JPS62176672A - Brazing method for aluminum made heat exchanger having excellent corrosion resistance - Google Patents

Brazing method for aluminum made heat exchanger having excellent corrosion resistance

Info

Publication number
JPS62176672A
JPS62176672A JP1762386A JP1762386A JPS62176672A JP S62176672 A JPS62176672 A JP S62176672A JP 1762386 A JP1762386 A JP 1762386A JP 1762386 A JP1762386 A JP 1762386A JP S62176672 A JPS62176672 A JP S62176672A
Authority
JP
Japan
Prior art keywords
brazing
heat exchanger
flux
corrosion resistance
liquid passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1762386A
Other languages
Japanese (ja)
Other versions
JPH0677808B2 (en
Inventor
Shoichi Furuta
古田 正一
Tatsuo Otsuka
大塚 達雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altemira Co Ltd
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Priority to JP61017623A priority Critical patent/JPH0677808B2/en
Publication of JPS62176672A publication Critical patent/JPS62176672A/en
Publication of JPH0677808B2 publication Critical patent/JPH0677808B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Prevention Of Electric Corrosion (AREA)

Abstract

PURPOSE:To improve the corrosion resistance by brazing the liquid passing tube for heat exchanger consisting of the Al alloy containing Cu and Mn in the specified quantity and the fin consisting of Al of Al alloy by using KAlF4- KF group flux. CONSTITUTION:The composition of the liquid tube 2 for heat exchanger is of the Al alloy containing 0.4-1.0wt% Cu and 0.2-0.8% Mn if necessary and the balance being composed of Al with impurities. The liquid tube is subjected to corrosion protection by the anode action of the fin which makes the electrode potential of the liquid tube 2 high and has lower electrode potential than that of the liquid tube 2 by this composition. In case of brazing, what is of the mixing proportion containing 80-99% KAlF4 and 20-0.2% KF is used for the flux. The liquid tube 2 and fin 3 are joined by brazing by melting a brazing filler metal with their drying and heating after flux coating. By said brazing the corrosion resistance of the liquid tube is improved and the heat exchanger in perfect junction state can be formed.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は耐食性に優れたアルミニウム製熱交換器のろ
う付方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a method for brazing aluminum heat exchangers with excellent corrosion resistance.

従来の技術及び問題点 従来、自動車用ラジェーター、カークーラー用エバポレ
ーターあるいはコンデンサー等のアルミニウム製熱交換
器を、フラックスろう付仕様によりて製造する場合、塩
化亜鉛等を添加した塩化物系のフラックスを用いて熱交
換器用構成部材である通液管とフィンとをろう付接合す
る方法が知られている。これはろう付により各部材の接
合と同時に、亜鉛をろう付加熱により前記構成部材の表
面に析出させ、かつ該部材中に拡散せしめて、その亜鉛
拡散層の犠牲陽極効果により熱交換器の耐食性の向上を
併せて期待するためである。
Conventional technology and problems Conventionally, when manufacturing aluminum heat exchangers such as automobile radiators, car cooler evaporators, or condensers using flux brazing specifications, chloride-based fluxes containing zinc chloride, etc. were used. 2. Description of the Related Art A method is known in which a liquid passage pipe and a fin, which are structural members for a heat exchanger, are joined together by brazing. At the same time as each member is joined by brazing, zinc is precipitated on the surface of the component member by heat added to the brazing and diffused into the member, and the sacrificial anode effect of the zinc diffusion layer improves the corrosion resistance of the heat exchanger. This is because we hope that this will also improve the results.

しかしながら、このような方法では、使用するフラック
スが本質的に水溶性であり、強い吸湿性を有しているた
めに、ろう付後速やかにフラックスの残渣を洗浄除去す
る必要があり、このために設備費が高くなると共に、工
程が複雑化して多大の作業負担がかかる欠点があった。
However, in this method, since the flux used is essentially water-soluble and has strong hygroscopic properties, it is necessary to wash and remove flux residue immediately after brazing. This method has the drawbacks of high equipment costs, complicated processes, and a heavy workload.

