JPS62288166A - Manufacture of tungsten carbide-oxide composite sintered body - Google Patents

Manufacture of tungsten carbide-oxide composite sintered body

Info

Publication number
JPS62288166A
JPS62288166A JP61128666A JP12866686A JPS62288166A JP S62288166 A JPS62288166 A JP S62288166A JP 61128666 A JP61128666 A JP 61128666A JP 12866686 A JP12866686 A JP 12866686A JP S62288166 A JPS62288166 A JP S62288166A
Authority
JP
Japan
Prior art keywords
powder
sintered body
tungsten carbide
composite sintered
oxide composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61128666A
Other languages
Japanese (ja)
Inventor
隆博 和田
成司 安達
三原 敏弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61128666A priority Critical patent/JPS62288166A/en
Publication of JPS62288166A publication Critical patent/JPS62288166A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 3、発明の詳細な説明 産業上の利用分野 本発明は、超硬工具や高温構造材または各種機能材料と
して用いられる炭化タングステン−酸化物複合焼結体の
製造方法に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention Industrial Application Field The present invention relates to a method for manufacturing a tungsten carbide-oxide composite sintered body used as a cemented carbide tool, high-temperature structural material, or various functional materials. .

従来の技術 従来、炭化タングステン−酸化物複合焼結体は、まず金
属タングステンまたはその酸化物に炭素粉末または固形
炭素を混合し高温で反応させることによって合成した炭
化タングステン粉末と酸化物粉末を十分に混合した後高
温高圧下で焼結させることによって製造していた。
Conventional technology Conventionally, tungsten carbide-oxide composite sintered bodies have been produced by first mixing metal tungsten or its oxide with carbon powder or solid carbon and reacting the mixture at high temperature to fully combine tungsten carbide powder and oxide powder. It was manufactured by mixing and then sintering at high temperature and pressure.

発明が解決しようとする問題点 この方法は、製造工程が長く複雑であるため不純物が混
入しやすく、シかもエネルギー消費が非常に大きかった
Problems to be Solved by the Invention In this method, the manufacturing process is long and complicated, so impurities are likely to be mixed in, and energy consumption is extremely large.

問題点を解決するための手段 還元用金属粉末(反応後ぼは酸化物となる)と、炭素と
、二酸化タングステン(WO2)粉末(反応後には炭化
タングステンになる)とからなる混合物の成形体に圧力
をかけた状態で、その成形体の一部を強熱点火して燃焼
反応を起こさせ、この化学反応によって炭化タングステ
ン(α−WCやβ−W2C)と酸化物の粒子を合成し、
反応熱によってこれらの粒子を焼結して炭化タングステ
ン−酸化物複合焼結体を得る。
Means to solve the problem A molded body of a mixture of reducing metal powder (which becomes an oxide after reaction), carbon, and tungsten dioxide (WO2) powder (which becomes tungsten carbide after reaction). Under pressure, a part of the compact is ignited at high heat to cause a combustion reaction, and this chemical reaction synthesizes tungsten carbide (α-WC and β-W2C) and oxide particles.
These particles are sintered by the heat of reaction to obtain a tungsten carbide-oxide composite sintered body.

作用 本発明によれば、加圧下で成形体に点火するだけで、高
密度の炭化タングステン−酸化物複合焼結体が容易に得
られる。従って従来の炭化タングステンと酸化物の粉末
を用いて作成する焼結体の製造方法と比較して、極めて
省エネルギーであり、しかも得られる焼結体もきわめて
高純度である。
According to the present invention, a high-density tungsten carbide-oxide composite sintered body can be easily obtained simply by igniting the compact under pressure. Therefore, compared to the conventional method for producing a sintered body using tungsten carbide and oxide powder, this method is extremely energy-saving, and the resulting sintered body is also of extremely high purity.

