JPS62182164A - Manufacture of aluminum nitride sintered body - Google Patents

Manufacture of aluminum nitride sintered body

Info

Publication number
JPS62182164A
JPS62182164A JP61023902A JP2390286A JPS62182164A JP S62182164 A JPS62182164 A JP S62182164A JP 61023902 A JP61023902 A JP 61023902A JP 2390286 A JP2390286 A JP 2390286A JP S62182164 A JPS62182164 A JP S62182164A
Authority
JP
Japan
Prior art keywords
aluminum nitride
sintered body
nitride sintered
organic binder
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61023902A
Other languages
Japanese (ja)
Other versions
JPH0651593B2 (en
Inventor
福田 恭彬
篠原 義典
積 梛良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Mining and Cement Co Ltd
Original Assignee
Mitsubishi Mining and Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Mining and Cement Co Ltd filed Critical Mitsubishi Mining and Cement Co Ltd
Priority to JP61023902A priority Critical patent/JPH0651593B2/en
Publication of JPS62182164A publication Critical patent/JPS62182164A/en
Publication of JPH0651593B2 publication Critical patent/JPH0651593B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、を子材料に用いられるセラミック基板に使用
される窒化アルミニウム焼結体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing an aluminum nitride sintered body used for a ceramic substrate used as a secondary material.

[従来の技術] 従来、窒化アルミニウムの焼結のために工業的に用いら
れている方法は、 5arpak法と呼ばれ、アルミナ
と炭素の混合粉末を窒素或いはアンモニア中で加熱する
ことにより窒化アルミニウムをえるものである。この反
応は1次の式で表わされる。
[Prior Art] The method conventionally used industrially for sintering aluminum nitride is called the 5arpak method, in which aluminum nitride is heated by heating a mixed powder of alumina and carbon in nitrogen or ammonia. It is something that can be achieved. This reaction is expressed by the following equation.

A110+ + 3 C+ N5−−→2 AIN+ 
3 Co   (1)この反応過程では、アルミナと炭
素の固相反応により生成されるアルミニウムオキシカー
バイドを中間相として、窒化アルミニウム(AIN)が
合成きれるため、この反応を十分進行させるためには。
A110+ + 3 C+ N5--→2 AIN+
3 Co (1) In this reaction process, aluminum nitride (AIN) can be synthesized using aluminum oxycarbide produced by a solid phase reaction of alumina and carbon as an intermediate phase, so in order for this reaction to proceed sufficiently.

実際には、(1)式の炭素当量に対し、かなり過剰の炭
素が混合きれる。そのため1反応終了後、過剰な炭素は
、空気中AIN分解温度以下の温度範囲を通過する際に
除去される。
In reality, a considerable excess of carbon can be mixed with respect to the carbon equivalent in formula (1). Therefore, after one reaction is completed, excess carbon is removed when passing through a temperature range below the AIN decomposition temperature in air.

このようにして得られたAIN粉末から焼結体を得るに
はさらに次のような工程が必要となる。
In order to obtain a sintered body from the AIN powder thus obtained, the following steps are further required.

(1)ボールミル等によるAIN粉末の粉砕(2〉プレ
ス等による成形 (3)窒素中での焼成 従来技術では、 AIN焼結体を得るまでには、上記の
ように複雑なE程が必要である。
(1) Grinding of AIN powder using a ball mill, etc. (2) Molding using a press, etc. (3) Firing in nitrogen With conventional technology, the complicated process E as described above is required to obtain an AIN sintered body. be.

[発明が解決しようとする問題点] 本発明の目的は、上記のように窒化アルミニウム粉末!
!i造工程と焼結体製造工程とを別々に行なうのではな
く、また、過剰の炭素の除去を必要としない、簡便な窒
化アルミニウム焼結体の製造方法奢提供することである
[Problems to be Solved by the Invention] The object of the present invention is to produce aluminum nitride powder as described above!
! It is an object of the present invention to provide a simple method for manufacturing an aluminum nitride sintered body, which does not require the i-formation process and the sintered body manufacturing process to be performed separately, and does not require the removal of excess carbon.

[問題点を解決するための手段コ 本発明は、ベーマイトゾルに有機バインダーを加え、シ
ート成形を行なう成形工程と。
[Means for Solving the Problems] The present invention includes a forming process of adding an organic binder to boehmite sol and forming a sheet.

