JPS621782B2 - - Google Patents

Info

Publication number
JPS621782B2
JPS621782B2 JP56086683A JP8668381A JPS621782B2 JP S621782 B2 JPS621782 B2 JP S621782B2 JP 56086683 A JP56086683 A JP 56086683A JP 8668381 A JP8668381 A JP 8668381A JP S621782 B2 JPS621782 B2 JP S621782B2
Authority
JP
Japan
Prior art keywords
catalyst
powder
present
resin powder
fired
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56086683A
Other languages
Japanese (ja)
Other versions
JPS57201534A (en
Inventor
Hidefusa Uchikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP56086683A priority Critical patent/JPS57201534A/en
Publication of JPS57201534A publication Critical patent/JPS57201534A/en
Publication of JPS621782B2 publication Critical patent/JPS621782B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】 本発明は、有機金属化合物重合体を用いる触媒
または触媒担体の製作方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a catalyst or catalyst carrier using an organometallic compound polymer.

従来からある触媒の一般的な製作方法は、触媒
担体としてAl2O3,SiO2,SiC,TiO2,SiO2
Al2O3などの粉末粒子を用い、これを触媒物質と
ともに加圧焼結するか、または単独で焼結した後
に、沈殿法、熱分解法、浸漬法、蒸着法などの方
法で触媒物質を担持付着させるものであつた。こ
れらのものは、ペレツト状、ハニカム状等の形状
に成型されて使用されるのがほとんどである。し
たがつて、従来のものでは、触媒として膜状のも
のを製作したり、ある目的物表面に塗着させて用
いるなどの特殊な使用は、粉末粒子を加圧焼結す
るという方法を用いる限り、困難な状況にあると
言えた。
The conventional general method for producing catalysts is to use Al 2 O 3 , SiO 2 , SiC, TiO 2 , SiO 2 - as catalyst carriers.
Powder particles such as Al 2 O 3 are used and pressure sintered together with a catalytic material, or after sintering alone, a catalytic material is added by a method such as a precipitation method, a pyrolysis method, an immersion method, or a vapor deposition method. It was supported and attached. Most of these materials are used in the form of pellets, honeycombs, or the like. Therefore, with conventional products, special uses such as producing a film-like catalyst or coating it on the surface of a certain object can only be achieved by press-sintering powder particles. , it could be said that they were in a difficult situation.

本発明は、この点を解消して、良好な触媒作用
を有する皮膜として目的物表面に塗着させて用い
ることができるばかりでなく、従来のもののよう
に、ペレツト状、ハニカム状その他の形状にも自
由に成型できる触媒または触媒担体を製作する方
法を提供したものである。
The present invention solves this problem, and not only can it be used as a coating having good catalytic action by being applied to the surface of an object, but it can also be applied to a pellet-like, honeycomb-like, or other shape like the conventional ones. The present invention also provides a method for producing a catalyst or catalyst carrier that can be freely molded.

すなわち、本発明では、触媒または触媒担体の
主材料として有機金属化合物重合体を用い、化学
物質が触媒物質と接触して反応を行なわせ易くす
るために、表面を多孔質化する目的で、樹脂粉末
もしくは炭素質粉末を上記有機金属化合物中に混
入分散させた後に、これらが焼失するまで焼成を
行なうという工程を有する。
That is, in the present invention, an organometallic compound polymer is used as the main material of the catalyst or catalyst carrier, and a resin is added to make the surface porous in order to make it easier for the chemical substance to contact the catalyst substance and cause a reaction. The method includes a step of mixing and dispersing the powder or carbonaceous powder into the organometallic compound and then firing it until the powder or carbonaceous powder is burned out.

以下、実施例にしたがつて、本発明の詳細につ
いて説明する。
Hereinafter, the details of the present invention will be explained according to Examples.