実施例 実施例1 出発原料として粒径10μm以下のジルコニウム粉末、
平均粒径2μ謬の二酸化タングステン(WO2)粉末、
それにアセチレンを原料とするカーボンブラックを用い
、それらを1:1:1のモル比で混合後、直径10i■
、高さlOmn+の柱状にプレス成形した。この成形体
を炭化ケイ米製の型材を用いた一軸加圧真空ホットプレ
スを用いて焼結を行った。成形体への着火は、タングス
テンフィラメントに通電することによって行った。試料
を室温・真空(1+nn+Hg)雰囲気・0.1GPa
の圧力条件下で、着火用ヒーターに通電して反応を開始
させた。得られた焼結体をX線回折を用いて同定したと
ころα型炭化タングステン(α−WC)と正方晶系の酸
化ジルコニウム(t−Zr02)と単科晶系の酸化ジル
コニウム(m−Zr02)の回折線しか見られなかった
。またこの焼結体の相対密度は、90%であった。また
、t−Zr0qとm−ZrO2の比率は約1:lであっ
た。
Examples Example 1 Zirconium powder with a particle size of 10 μm or less as a starting material,
Tungsten dioxide (WO2) powder with an average particle size of 2 μm,
Using carbon black made from acetylene as a raw material, after mixing them at a molar ratio of 1:1:1,
, and press-molded into a columnar shape with a height of lOmn+. This molded body was sintered using a uniaxial pressure vacuum hot press using a mold made of silicon carbide rice. The molded body was ignited by energizing the tungsten filament. Sample at room temperature, vacuum (1+nn+Hg) atmosphere, 0.1GPa
The reaction was started by energizing the ignition heater under the following pressure conditions. The obtained sintered body was identified using X-ray diffraction, and it was found to be α-type tungsten carbide (α-WC), tetragonal zirconium oxide (t-Zr02), and monocrystalline zirconium oxide (m-Zr02). Only diffraction lines were visible. Further, the relative density of this sintered body was 90%. Further, the ratio of t-Zr0q and m-ZrO2 was approximately 1:l.

このプロセスの化学反応式は次のとおりである。The chemical reaction equation for this process is as follows.

Z r + W O2+C+ Z r O2+W にの
反応においては、ZrによるWO2の還元を基本にして
、還元されたW金属がCと反応してWCになる。このと
きの反応熱が大きいので外部から加熱しな(ても試料が
高1m (2000℃程度まで上昇する)になり、しか
も加圧しているのでZrO2粒子とWC粒子が焼結して
Z r O2W C複合焼結体が得られるのである。
In the reaction to Z r + W O2+C+ Z r O2+W , the reduced W metal reacts with C to become WC based on the reduction of WO2 by Zr. Since the reaction heat at this time is large, no external heating is required (even if the sample becomes 1 m high (up to about 2000°C), and the pressure is applied, the ZrO2 particles and WC particles are sintered and ZrO2W A C composite sintered body is obtained.

表1には他の試料についての実験結果もあわせて示した
。この表では、複合焼結体の相対密度が90%以上の試
料にはセラミックス基板等として十分に実用化可能なの
で○印を、相対密度が85%から90%の間の試料は非
常に低いコストで製造でき、実用化の可能性があるので
Δ印を、相対密度が85%以下の試料は、実用化の可能
性がないと考えられるのでX印とした。比較例(試料7
と8)で示したようにタングステン原料としてW O3
を用いた場合には、反応が激しくしかも反応時の体積収
縮が非常に大きいので、得られる複合焼結体の相対密度
が低いことがわかる。それに対してWO2を用いると得
られる焼結体の相対密度が高くなる。これは、W O2
を出発原料をとして用いるとW O2を用いる場合に比
較して反応時に発生する熱量が小さい(それでも室温で
十分反応する)が、反応時の体積収縮が非常に小さいの
で試料にスムーズにプレスの圧力が伝達でき、そのため
得られる複合焼結体の相対密度が高くなるものと考えら
れる。
Table 1 also shows experimental results for other samples. In this table, samples with a relative density of 90% or more of the composite sintered body are marked with a circle because they can be put to practical use as ceramic substrates, etc., and samples with a relative density between 85% and 90% have a very low cost. A sample with a relative density of 85% or less is marked with an X because it is considered that there is no possibility of practical use. Comparative example (sample 7
and 8), W O3 is used as a tungsten raw material.
When using this method, the reaction is intense and the volumetric contraction during the reaction is very large, so it can be seen that the relative density of the resulting composite sintered body is low. On the other hand, when WO2 is used, the resulting sintered body has a higher relative density. This is W O2
When using WO2 as a starting material, the amount of heat generated during the reaction is smaller than when using WO2 (the reaction is still sufficient at room temperature), but the volumetric shrinkage during the reaction is very small, so the pressing pressure can be applied smoothly to the sample. It is thought that the relative density of the obtained composite sintered body becomes high.