得られたグリ−〉・シートを窒素気流中で焼成する焼成
工程により窒化アルミニウム焼結体を製造する方法であ
る。前記ベーマイトゾルは、アルミニウムアルフキ;1
zと酸解膠剤とにより得られろゾルを利用でさ、まj二
、前記有機バインダーは、その炭素台YT率が50〜8
0重¥i%である有機バインダーを利用できる。
This is a method for producing an aluminum nitride sintered body through a firing process in which the obtained green sheet is fired in a nitrogen stream. The boehmite sol is aluminum Alfuki; 1
Alternatively, the organic binder may have a carbon base YT ratio of 50 to 8.
An organic binder with a weight of 0% by weight can be used.

本発明は、ベーマイトゾルを出発原料とし、有機バイン
ダーと混合し基板の形状のシート状に直接成形し、ベー
マイトと有機バインダーからなるグリーンシートを作成
し、このグリーンシートを窒素雰囲気中で焼成すること
により、有機バインダーが分解炭化し、ベーマイトゾル
を直接還元することにより、窒化アルミニウムを合成し
、同時に焼結反応を起こし、直接に窒化アルミニウム焼
結体を得るものである。
The present invention uses boehmite sol as a starting material, mixes it with an organic binder, directly forms it into a sheet shape in the shape of a substrate, creates a green sheet made of boehmite and an organic binder, and then fires this green sheet in a nitrogen atmosphere. By decomposing and carbonizing the organic binder and directly reducing the boehmite sol, aluminum nitride is synthesized, and at the same time, a sintering reaction occurs to directly obtain an aluminum nitride sintered body.

このとき、有機バインダーは、シート成形に必要な値以
上が当然必要であり、有機バインダーが分解後、窒化ア
ルミニウムが生成するに必要な炭素量である。即ち、ベ
ーマイトゾルを還元するための値以上は必要とする。
At this time, the organic binder naturally needs to have a carbon content equal to or higher than that required for sheet forming, and the carbon content is necessary for aluminum nitride to be produced after the organic binder is decomposed. That is, a value higher than the value required to reduce the boehmite sol is required.

本発明の製造方法において、有機バインダーは1種類に
よって1分解後の残留炭素量が異なるが、窒化アルミニ
ウムが生成するのに必要な炭素量を得るためには、炭素
含有率が50〜80重量%であることが望ましい。
In the production method of the present invention, the amount of carbon remaining after decomposition differs depending on the type of organic binder, but in order to obtain the amount of carbon necessary to generate aluminum nitride, the carbon content must be 50 to 80% by weight. It is desirable that

また、有機バインダーの炭化が促進されるために、酸で
解膠したベーマイトゾルを用いることが望ましい。
Furthermore, since carbonization of the organic binder is promoted, it is desirable to use a boehmite sol peptized with an acid.

出発原料としては、酸で解膠したベーマイトゾルを用い
るが、好適には、酢酸、塩酸、硝酸の如き酸の解膠剤に
より、アルミニウムアルコキシドなどの有機アルミニウ
ムをコロイド化(解膠)せしめることにより得られたベ
ーマイトゾルを用いる。このようなベーマイトゾルは、
有機バインダーによる還元作用に対して非常に好適なも
のである。
As a starting material, a boehmite sol peptized with an acid is used. Preferably, organic aluminum such as aluminum alkoxide is colloidized (peptized) with an acid peptizer such as acetic acid, hydrochloric acid, or nitric acid. The obtained boehmite sol is used. Such boehmite sol is
It is very suitable for the reducing action of organic binders.

有機バインダーとしては、上記にような炭素含有率のも
のが好適であるが2次のものから選択することができる
As the organic binder, those having the above-mentioned carbon content are suitable, but they can be selected from the following types.

即ち、ポリビニルアルコール(PVA) 、メチルセル
ロース(MC)、エチルセルロース、エチレンオキサイ
ドポリマー、ポリビニルピロリドン、アクリル樹脂、7
ノクス、或いはポリビニルブチラール。
Namely, polyvinyl alcohol (PVA), methylcellulose (MC), ethylcellulose, ethylene oxide polymer, polyvinylpyrrolidone, acrylic resin, 7
Nox or polyvinyl butyral.

ポリ塩化ビニルなどから選択する。Choose from polyvinyl chloride, etc.

