrode for electrolysis, manufacturing method of electrode for electrolysis and electrolytic cell
WO2017188422A1 (en) * 2016-04-27 2017-11-02 デノラ・ペルメレック株式会社 Electrolytic cell
CN107923053A (en) * 2016-04-27 2018-04-17 迪诺拉永久电极股份有限公司 Electrolytic cell
JPWO2017188422A1 (en) * 2016-04-27 2018-06-07 デノラ・ペルメレック株式会社 Electrolytic cell
JPWO2017188421A1 (en) * 2016-04-27 2018-07-12 デノラ・ペルメレック株式会社 Electrode for electrolysis, method for producing electrode for electrolysis, and electrolytic cell
US10590551B2 (en) 2016-04-27 2020-03-17 De Nora Permelec Ltd Electrode for electrolysis, manufacturing method of electrode for electrolysis, and electrolyzer
US10669638B2 (en) 2016-04-27 2020-06-02 De Nora Permelec Ltd Electrolyzer
JP2019099905A (en) * 2017-11-30 2019-06-24 株式会社豊田中央研究所 Electrolysis system
US11008663B2 (en) 2017-11-30 2021-05-18 Kabushiki Kaisha Toyota Chuo Kenkyusho Electrolysis system

Similar Documents

Publication Publication Date Title
Chin Mass transfer and current‐potential relation in pulse electrolysis
Castro et al. Oxygen evolution on electrodeposited cobalt oxides
CN103748709B (en) Flow battery based on iron
JP5123394B2 (en) Method for electrochemical deposition of metal electrodes in solar cells
Wilcox et al. Electrolyte additives for zinc-anoded secondary cells I. Brighteners, levellers and complexants
CN105283963B (en) The formation of metal structure in solar cell
Lai et al. Electrochemical performance of a Pb/Pb-MnO2 composite anode in sulfuric acid solution containing Mn2+
GB1235570A (en) Electrolytic cells
US7943032B2 (en) Anode used for electroplating
JPS62182294A (en) Apparatus for reducing inverse current in electrolytic cell
Rose et al. Photoelectrochemical deposition of metals onto p‐silicon using an internal cell
CN106835193B (en) A kind of Pb bases/3D-PbO2/MeOx composite anodes and preparation method thereof
JP4221365B2 (en) Apparatus and method for monitoring electrolysis
US4253919A (en) Electrodeposition of cadmium-selenium semiconducting photoelectrodes from an acid citrate bath
Pavlov et al. Mechanism of the action of Ag and As on the anodic corrosion of lead and oxygen evolution at the Pb/PbO (2− x)/H2O/O2/H2SO4 electrode system
US4445980A (en) Copper electroplating procedure
WO1993008594A1 (en) Electrochemical process
JP2000256898A (en) Copper plating method of wafer
JP4154121B2 (en) Method and apparatus for adjusting the concentration of a substance in an electrolyte
JPS6213589A (en) Method and apparatus for preventing inverse current in electrolytic cell
Čukman et al. Electrochemical behaviour of an electrodeposited rhodium electrode in alkaline solution
JPS61194190A (en) Method and device for reducing reverse current
Hoar The electrochemistry of protective metallic coatings
Pandey et al. Evolution of the morphology, structure and composition of CdTe films potentiostatically electrodeposited from an ethylene glycol-based bath
Lorking Some electrode processes on copper anodes in orthophosphoric acid solution