かつもちろんフラックス残渣の除去が不完全であると腐
蝕のおそれがあった。
And of course, if the removal of flux residue was incomplete, there was a risk of corrosion.

一方、上記のようなフラックス洗浄を不要とするろう付
方法として、亜鉛やフッ化亜鉛等を添加したフルオロア
ルミニウム錯塩(K3ArlF6及びKAQF4 )を
組成物とする非腐蝕性のフッ化物系のフラックスを用い
てろう付する方法も提案されている(例えば特開昭56
−160869号)が、かかるろう付は通常不活性ガス
雰囲気等の非酸化性雰囲気中で実施されるため、フラッ
クス使用量を少なくしてろう付を行うことができる反面
、フラックス中の亜鉛成分の絶対量が少なくなって充分
な拡散層の形成が困難となり、従って充分な防食効果を
発揮しうるちのではなかった。しかも上記フラックスの
製造が、実際に工業的に生産される場合には、一般的に
、ApF3とKFとを出発物質とし、該出発物質を、そ
の共晶混合物であるKAΩF4とに3AQF6とが所定
の比率となるような適正な比率で乾燥状態にて混合し、
この混合物を一旦溶融し、その溶融混合物を冷却凝固せ
しめることによりなされるものであるため、製造工数が
多く調整が面倒であるというような問題もあった。
On the other hand, as a brazing method that does not require flux cleaning as described above, a non-corrosive fluoride-based flux whose composition is a fluoroaluminum complex salt (K3ArlF6 and KAQF4) to which zinc or zinc fluoride is added is used. A method of brazing has also been proposed (for example, JP-A-56
-160869), but since such brazing is usually carried out in a non-oxidizing atmosphere such as an inert gas atmosphere, it is possible to perform brazing with a reduced amount of flux; The absolute amount was so small that it became difficult to form a sufficient diffusion layer, and therefore it was not possible to exhibit a sufficient anticorrosive effect. Moreover, when the above-mentioned flux is actually produced industrially, ApF3 and KF are generally used as starting materials, and the starting materials are mixed with KAΩF4, which is a eutectic mixture thereof, and 3AQF6 in a predetermined manner. Mix in a dry state in an appropriate ratio such that
Since the mixture is once melted and the molten mixture is cooled and solidified, there is a problem that the number of manufacturing steps is large and adjustment is troublesome.

この発明は、上記のような諸事項に鑑みてなされたもの
であって、可及的簡単かつ低コストの操作で耐食性に優
れたアルミニウム製熱交換器の製造を可能にしようとす
るものである。
This invention was made in view of the above-mentioned matters, and aims to make it possible to manufacture an aluminum heat exchanger with excellent corrosion resistance with as simple and low-cost operation as possible. .

問題点を解決するための手段 この目的において、発明者は種々実験と研究を重ねた結
果、熱交換器構成部材である通液管をAQ−Cu系合金
により形成することにより通液管の電極電位をフィンの
それよりも貴なるものとして犠牲防食作用により通液管
の耐食性を向上させ、しかもフラックスとして、新たに
開発した非腐蝕性のKAQFa −KF系フラックスを
用いてろう付することにより、耐食性に優れたアルミニ
ウム製熱交換器の製造に成功したものである。
Means for Solving the Problems For this purpose, as a result of various experiments and research, the inventors found that the electrodes of the liquid passage tubes were formed by forming the liquid passage tubes, which are the constituent members of the heat exchanger, from an AQ-Cu alloy. By making the potential more noble than that of the fins and improving the corrosion resistance of the liquid passage pipe through sacrificial corrosion protection, and by brazing using the newly developed non-corrosive KAQFa-KF flux as the flux, The company succeeded in manufacturing an aluminum heat exchanger with excellent corrosion resistance.