〔実施例1〕 有機金属化合物重合体として、キシレンに溶解
させた有機けい素化合物(メチルフエニルシリコ
ーン)の初期重合物を用い、この中に若干の添加
剤とともにエポキシ樹触粉末を添加した後に、こ
れらの混合物をボールミルにて十分に混練した。
この混練物をスプレーにてアルミナ絶縁基板上に
約200μの厚さに塗布し、塗布物を電気炉を用い
て80℃で30分間予備焼成後、600℃で1時間焼成
して、エポキシ樹脂粉末を焼失させた。なお、上
記と同一の有機けい素化合物の初期重合体を用い
て、エポキシ樹脂粉末を混入させずに同一条件で
塗布焼成したものも用意した。両者のサンプルの
表面を走査型電子顕微鏡で観察したところ、後者
は、第1図のようであるのに対して、前者の本発
明によるものは、第2図のように非常に多孔質な
粗面が形成されていることがわかつた。これは、
本発明によるものが、焼成の際に、有機けい素化
合物における有機物の分解のみならず、混入させ
たエポキシ樹脂粉末の分解焼失が起こり、この際
に表面の多孔質化が促進されるものと考えられ
る。
[Example 1] As the organometallic compound polymer, an initial polymerization of an organosilicon compound (methylphenyl silicone) dissolved in xylene was used, and after adding epoxy resin powder together with some additives to this, These mixtures were sufficiently kneaded in a ball mill.
This kneaded material was sprayed onto an alumina insulating substrate to a thickness of approximately 200 μm, and the coated material was pre-baked at 80°C for 30 minutes using an electric furnace, and then fired at 600°C for 1 hour to form an epoxy resin powder. was burnt down. A sample was also prepared in which the same initial polymer of the organosilicon compound as above was used and coated and baked under the same conditions without mixing the epoxy resin powder. When the surfaces of both samples were observed using a scanning electron microscope, the latter was as shown in Figure 1, while the former sample according to the present invention had a very porous rough surface as shown in Figure 2. It was found that a surface was formed. this is,
It is thought that during firing, the product according to the present invention not only decomposes the organic matter in the organosilicon compound, but also decomposes and burns out the mixed epoxy resin powder, which promotes the formation of porosity on the surface. It will be done.

つぎに、上記両者のサンプルを触媒担体とし、
これを、5%塩化白金酸のエタノール溶液中に10
分間浸漬させた後、電気炉にて550℃で20分間焼
成して、表面に白金を担持(付着)させた。この
両者の表面における任意の5点に、それぞれラー
ド油を滴下し、300℃20分間の加熱前後における
重量変化から、ラード油の分解(除去率)におけ
る触媒性能の差を調べた。その結果、有機けい素
化合物の塗布皮膜焼成時にエポキシ樹脂粉末を混
入させない方のものは、除去率が68%であるのに
対し、エポキシ樹脂粉末を混入させて焼成した本
発明のものの方は、88%と除去率が前者より20%
も優れていることがわかつた。この理由として
は、本発明によるものが、第2図のような多孔質
粗面を有するために、触媒担体として非常に都合
が良い、すなわち、白金の担持が容易になるとと
もに、白金とラード油との接触表面積が大である
ことによつて触媒作用が発揮され易くなつたこと
のためであると考えられる。
Next, both of the above samples were used as catalyst carriers,
This was added to a solution of 5% chloroplatinic acid in ethanol for 10 minutes.
After being immersed for a minute, it was fired in an electric furnace at 550°C for 20 minutes to support (adhere) platinum on the surface. Lard oil was dropped at five arbitrary points on both surfaces, and the difference in catalytic performance in lard oil decomposition (removal rate) was investigated from the weight change before and after heating at 300°C for 20 minutes. As a result, the removal rate was 68% for the organic silicon compound coated film in which epoxy resin powder was not mixed during firing, whereas the film of the present invention in which epoxy resin powder was mixed and fired, The removal rate is 88%, which is 20% higher than the former.
It turned out that it was also excellent. The reason for this is that the catalyst according to the present invention has a porous rough surface as shown in Figure 2, which makes it very convenient as a catalyst carrier. It is thought that this is because the catalytic action is more easily exerted due to the large contact surface area with the catalyst.

なお、両者のサンプルとも、アルミナ絶縁基板
上への塗着皮膜の付着性は良好であり、強固で剥
離しにくいものであつた。
In both samples, the coating film had good adhesion to the alumina insulating substrate, and was strong and difficult to peel off.