本発明により得られる焼結体は、1soo℃で焼成した
もののX線回折スペクトルの第1図で示すようにAIM
単−相である。そして、1400℃で焼結した場合のX
線回折スペクトルの第2図を見ると、 Alton相が
残っていることが分かる。以下の実施例に示すこと<1
500℃以上の焼成により窒化アルミニウムのみの相の
基板を得ることができることがはっきり分かる。窒化ア
ルミニウム単体では、その焼結密度は、1800°Cで
2 、9 g /am’で得ることができる。また、添
加物を入れて本発明を行ったとき、酸化イツトリウムを
添加物として用いた場合は、1800℃で3 、1 g
 /cm’であった。
The sintered body obtained by the present invention has an AIM
It is single-phase. And when sintered at 1400℃
Looking at the line diffraction spectrum in Figure 2, it can be seen that the Alton phase remains. What is shown in the following examples <1
It is clearly seen that a substrate containing only aluminum nitride can be obtained by firing at a temperature of 500° C. or higher. For aluminum nitride alone, its sintered density can be obtained at 1800°C at 2.9 g/am'. In addition, when carrying out the present invention with additives, if yttrium oxide is used as an additive, 3.1 g at 1800°C
/cm'.

次に1本発明による窒化アルミニウム焼結体の製造方法
について1次の実施例により、説明するが1本発明は9
次の実施例に限定されるものではない。
Next, the method for producing an aluminum nitride sintered body according to the present invention will be explained using the following examples.
The present invention is not limited to the following examples.

[実施例1コ アルミニウムイソプロポキシド204gを90”c、a
j!の蒸留水に入れ、加水分解を行ない1次に、酢酸2
4m1を加え、加熱、攪拌しながら1時間放置した。こ
れによって得られたベーマイトゾルを出発原料とした。
[Example 1 204g of core aluminum isopropoxide was heated to 90"c, a
j! of distilled water to perform hydrolysis, and then acetic acid.
4 ml of the mixture was added and left to stand for 1 hour while heating and stirring. The boehmite sol thus obtained was used as a starting material.

ベーマイトゾルから生成するアルミナの計算量に対して
9モル比で3倍の戻素量になるように。
The amount of returned element is 3 times the calculated amount of alumina generated from boehmite sol at a 9 molar ratio.

ベーマイトゾル中のベーマイト60gに対して。For 60g of boehmite in boehmite sol.

炭素含有率が55重量%のポリビニルアルフール(PV
A)を33gを加え、混合する。このようにして得られ
たスラリーを十分に粘度調整して、ドクターブレード法
によりシート成形し、グリーンシートを作成した。
Polyvinyl alfur (PV) with a carbon content of 55% by weight
Add 33g of A) and mix. The viscosity of the slurry thus obtained was sufficiently adjusted and sheet-molded by a doctor blade method to create a green sheet.

得られたグリーンシートは、窒素気流中で。The obtained green sheet was placed in a nitrogen stream.

1400℃、1500℃、1600”C,1700”C
、1800°Cの各温度で焼成した。
1400℃, 1500℃, 1600"C, 1700"C
, 1800°C.

それらを各々xi回折の測定した。その結果は、140
0℃焼成では、 AIN+ At、Osのものであり1
500℃以上の焼成のものは、 AINの単−相のもの
であることが分かった。焼結密度は。
Each of them was subjected to xi diffraction measurements. The result is 140
When fired at 0℃, it is AIN+ At, Os and 1
It was found that those fired at 500°C or higher were single-phase AIN. The sintered density is.

1800℃焼成のもので、 2 、9 g/cm’であ
った。
When fired at 1800°C, it was 2.9 g/cm'.

[実施例2] 実施例1とほぼ同様の操作で窒化アルミニウム焼結体を
作成した。
[Example 2] An aluminum nitride sintered body was produced in substantially the same manner as in Example 1.

計算量で窒化アルミニウムに対して0.5重量%の酸化
イツトリウムをベーマイトゾル中に添加し、ベーマイト
60gに対して、65重置部の炭素含有量のメチルセル
ロース(MC)を28g加えて、グリーンシートを作成
し窒素気流中で焼成した。
A calculated amount of 0.5% by weight of yttrium oxide based on aluminum nitride was added to the boehmite sol, and 28g of methyl cellulose (MC) with a carbon content of 65 parts was added to 60g of boehmite to form a green sheet. was prepared and fired in a nitrogen stream.

焼成後各々の得られた焼結シートをX線回折により検査
した。1400℃焼成のものは、 AIN+A11os
であり、1500℃以上の焼成のものは。
After firing, each resulting sintered sheet was examined by X-ray diffraction. The one fired at 1400℃ is AIN+A11os
and those fired at 1500℃ or higher.

AINのみが検出きれた* 0.5wt%のY2O,が
あるからYsA1sO+*のピークが検出するはずであ
るが、その第1回折ピークとAIMの回折ピークが重な
るために、X線回折では確認できなかった。
Only AIN was detected* Since there is 0.5 wt% Y2O, the peak of YsA1sO++ should be detected, but since its first diffraction peak overlaps with the diffraction peak of AIM, it cannot be confirmed by X-ray diffraction. There wasn't.