即ち、この発明は、Cu : 0. 4〜1. 0wt
%及び必要に応じてさらにMn:0.2〜0゜8wt%
を含有し、残部がアルミニウム及び不可避不純物からな
るアルミニウム合金によって形成した熱交換器用通液管
と、該通液管よりも電極電位の卑なアルミニウムまたは
アルミニウム合金により形成したフィンとを、KAlF
4:80〜99.8wt%、KF : 20〜0. 2
wt%の混合物からなるフラックスを用いてろう付する
ことを特徴とする耐食性に優れたアルミニウム製熱交換
器のろう付方法を要旨とするものである。
That is, in this invention, Cu: 0. 4-1. 0wt
% and further Mn as necessary: 0.2 to 0°8wt%
A liquid passage tube for a heat exchanger formed of an aluminum alloy containing aluminum and the remainder consisting of aluminum and unavoidable impurities, and a fin formed of aluminum or an aluminum alloy whose electrode potential is less noble than that of the liquid passage tube are used.
4:80-99.8wt%, KF: 20-0. 2
The gist of the present invention is a method for brazing an aluminum heat exchanger with excellent corrosion resistance, which is characterized by brazing using a flux consisting of a mixture of % by weight.

まず通液管の構成材料であるAI2合金において、Cu
は上述のように通液管の電極電位を十分に貴とするため
に添加含有されるものである。
First, in the AI2 alloy that is the constituent material of the liquid passage pipe, Cu
As mentioned above, is added to make the electrode potential of the liquid passage tube sufficiently noble.

かつまたCuは通液管の強度向上にも寄与するものであ
る。しかしその含有量が0.4wt未満ではそれらの効
果に乏しく、逆に1.0wt%を超えて含有されると、
確かに通液管の電極電位は貴となり強度も向上するが、
反面耐食性は低下し、しかも塑性加工性も低下する。従
ってCUの含有比率は0.4〜1.0wt%の範囲に規
定される。
Moreover, Cu also contributes to improving the strength of the liquid passage pipe. However, if the content is less than 0.4 wt%, these effects will be poor, and on the other hand, if the content exceeds 1.0 wt%,
It is true that the electrode potential of the liquid passage tube becomes nobler and the strength improves, but
On the other hand, corrosion resistance decreases, and plastic workability also decreases. Therefore, the content ratio of CU is defined in the range of 0.4 to 1.0 wt%.

さらに通液管の合金組成において、上記必須成分である
Cuに加えて、必要に応じてさらにMn:0.2〜0.
8wt%の含有が許容される。
Furthermore, in the alloy composition of the liquid passage tube, in addition to the above-mentioned essential component Cu, if necessary, Mn: 0.2 to 0.
A content of 8 wt% is allowed.

Mnもまた通液管の電極電位を貴にするとともに強度向
上効果にも寄与するものであるが、0゜2νt%未満で
はそれらの効果に乏しく、逆に0゜8wt%を超えて含
有されると塑性加工性が低下するのみならず、粒界腐蝕
感受性が増大し好ましくない。なお通液管の合金成分に
はCu、、Mn以外に不可避不純物としてのFeやSt
等の含有が許容される。
Mn also enriches the electrode potential of the liquid passage tube and contributes to the strength improvement effect, but if it is less than 0°2 νt%, these effects are poor, and conversely if it is contained in an amount exceeding 0°8wt%. This is not preferable because it not only reduces plastic workability but also increases susceptibility to intergranular corrosion. In addition to Cu and Mn, the alloy components of the liquid passage tube also contain unavoidable impurities such as Fe and St.
etc. are allowed.

一方この発明では、通液管と接合されるフィンが、通液
管よりも電極電位の卑なるアルミニウムまたはアルミニ
ウム合金により形成されたものであることを条件とする
。これはフィンの犠牲陽極作用によりこれを選択的に腐
蝕せしめて、通液管を防食するためである。かかるフィ
ン用アルミニウムまたはアルミニウム合金の一例として
は、JISA3003合金等のAQ−Mn系合金、純A
Ω等を挙げうる。
On the other hand, the present invention requires that the fins joined to the liquid passage tube be formed of aluminum or an aluminum alloy having an electrode potential less noble than that of the liquid passage tube. This is because the sacrificial anode action of the fins causes the fins to selectively corrode, thereby protecting the liquid passage pipe from corrosion. Examples of such aluminum or aluminum alloys for fins include AQ-Mn alloys such as JISA3003 alloys, pure A
Ω etc. can be mentioned.