〔実施例2〕 有機金属化合物重合体として、有機チタン化合
物(テトラーn―ブチルチタネート)を用い、皮
膜補強剤等の添加剤とともに酸化触媒である
Co3O4の粉末を混入させ、続いて、アセチレンブ
ラツク(微粉状)を添加した後、これらの混合物
をボールミルにて十分に混練した。この混練物を
ハケにてアルミナ絶縁基板上に約250μの厚さに
塗布し、塗布物を電気炉を用いて、100℃で30分
間予備焼成後、650℃で1時間焼成してアセチレ
ンブラツク粉末を焼失させた。なお、上記と全く
同一の材料および製作方法を用い、アセチレンブ
ラツクを混入させないものについても同様のサン
プルを製作した。両者のサンプルの表面を実施例
1の場合と同様に走査型電子顕微鏡で観察したと
ころ、やはり本発明の方法によるアセチレンブラ
ツクを混入させて焼成したものの方が図bと同様
に無数の微細な空孔が形成され、より多孔質な粗
面となつていることがわかつた。つぎに、上記両
者の触媒サンプルを用い、実施例1の場合と同様
に300℃に加熱前後の重量変化から、リノール酸
の分解除去に関する触媒性能を比較した。その結
果、アセチレンブラツクを混入させずに焼結した
ものは、56%の除去率であつたのに対して、本発
明の方法によるものは、73%と高い除去率を示し
た。すなわち、この場合においても、本発明の方
法により製作したものの方が、Co3O4によるリノ
ール酸の酸化分解反応における触媒作用がより優
れていると言える。
[Example 2] An organic titanium compound (tetra n-butyl titanate) was used as the organic metal compound polymer, and an oxidation catalyst was used together with additives such as a film reinforcing agent.
After mixing Co 3 O 4 powder and subsequently adding acetylene black (fine powder), the mixture was sufficiently kneaded in a ball mill. This kneaded material was applied with a brush to a thickness of about 250μ on an alumina insulating substrate, and the coated material was pre-baked at 100℃ for 30 minutes using an electric furnace, and then baked at 650℃ for 1 hour to form acetylene black powder. was burnt down. A similar sample without acetylene black was also produced using the same materials and production method as above. When the surfaces of both samples were observed using a scanning electron microscope in the same manner as in Example 1, it was found that the sample baked with acetylene black mixed in according to the method of the present invention had numerous fine voids as shown in Figure b. It was found that pores were formed and the surface became more porous and rough. Next, using both of the above catalyst samples, the catalyst performance regarding decomposition and removal of linoleic acid was compared based on the weight change before and after heating to 300° C. as in Example 1. As a result, the removal rate was 56% in the case of sintering without acetylene black, whereas the removal rate was as high as 73% in the case of the method of the present invention. That is, even in this case, it can be said that the product produced by the method of the present invention has a better catalytic action in the oxidative decomposition reaction of linoleic acid by Co 3 O 4 .

〔実施例3〕 有機金属化合物重合体として、下記のような有
機すず化合物の重合体を用い、これにカーボンブ
ラツク(微粉状)を添加した後、混合物をボール
ミルにて十分に混練した。
[Example 3] As the organometallic compound polymer, a polymer of an organotin compound as shown below was used, and after carbon black (fine powder) was added thereto, the mixture was sufficiently kneaded in a ball mill.

この混練物をスプレーにて金属多孔体(ステン
レス製)に塗布し、150℃で予備焼成した後に750
℃で1時間焼成してカーボンブラツク粉末を焼失
させた。なお、上記と同一の材料および製作方法
を用い、カーボンブラツクを混入させずに焼成し
たサンプルも用意した。両者のサンプルを、通気
性を有する触媒として使用し、350℃において、
これらに一酸化炭素を通過させ、通過後の二酸化
炭素への変換率を調べた。その結果、カーボンブ
ラツクを混入させずに焼成したものは、変換率が
80%以下であつたのに対して、カーボンブラツク
を混入させて焼成した本発明の方法によるもの
は、常に90%以上の変換率が得られ、この反応に
おける触媒作用が良好であることがわかつた。な
お、この場合の触媒物質は、もちろん前記重合体
の焼成によるSnO2である。
This kneaded material was applied to a porous metal body (made of stainless steel) by spray, and after pre-baking at 150℃,
The carbon black powder was burnt off by firing at ℃ for 1 hour. A sample was also prepared which was fired using the same materials and manufacturing method as above but without the addition of carbon black. Both samples were used as gas permeable catalysts at 350°C.
Carbon monoxide was passed through these, and the conversion rate to carbon dioxide after passing was examined. As a result, the conversion rate of products fired without carbon black was lower.
On the other hand, in the method of the present invention in which carbon black was mixed and fired, a conversion rate of 90% or more was always obtained, indicating that the catalytic effect in this reaction was good. Ta. Note that the catalyst material in this case is, of course, SnO 2 obtained by calcination of the polymer.