焼結密度は、1800℃焼成のもので 3 、1 g/am”であった。The sintered density is calculated at 1800℃. 3.1 g/am”.

また、上記の例では、ドクターブレードによるキャステ
ィング成形法による場合で説明したが。
Furthermore, in the above example, the case was explained using a casting molding method using a doctor blade.

これ以外に、押し出し成形法等によっても1本発明に従
い、窒化アルミニウム焼結体を製造することができる。
In addition to this, the aluminum nitride sintered body can also be manufactured by an extrusion method or the like according to the present invention.

[発明の効果] 本発明による窒化アルミニウム焼結体の製造方法により
、第1に、従来の窒化アルミニウム粉末製造工程と焼結
体製造工程とを別々に行なう複雑な処理工程が必要でな
く、直接的に窒化アルミニウム焼結体が得られること、
第2に、直接還元であるために過剰なカーボン析出の心
配がないこと、第3に、従来に比べ簡単な処理法で焼結
性のよい基板シートが得られること、第4に、直接基板
シートが得られるために、熱効率よく、従って、経済的
に有利な製造方法が提供できることなどの技術的効果が
得られた。
[Effects of the Invention] The method for producing an aluminum nitride sintered body according to the present invention eliminates the need for a complicated treatment process in which the conventional aluminum nitride powder production process and sintered body production process are performed separately; that an aluminum nitride sintered body can be obtained,
Second, since it is a direct reduction, there is no need to worry about excessive carbon precipitation. Third, a substrate sheet with good sinterability can be obtained using a simpler processing method than conventional methods. Fourth, the direct reduction Since the sheet can be obtained, technical effects such as being able to provide a manufacturing method that is thermally efficient and therefore economically advantageous have been obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は2本発明の製造方法により、1800℃で焼成
して得られたもののX線回折スペクトルグラフを示す。 第2図は1本発明の製造方法により、1400℃で焼成
して得られたもののX8a回折スペクトルグラフを示す
FIG. 1 shows an X-ray diffraction spectrum graph of 2 obtained by firing at 1800° C. according to the manufacturing method of the present invention. FIG. 2 shows an X8a diffraction spectrum graph of a product obtained by firing at 1400° C. according to the manufacturing method of the present invention.

Claims (4)

【特許請求の範囲】[Claims] (1)ベーマイトゾルに有機バインダーを加え、シート
成形を行なう成形工程と、 得られたグリーンシートを窒素雰囲気中で焼成する焼成
工程とを含むことを特徴とする窒化アルミニウム焼結体
の製造方法。
(1) A method for producing an aluminum nitride sintered body, comprising a forming step of adding an organic binder to boehmite sol and forming the sheet into a sheet, and a firing step of firing the obtained green sheet in a nitrogen atmosphere.
(2)前記ベーマイトゾルは、アルミニウムアルコキシ
ドと酸解膠剤とにより得られるゾルであることを特徴と
する特許請求の範囲第1項の窒化アルミニウム焼結体の
製造方法。
(2) The method for producing an aluminum nitride sintered body according to claim 1, wherein the boehmite sol is a sol obtained from aluminum alkoxide and an acid peptizer.
(3)前記有機バインダーは、その炭素含有率が50〜
80重量%であることを特徴とする特許請求の範囲第1
項の窒化アルミニウム焼結体の製造方法。
(3) The organic binder has a carbon content of 50 to
Claim 1 characterized in that it is 80% by weight.
2. Method for producing aluminum nitride sintered body.
(4)窒素雰囲気中焼成温度は、1500℃以上である
ことを特徴とする特許請求の範囲第1項の窒化アルミニ
ウム焼結体の製造方法。
(4) The method for producing an aluminum nitride sintered body according to claim 1, wherein the firing temperature in a nitrogen atmosphere is 1500°C or higher.
JP61023902A 1986-02-07 1986-02-07 Method for manufacturing aluminum nitride sintered body Expired - Lifetime JPH0651593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61023902A JPH0651593B2 (en) 1986-02-07 1986-02-07 Method for manufacturing aluminum nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61023902A JPH0651593B2 (en) 1986-02-07 1986-02-07 Method for manufacturing aluminum nitride sintered body

Publications (2)

Publication Number Publication Date
JPS62182164A true JPS62182164A (en) 1987-08-10
JPH0651593B2 JPH0651593B2 (en) 1994-07-06

Family

ID=12123395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61023902A Expired - Lifetime JPH0651593B2 (en) 1986-02-07 1986-02-07 Method for manufacturing aluminum nitride sintered body