上記のような通液管とフィンとをろう付により接合する
。この発明ではろう付に際し、KApF4:80〜99
.8wt%、KF:20〜0゜2wt%の割合で混合し
た混合物をフラックスとして用いるものとする。フラッ
クス中のKAρF4とKFとを上記の配合割合に選定す
ることにより、その融点を低いものとしてろう付加熱時
にフラックスを有効に作用せしめうるちのであり、KF
が許容下限値未満ではその効果に乏しく、逆に許容上限
値を超えて過多に混合された場合にも、特に完全融解温
度(液相線温度)の上昇を招いて良好なろう付を行うこ
とができなくなると共に、甚しくはフラックスの反応温
度が接合部材としての通液管やフィン材の融点以上にな
ってろう材自体が不可能になるおそれがある。このフラ
ックスの調整はKAΩF4とKFとを上記比率で混合す
ることにより行われるが、KAΩF4、KFとも市販品
として取引され入手が容易であることから、調整の簡易
性の点て、一般的にApF3及びKFを出発物として製
造される従来のに3 AQ F6−KAρF4系フラッ
クス等に較べて極めて有利である。
The liquid passage pipe and the fin as described above are joined by brazing. In this invention, during brazing, KApF4:80-99
.. A mixture of KF: 20 to 0.8 wt% and KF: 20 to 0.2 wt% shall be used as the flux. By selecting the above blending ratio of KAρF4 and KF in the flux, it is possible to lower the melting point and allow the flux to act effectively during brazing heating.
If it is less than the allowable lower limit, the effect will be poor, and conversely, if too much is mixed above the allowable upper limit, the complete melting temperature (liquidus temperature) will rise, making it difficult to achieve good brazing. In addition, there is a risk that the reaction temperature of the flux will exceed the melting point of the liquid passage pipe or fin material used as the bonding member, and the brazing material itself may become impossible. This flux adjustment is performed by mixing KAΩF4 and KF at the above ratio, but since both KAΩF4 and KF are traded as commercial products and are easily available, ApF3 is generally used for ease of adjustment. It is extremely advantageous compared to conventional NI3AQF6-KAρF4 fluxes produced using KF and KF as starting materials.

しかもこの発明に用いられるフラックスは残渣が非腐蝕
性であり、ろう付後の脱フラツクス処理を施さなくとも
製品の耐食性に何ら影響を与えることはない。
Furthermore, the flux used in the present invention has a non-corrosive residue, and does not affect the corrosion resistance of the product even if no defluxing treatment is performed after brazing.

ろう付を行うに際し、上記フラックスはこれを水等の液
体中にスラリーの形で懸濁して使用し、この懸濁液を接
合部材の少なくともいずれか一方に均一に伶布する。こ
の液体中への懸濁及び塗布を行い易くし、ひいてはろう
付性を良好にするために、フラックス成分の粉末粒径は
、概ね200μm以下のものとするのが良い。また上記
の塗布の手段は、噴霧あるいははけ塗り等を適用するこ
とも可能であるが、量産性に適した均一な塗布手段とし
て浸漬法を用いることが推奨される。
When performing brazing, the above-mentioned flux is used by suspending it in the form of a slurry in a liquid such as water, and this suspension is uniformly applied to at least one of the joining members. In order to facilitate suspension and application in this liquid and improve brazing properties, the powder particle size of the flux component is preferably approximately 200 μm or less. Although spraying or brushing can be used as the above-mentioned application method, it is recommended to use a dipping method as a uniform application method suitable for mass production.