表1の試料2と3および5と6は還元金属と炭素と二酸
化タングステンの他にさらにコバルト金属粉末を加えた
場合である。コバルト金属を用いるといずれの試料も加
えない場合に比べて得られる複合焼結体の相対密度が高
(なっていることがわかる(95%以上)。
Samples 2, 3, 5, and 6 in Table 1 are cases in which cobalt metal powder was further added in addition to the reduced metal, carbon, and tungsten dioxide. It can be seen that when cobalt metal is used, the relative density of the composite sintered body obtained is higher (95% or more) than when neither sample is added.

実施例2 出発原料として粒径10μm以下のジルコニウム粉末、
平均粒径2μmの二酸化タングステン粉末(WO2)、
それにアセチレンを原料とするカーボンブラックを用い
、それらを2.2.1のモル比で混合後、実施例1と同
様のプロセスで処理した。得られた焼結体をX線回折を
用いて同定したところβ型の炭化タングステン(β−W
2C)と正方晶系の酸化ジルコニウム(t−ZrO2)
と単斜晶系の酸化ジルコニウム(m−ZrO2)の回折
線しか見られなかった。またこの焼結体の相対密度は、
90%であった。また、t−ZrO2とm−ZrO2の
比率は実施例1の場合と同様に約1=1であった。
Example 2 Zirconium powder with a particle size of 10 μm or less as a starting material,
Tungsten dioxide powder (WO2) with an average particle size of 2 μm,
Carbon black made from acetylene was used therein, and after mixing them at a molar ratio of 2.2.1, the same process as in Example 1 was carried out. The obtained sintered body was identified using X-ray diffraction and was found to be β-type tungsten carbide (β-W
2C) and tetragonal zirconium oxide (t-ZrO2)
Only the diffraction lines of monoclinic zirconium oxide (m-ZrO2) were observed. Also, the relative density of this sintered body is
It was 90%. Further, the ratio of t-ZrO2 and m-ZrO2 was approximately 1=1 as in Example 1.

本実施例の場合も実施例1と同様に酸化タングステン原
料としてW Osを用いると得られた焼結体の相対密度
は78%であり、酸化ジルコニウムもすべて単斜晶系で
あった。
In this example, as in Example 1, when W 2 Os was used as the tungsten oxide raw material, the relative density of the obtained sintered body was 78%, and all of the zirconium oxide was monoclinic.

このプロセスの化学反応式はを以下に示した。The chemical reaction formula for this process is shown below.