〔実施例4〕 実施例1と用いたものと全く同一組成の混練物
を用い、これを樹脂ペレツト製作用の注型金型に
流し込み、80℃で20分間、ついで200℃で30分間
予備焼成後に、多数の通気孔を貫通させ、ペレツ
トを取り出して700℃で1時間焼成することによ
りエポキシ樹脂粉末を焼失させた。また、同様の
製作方法により、エポキシ樹脂粉末を混入させず
に焼成したペレツトも製作した。200℃におい
て、両者のサンプルを通過後のホルムアルデヒド
の酸化効率を調べたところ、エポキシ樹脂粉末を
混入させずに焼成したものの方は、酸化効率が85
〜90%程度であつたのに対し、本発明のエポキシ
樹脂粉末を混入後焼成したものは、常に95〜100
%という高い効率を示した。
[Example 4] A kneaded material having the same composition as that used in Example 1 was used, poured into a casting mold for making resin pellets, and pre-baked at 80°C for 20 minutes and then at 200°C for 30 minutes. Afterwards, the epoxy resin powder was burned out by making a number of ventilation holes through the pellets, taking out the pellets, and baking them at 700° C. for 1 hour. In addition, pellets fired without mixing epoxy resin powder were also manufactured using the same manufacturing method. When we investigated the oxidation efficiency of formaldehyde after passing through both samples at 200℃, we found that the oxidation efficiency of the one fired without mixing epoxy resin powder was 85%.
90%, whereas the epoxy resin powder of the present invention mixed in and baked always had a 95 to 100%
It showed a high efficiency of %.

実施例1〜4からわかるように、本発明の方法
によつて触媒担体(もしくは触媒)の多孔質化を
促進させたものは、化学反応に関与する液体もし
くは気体と触媒物質との接触表面積が大であるた
め、優れた触媒性能を得ることができる。また、
実施例1〜3のように、目的物表面に塗着させて
用いるばかりでなく、実施例4のように、従来の
ペレツト状等の形状のものも容易に製作すること
ができる。
As can be seen from Examples 1 to 4, the catalyst carrier (or catalyst) whose porosity is promoted by the method of the present invention has a large contact surface area between the liquid or gas involved in the chemical reaction and the catalyst material. Because of its large size, excellent catalytic performance can be obtained. Also,
As in Examples 1 to 3, it is not only used by applying it to the surface of an object, but also as in Example 4, it can be easily produced in the form of a conventional pellet or the like.