接合部材である通液管とフィンは、上記フラックスの塗
布後これを乾燥させ、次いで不活性ガス雰囲気等の非酸
化性雰囲気の加熱炉等で、上記接合部材の融点より低く
、かつフラックスの融点よりも高い約580〜620℃
に加熱することにより、ろう材を溶融してろう相接合が
達成される。上記ろう材には例えばSi含有量約4. 
5〜13. 5wt%程度のA、12−Si系合金が用
いられる。そして該ろう材は作業性の点から、接合され
るべき通液管またはフィンの少なくとも一方にクラッド
して使用されるのが望ましい。
The liquid passage pipe and fins, which are the bonding members, are dried after being coated with the above-mentioned flux, and then heated in a heating furnace or the like in a non-oxidizing atmosphere such as an inert gas atmosphere to a temperature lower than the melting point of the bonding member and the melting point of the flux. Approximately 580-620℃ higher than
By heating to , the brazing material is melted and a brazing phase bonding is achieved. For example, the brazing filler metal has a Si content of about 4.
5-13. Approximately 5 wt% of A, 12-Si based alloy is used. From the viewpoint of workability, it is desirable that the brazing filler metal be used by cladding at least one of the liquid passage pipes or fins to be joined.

発明の効果 上述のようなこの発明の実施によれば、通液管の素材と
してAρ−Cu系合金を用いることによって、通液管の
電極電位をフィンに対して十分責な状態とすることがで
き、その犠牲防食作用により、通液管の耐食性を著しく
向上させることができる。かつまたCuあるいはさらに
Mnの添加含有により、通液管の強度をも併せて向上さ
せることができる。しかもこの発明に用いるKF−KA
βF4系フラックスは、接合部表面の酸化物破壊作用、
ろう材の塗れ拡がり促進作用等において優れたフラック
ス作用を示し、充分強固なろう付接合部の形成を可能と
すると共に、ろう付後の残渣が非腐蝕性のものであるた
め、従来の塩化物系フラックスを用いる場合のように、
ろう付後フラックス残渣を洗浄除去する必要性がなくな
る。従って、一連のろう付作業工程の簡素化をはかりつ
つ、一層腐蝕のおそれの少ない耐食性の極めて優れた完
全な接合状態の熱交換器の製造を可能とする。加えてこ
の発明に用いるフラックスは、KAQF4、KFとも市
販品として単体で入手可能であることから、これらを出
発物として混合することにより容易に調整可能であるか
ら、AgF2 、KFを出発物とする従来のに3 Af
lFe −KIF4系フラックスのような複雑な調整工
程を必要とせず、その調整を簡易に行いうる効果をも奏
するものである。
Effects of the Invention According to the implementation of the present invention as described above, by using an Aρ-Cu alloy as the material for the liquid passage pipe, it is possible to make the electrode potential of the liquid passage pipe sufficiently sensitive to the fins. Due to its sacrificial anti-corrosion effect, the corrosion resistance of the liquid pipe can be significantly improved. Furthermore, by adding Cu or Mn, the strength of the liquid passage pipe can also be improved. Moreover, KF-KA used in this invention
βF4-based flux has the effect of destroying oxides on the surface of the joint,
It exhibits an excellent flux effect in promoting the spread of brazing filler metal, making it possible to form sufficiently strong brazed joints, and the residue after brazing is non-corrosive, making it easier to use than conventional chlorides. As in the case of using a system flux,
There is no need to wash and remove flux residue after brazing. Therefore, while simplifying a series of brazing work steps, it is possible to manufacture a heat exchanger in a completely bonded state with less risk of corrosion and extremely excellent corrosion resistance. In addition, since both KAQF4 and KF are available individually as commercial products, the flux used in this invention can be easily adjusted by mixing them as starting materials. Therefore, AgF2 and KF are used as starting materials. Conventional 3 Af
It does not require a complicated adjustment process like the lFe-KIF4 flux, and has the advantage of being able to be easily adjusted.

実施例 次にこの発明の実施例を示す。Example Next, examples of this invention will be shown.

(実施例1) 下記第1表に示す各種組成の合金を用いて、第2図に示
すような厚さQ、7mmの4穴押出し形材を作製した。
(Example 1) Using alloys having various compositions shown in Table 1 below, four-hole extruded sections having a thickness Q of 7 mm as shown in FIG. 2 were produced.