2Zr+2WO2+C+2ZrO2+W2 C発明の効
果 本発明の製造方法によれば、還元金属の粉末と炭素と二
酸化タングステンとからなる混合物の成形体に圧力をか
けた状態で、その成形体の一部を強熱点火して燃焼反応
を起こさせるだけで高密度炭化タングステン−酸化物複
合焼結体が作製できる。従って、本発明の製造方法によ
れば、従来の炭化タングステン粉末と酸化物粉末を用い
た製造方法に比較してはるかに低温のプロセスで、つま
り、きわめて小さなエネルギーで炭化タングステン−酸
化物複合焼結体が作製できる。しかも、得られた焼結体
は、従来の製造方法によって作製した焼結体と全(変わ
らない特性を有している。
2Zr + 2WO2 + C + 2ZrO2 + W2 C Effects of the Invention According to the manufacturing method of the present invention, a part of the molded body is ignited under high heat while pressure is applied to a molded body of a mixture of reduced metal powder, carbon, and tungsten dioxide. A high-density tungsten carbide-oxide composite sintered body can be produced simply by causing a combustion reaction. Therefore, according to the manufacturing method of the present invention, the tungsten carbide-oxide composite sintering process is performed at a much lower temperature than the conventional manufacturing method using tungsten carbide powder and oxide powder, that is, with extremely low energy. A body can be created. Moreover, the obtained sintered body has properties that are completely the same as those of the sintered body produced by the conventional manufacturing method.

Claims (6)

【特許請求の範囲】[Claims] (1)還元用金属粉末と、炭素と、二酸化タングステン
粉末とからなる成形体を、加圧条件下でその成形体の一
部に点火して燃焼過程を開始させ、その後の金属粉末と
二酸化タングステン粉末と炭素の反応及び生成した炭化
タングステンと酸化物の焼結を、燃焼過程の結果発生す
る熱によって進行させる炭化タングステン−酸化物複合
焼結体の製造方法。
(1) A molded body made of reducing metal powder, carbon, and tungsten dioxide powder is ignited in a part of the molded body under pressurized conditions to start the combustion process, and then the metal powder and tungsten dioxide powder are ignited. A method for producing a tungsten carbide-oxide composite sintered body, in which the reaction between powder and carbon and the sintering of the generated tungsten carbide and oxide are advanced by heat generated as a result of the combustion process.
(2)加圧・加熱の条件下で、成形体に点火して燃焼過
程を開始させることを特徴とする特許請求の範囲第1項
記載の炭化タングステン−酸化物複合焼結体の製造方法
(2) A method for producing a tungsten carbide-oxide composite sintered body according to claim 1, characterized in that the compact is ignited under conditions of pressurization and heating to start a combustion process.
(3)還元用金属粉末が、アルミニウム粉末およびジル
コニウム粉末のうちのいずれかである特許請求の範囲第
1項記載の炭化タングステン−酸化物複合焼結体の製造
方法。
(3) The method for producing a tungsten carbide-oxide composite sintered body according to claim 1, wherein the reducing metal powder is either aluminum powder or zirconium powder.
(4)還元用金属粉末と、炭素と、二酸化タングステン
粉末と、コバルト金属粉末とからなる成形体を、加圧条
件下でその成形体の一部に点火して燃焼過程を開始させ
、その後の還元用金属粉末と二酸化タングステン粉末と
炭素の反応及び生成した炭化タングステン、酸化物、そ
れにコバルト金属の焼結を、燃焼過程の結果発生する熱
によって進行させる炭化タングステン−酸化物複合焼結
体の製造方法。
(4) A part of the compact made of reducing metal powder, carbon, tungsten dioxide powder, and cobalt metal powder is ignited under pressurized conditions to start the combustion process, and the subsequent Production of a tungsten carbide-oxide composite sintered body in which the reaction of reducing metal powder, tungsten dioxide powder, and carbon and the sintering of the generated tungsten carbide, oxide, and cobalt metal proceed with the heat generated as a result of the combustion process. Method.
(5)加圧・加熱の条件下で、成形体に点火して燃焼過
程を開始させることを特徴とする特許請求の範囲第4項
記載の炭化タングステン−酸化物複合焼結体の製造方法
(5) The method for producing a tungsten carbide-oxide composite sintered body according to claim 4, characterized in that the compact is ignited under conditions of pressurization and heating to start a combustion process.
(6)還元用金属粉末が、アルミニウム粉末およびジル
コニウム粉末のうちのいずれかである特許請求の範囲第
4項記載の炭化タングステン−酸化物複合焼結体の製造
方法。
(6) The method for producing a tungsten carbide-oxide composite sintered body according to claim 4, wherein the reducing metal powder is either aluminum powder or zirconium powder.
JP61128666A 1986-06-03 1986-06-03 Manufacture of tungsten carbide-oxide composite sintered body Pending JPS62288166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61128666A JPS62288166A (en) 1986-06-03 1986-06-03 Manufacture of tungsten carbide-oxide composite sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61128666A JPS62288166A (en) 1986-06-03 1986-06-03 Manufacture of tungsten carbide-oxide composite sintered body