ところで、発明者は、実施例で用いたエポキシ
樹脂、アセチレンブラツク、カーボンブラツクば
かりでなく、アクリル樹脂、メラミン樹脂、塩化
ビニル樹脂、フエノール樹脂、ポリエステル樹
脂、ポリエチレン樹脂その他の樹脂粉末およびグ
ラフアイト、ランプブラツクその他の炭素質粉を
用いて、前記実施例1〜4と同様の製作方法によ
り、触媒または触媒担体を製作し、その性能を調
べたところ、すべてこれらの粉末粒子を混入させ
ないものよりも良好な触媒性能が得られた。した
がつて、本発明で有機金属化合物中に混入させた
後、焼成することによつて焼失させる粉末粒子と
しては、上記のような樹脂粉末もしくは炭素質粉
末の中から、少なくとも1種以上のものを選定し
て用いればよい。そして、実施例からもわかるよ
うに、焼成時には、これらのものが焼失し去るま
で焼成して有機金属化合物表面の多孔質化を促進
させることが触媒性能を良好にするためのポイン
トとなる。混入させた粉末粒子が焼失し去る温度
は、樹脂粉末および炭素質粉末の種類によつて差
違があるが、発明者の実験では概ね600〜800℃の
温度範囲のものが多かつた。なお、本発明では、
触媒もしくは触媒担体の多孔質化の程度によつ
て、粉末粒子の混入比率を変化させればよいた
め、便利である。ここでは、とくに混入比率は規
定しないので、製作時に適宜調節すればよい。
By the way, the inventors used not only the epoxy resin, acetylene black, and carbon black used in the examples, but also acrylic resin, melamine resin, vinyl chloride resin, phenol resin, polyester resin, polyethylene resin, and other resin powders, graphite, and lamp. Catalysts or catalyst carriers were produced using black and other carbonaceous powders by the same production method as in Examples 1 to 4, and their performance was examined. All of them were better than those not mixed with these powder particles. catalytic performance was obtained. Therefore, in the present invention, the powder particles that are mixed into the organometallic compound and then burned out by firing include at least one kind of resin powder or carbonaceous powder as described above. It is sufficient to select and use the following. As can be seen from the examples, the key to improving the catalyst performance is to promote porosity on the surface of the organometallic compound by firing until these substances are burned away. The temperature at which the mixed powder particles burn out varies depending on the type of resin powder and carbonaceous powder, but in the inventor's experiments, most of the temperatures ranged from 600 to 800°C. In addition, in the present invention,
This is convenient because the mixing ratio of powder particles can be changed depending on the degree of porosity of the catalyst or catalyst carrier. Here, since the mixing ratio is not particularly specified, it may be adjusted as appropriate during manufacturing.

また、本発明で原料の主材料として用いる有機
金属化合物重合体としては、実施例で用いたもの
のほかにも、アルミニウム、ナトリウム、カルシ
ウム、亜鉛、カドミウムその他の金属の有機化合
物重合体を使用できる。そして、有機金属化合物
重合体によつては、実施例1,2のように触媒担
体として用いられるもの、もしくは、実施例3の
ように触媒担体と触媒物質との性質を兼ね備えた
触媒として用いられるものとがある。前者の場
合、触媒として用いるためには、実施例1のよう
に、本発明の製作方法を実施した後に、触媒物質
を担持するか、または、実施例2のように本発明
の製作方法を実施時に同時に触媒物質を混入すれ
ばよい。
Furthermore, as the organic metal compound polymer used as the main raw material in the present invention, in addition to those used in the examples, organic compound polymers of aluminum, sodium, calcium, zinc, cadmium, and other metals can be used. Depending on the organometallic compound polymer, it can be used as a catalyst carrier as in Examples 1 and 2, or as a catalyst that has both the properties of a catalyst carrier and a catalyst substance as in Example 3. There is something. In the former case, in order to use it as a catalyst, the catalyst material is supported after carrying out the production method of the present invention as in Example 1, or the production method of the present invention is carried out as in Example 2. Sometimes a catalyst substance may be mixed at the same time.

以上説明したように、原料の主材料として有機
金属化合物重合体を用い、この中に樹脂粉末もし
くは炭素質粉末を混入分散させる工程後に、この
樹脂粉末または炭素質粉末が焼失し去るまで焼成
して表面を多孔質化する工程を有する本発明の触
媒または触媒担体の製作方法であれば、良好な触
媒作用を有する皮膜として目的物表面に塗着させ
て用いることができるばかりでなく、従来のもの
のようなペレツト状等の形状でも、良好な性能を
有する触媒もしくは触媒担体を製作することがで
きる。そのため、各種の化学反応に対する触媒を
広く提供することができるものである。
As explained above, an organometallic compound polymer is used as the main raw material, and after the process of mixing and dispersing resin powder or carbonaceous powder into the polymer, the polymer is fired until the resin powder or carbonaceous powder is burned away. The method for producing a catalyst or catalyst carrier of the present invention, which includes a step of making the surface porous, not only allows it to be applied to the surface of an object as a film with good catalytic action, but also can be applied to the surface of a target object. It is possible to produce catalysts or catalyst carriers with good performance even in the form of pellets. Therefore, catalysts for various chemical reactions can be widely provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は従来、及び本発明の実施例
による塗布焼成したものの表面をそれぞれ走査型
電子顕微鏡で見た焼結組織を示す図面に代る写真
である。
FIGS. 1 and 2 are photographs in place of drawings showing the sintered structures of the surfaces of coated and fired products according to the conventional method and the embodiment of the present invention, respectively, as seen with a scanning electron microscope.