Country Status (1)

Country Link
JP (1) JPH0651593B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0272493A2 (en) * 1986-11-28 1988-06-29 Kawasaki Steel Corporation Method for producing aluminium nitride powder
JPS6418978A (en) * 1987-07-15 1989-01-23 Bridgestone Corp Production of aluminum nitride sintered product
JPS6456371A (en) * 1987-08-28 1989-03-03 Sumitomo Electric Industries Production of aluminum nitride sintered body
JPS6456376A (en) * 1987-08-28 1989-03-03 Sumitomo Electric Industries Production of aluminum nitride sintered body
JPS6456374A (en) * 1987-08-28 1989-03-03 Sumitomo Electric Industries Production of aluminum nitride sintered body
JPS6456372A (en) * 1987-08-28 1989-03-03 Sumitomo Electric Industries Production of aluminum nitride sintered body
JPS6461361A (en) * 1987-09-01 1989-03-08 Sumitomo Electric Industries Aluminum nitride sintered compact having high heat conductivity
JPH01203271A (en) * 1988-02-08 1989-08-16 Sumitomo Electric Ind Ltd High-thermal conductivity circuit board
JPH02283672A (en) * 1989-04-26 1990-11-21 Tokin Corp Production of extrusion-molded aluminum nitride

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0272493A2 (en) * 1986-11-28 1988-06-29 Kawasaki Steel Corporation Method for producing aluminium nitride powder
US4780299A (en) * 1986-11-28 1988-10-25 Kawasaki Steel Corporation Method for producing aluminum nitride powder
JPS6418978A (en) * 1987-07-15 1989-01-23 Bridgestone Corp Production of aluminum nitride sintered product
JPS6456371A (en) * 1987-08-28 1989-03-03 Sumitomo Electric Industries Production of aluminum nitride sintered body
JPS6456376A (en) * 1987-08-28 1989-03-03 Sumitomo Electric Industries Production of aluminum nitride sintered body
JPS6456374A (en) * 1987-08-28 1989-03-03 Sumitomo Electric Industries Production of aluminum nitride sintered body
JPS6456372A (en) * 1987-08-28 1989-03-03 Sumitomo Electric Industries Production of aluminum nitride sintered body
JP2547786B2 (en) * 1987-08-28 1996-10-23 住友電気工業株式会社 Manufacturing method of aluminum nitride sintered body
JPS6461361A (en) * 1987-09-01 1989-03-08 Sumitomo Electric Industries Aluminum nitride sintered compact having high heat conductivity
JPH01203271A (en) * 1988-02-08 1989-08-16 Sumitomo Electric Ind Ltd High-thermal conductivity circuit board
JPH02283672A (en) * 1989-04-26 1990-11-21 Tokin Corp Production of extrusion-molded aluminum nitride

Also Published As

Publication number Publication date
JPH0651593B2 (en) 1994-07-06

Similar Documents

Publication Publication Date Title
JPS62182164A (en) Manufacture of aluminum nitride sintered body
JPS5973431A (en) Preparation of fine spinel powder
JPS6357383B2 (en)
JPS6270210A (en) Production of aluminum nitride-silicon carbide composite fine powder
JPS5918106A (en) Preparation of silicon aluminum oxynitride type powdery raw material
JPS60131865A (en) Manufacture of silicon nitride ceramics
JPH04923B2 (en)
JP2976076B2 (en) Method for producing sialon-silicon carbide composite powder
JPS6321254A (en) Manufacture of silicon nitride ceramics
JPH0575689B2 (en)
JPS62246866A (en) Manufacture of aluminum nitride sintered body
JPH04305052A (en) Alpha-alumina-zirconia clad powder and its production
JPS63210003A (en) Production of aluminum nitride powder
JPS62288166A (en) Manufacture of tungsten carbide-oxide composite sintered body
JPS61201608A (en) Manufacture of high purity aluminum nitride powder
JP3186398B2 (en) Method for producing inorganic porous body
JP2567041B2 (en) Method for producing ultrafine aluminum nitride particles
JPH0465307A (en) Production of aluminum nitride powder
JPS63139008A (en) Production of powdery aluminum nitride
JPS6217075A (en) Aluminum nitride sintered body and manufacture
JPS60186469A (en) Manufacture of silicon nitride sintered body
JPS62297270A (en) Manufacture of spinel type aluminum oxynitride
JPS6121976A (en) Manufacture of silicon nitride base sintered body
JPS61183174A (en) Aluminum nitride aintered body
JPS6355109A (en) Production of aluminum nitride powder