Publications (1)

Publication Number Publication Date
JPS62288166A true JPS62288166A (en) 1987-12-15

Family

ID=14990437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61128666A Pending JPS62288166A (en) 1986-06-03 1986-06-03 Manufacture of tungsten carbide-oxide composite sintered body

Country Status (1)

Country Link
JP (1) JPS62288166A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02212347A (en) * 1989-02-10 1990-08-23 Toyota Central Res & Dev Lab Inc Production of composite material and composition as starting material
WO2001030722A1 (en) * 1999-10-27 2001-05-03 Nippon Tungsten Co., Ltd. Wc-base composite ceramic sintered compact

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02212347A (en) * 1989-02-10 1990-08-23 Toyota Central Res & Dev Lab Inc Production of composite material and composition as starting material
WO2001030722A1 (en) * 1999-10-27 2001-05-03 Nippon Tungsten Co., Ltd. Wc-base composite ceramic sintered compact
US6551954B1 (en) * 1999-10-27 2003-04-22 Nippon Tungsten Co., Ltd. WC-base composite ceramic sintered compact

Similar Documents

Publication Publication Date Title
US4902457A (en) Method for manufacturing a porous material or a composite sintered product comprising zirconium oxide and a carbide
JPH0651593B2 (en) Method for manufacturing aluminum nitride sintered body
JPS62288166A (en) Manufacture of tungsten carbide-oxide composite sintered body
JP2000203933A (en) Production of transparent yttrium/aluminum/garnet sintered body by dry mixing method
JPS62256767A (en) Manufacture of composite sintered body comprising carbonitride and oxide
JPH05508611A (en) Cerium phase in silicon nitride containing cerium
JPS6213310B2 (en)
JP2662863B2 (en) Method for producing silicon nitride based sintered body
JPH0672062B2 (en) Method for producing composite sintered body composed of carbide and complex oxide
JPS5891065A (en) Manufacture of silicon carbide ceramic sintered body
JPS62235258A (en) Manufacture of carbide oxide composite sintered body
JPS62283874A (en) Manufacture of composite sintered body comprising molybdenum silicate and oxide
JPS62288165A (en) Manufacture of titanium carbide-oxide composite sintered body
JPS6270210A (en) Production of aluminum nitride-silicon carbide composite fine powder
JPH075369B2 (en) Method for producing composite sintered body composed of carbide and two or more kinds of oxides
JPH01145380A (en) Production of silicon nitride sintered form
JPS62235256A (en) Manufacture of zirconium oxide base composite sintered body
JPS62275067A (en) Manufacture of silicon nitride sintered body
JPS62256766A (en) Manufacture of composite sintered body comprising nitride and oxide
JPS6321254A (en) Manufacture of silicon nitride ceramics
JPS63282165A (en) Powder mixture containing zirconium oxide and boride and production of composite sintered body containing said powder
RU2058961C1 (en) Method for production of ceramics from titanium dioxide (tinpox)
JPH0531516B2 (en)
JPH0772103B2 (en) Method for producing composite sintered body composed of carbide and complex oxide
JPH09183648A (en) Aluminous sintered compact