Claims (1)

【特許請求の範囲】[Claims] 1 原料の主材料として、有機金属化合物重合体
を用い、この中に樹脂粉末もしくは炭素質粉末を
混入分散させる工程後に、前記樹脂粉末または炭
素粉末が焼失するまで焼成して表面を多孔質化す
る工程を有することを特徴とする触媒または触媒
担体の製作方法。
1. An organometallic compound polymer is used as the main raw material, and after a step of mixing and dispersing resin powder or carbonaceous powder therein, the surface is made porous by firing until the resin powder or carbon powder is burned out. A method for producing a catalyst or a catalyst carrier, comprising the steps of:
JP56086683A 1981-06-05 1981-06-05 Manufacture of catalyst or catalyst carrier Granted JPS57201534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56086683A JPS57201534A (en) 1981-06-05 1981-06-05 Manufacture of catalyst or catalyst carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56086683A JPS57201534A (en) 1981-06-05 1981-06-05 Manufacture of catalyst or catalyst carrier

Publications (2)

Publication Number Publication Date
JPS57201534A JPS57201534A (en) 1982-12-10
JPS621782B2 true JPS621782B2 (en) 1987-01-16

Family

ID=13893799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56086683A Granted JPS57201534A (en) 1981-06-05 1981-06-05 Manufacture of catalyst or catalyst carrier

Country Status (1)

Country Link
JP (1) JPS57201534A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0513422Y2 (en) * 1985-11-18 1993-04-08

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6489766B2 (en) * 2014-06-26 2019-03-27 ダイセルポリマー株式会社 Fine particle carrier
JP6358902B2 (en) * 2014-09-02 2018-07-18 株式会社アルバック Method for producing exhaust gas purification catalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0513422Y2 (en) * 1985-11-18 1993-04-08

Also Published As

Publication number Publication date
JPS57201534A (en) 1982-12-10

Similar Documents

Publication Publication Date Title
US3758418A (en) Process for preparing a supported catalyst
JPH05138043A (en) Catalytic system particularly for afterburning of exhast gas and method for its production
AU657121B2 (en) Catalyst or membrane precursor systems, catalyst or membrane systems, and method of preparing such systems
RU2151000C1 (en) Method of preparing catalyst carrier
JPH0254302B2 (en)
JP2003508329A (en) Mullite body and method for forming mullite body
JPH0622685B2 (en) Method for manufacturing catalyst-coated honeycomb structure
JPWO2003035577A1 (en) Silicon carbide based porous structure and method for producing the same
WO2012105478A1 (en) Silicon carbide material, honeycomb structure and electric-heating type catalyst carrier
RU2528919C2 (en) Production of alkaline metal alloys and their application
WO2004035207A1 (en) Silicon carbide-based catalytic material and process for producing the same
JPS621782B2 (en)
JPH04229592A (en) Microwave absorption heating body
JP6442416B2 (en) Method for forming oxide-coated substrate
JPH1052645A (en) Coating with catalytic action on ceramic molding surface for synthesis of hydrogen cyanide
JPS6245344A (en) Catalyst carrier and its preparation
NL1006638C2 (en) Thin ceramic coatings.
Krivoshapkina et al. Carbon monoxide oxidation over microfiltration ceramic membranes
JP2004189576A (en) Silicon carbide-based porous structure material coated with ceramic, and its producing method
JP2005132944A (en) Coating agent for fixing photocatalyst particles, photocatalyst particle fixing method and photocatalyst carrying member
NL1011098C2 (en) Ceramic coating.
JP6669549B2 (en) Catalyst, method for producing catalyst, and method for producing hydrogen using catalyst
JP7269562B2 (en) Catalyst carrier and catalyst manufacturing method
JP2006212527A (en) Catalyst, catalyst carrier, and manufacturing method of catalyst carrier
US5178908A (en) Process for coating carbonized material with metal