第1表 一方、An−1,1wt%Mn−0,05wt%In合
金からなる心材の両面に、kQ−8wt%Siからなる
ろう材をそれぞれクラツド率1296でクラッドした厚
さ0.11mmのプレージングシートをコルゲート状に
加工した。そして前記押出し形材(1)を蛇行状に曲成
して通液管とするとともに、コルゲート状プレージング
シートを通液管の隣接部間に介在させてサーペンタイン
型熱交換器に組立てた。
Table 1 On the other hand, a 0.11 mm thick plate was prepared by cladding a core material made of An-1,1 wt% Mn-0,05 wt% In alloy with brazing filler metal made of kQ-8 wt% Si at a cladding ratio of 1296. processing sheet into a corrugated shape. Then, the extruded section (1) was bent into a meandering shape to form a liquid passage pipe, and a corrugated plating sheet was interposed between adjacent parts of the liquid passage pipe to assemble it into a serpentine heat exchanger.

次いで、KAfl F4 : 88wt%、KF:12
wt%の混合物からなるフラックスに水を加えて濃度7
%の懸濁液とし、この懸濁液中に、上記熱交換器組立物
を浸漬し乾燥した。尚、フラックス成分の粉末粒径はい
ずれも100μm以下とした。
Then, KAfl F4: 88 wt%, KF: 12
Add water to the flux consisting of a mixture of wt% to obtain a concentration of 7.
% suspension, and the heat exchanger assembly was immersed in this suspension and dried. Incidentally, the powder particle size of each flux component was 100 μm or less.

然る後、上記各組立物をN2ガス雰囲気の炉中で、61
0℃×5分間加熱してろう付を行い、第1図に示すよう
に、通液管(2)とフィン(3)とを接合し、その後ユ
ニオン(4)(4)を所定箇所にろう付して熱交換器(
コンデンサー)(5)を得た。
After that, each of the above assemblies was placed in a furnace with N2 gas atmosphere for 61 hours.
Brazing is performed by heating at 0°C for 5 minutes, and as shown in Figure 1, the liquid passage pipe (2) and the fin (3) are joined, and then the union (4) (4) is brazed at the specified location. Heat exchanger (
Capacitor) (5) was obtained.

そして上記により得られた各熱交換器の耐食性を調べる
ため、JIS−H8681に基く80G時間のCASS
試験を実施し、通液管に生じた孔食の深さを調べた。そ
の結果を第2表に示す。
In order to examine the corrosion resistance of each heat exchanger obtained above, a CASS test of 80G hours based on JIS-H8681 was conducted.
A test was conducted to examine the depth of pitting corrosion that occurred in the liquid pipe. The results are shown in Table 2.

第2表 (実施例2) 第3図に示すように、前記第1表の各種組成を有するア
ルミニウム合金からなる心材(2a)に、Ap−10w
t%St合金からなるろう材(2b)を片面クラッドし
たのち圧延、電縫溶接して厚さ0.4mmの偏平状の通
液管(2゛)を作製した。なお、ろう材のクラツド率は
10%とした。
Table 2 (Example 2) As shown in FIG. 3, Ap-10w
A brazing material (2b) made of a t%St alloy was clad on one side, then rolled and electric resistance welded to produce a flat liquid passage pipe (2') with a thickness of 0.4 mm. Note that the cladding ratio of the brazing filler metal was 10%.

次にAn−1,lvt%Mn−1,3vt%Zn合金よ
りなるコルゲートフィンを用意した。そして第4図に示
すように、前記通液管(2゛)を複数個間隔的に配設す
るとともに最外側の通液管の両外側にサイドプレート(
6)(6)を配置し、かつ通液管(2″)相互の間及び
通液管(2′)とサイドプレート(6)との間に前記コ
ルゲートフィン(3′)を介在せしめ、さらにヘッダー
ブレー) (7)(7)とヘッダータンク(8)(8)
とを所定位置に配置して熱交換器組立物に仮組みした。
Next, a corrugated fin made of an alloy of An-1, lvt% Mn-1, and 3vt% Zn was prepared. As shown in Fig. 4, a plurality of the liquid passage pipes (2゛) are arranged at intervals, and side plates (
6) (6) is arranged, and the corrugated fin (3') is interposed between the liquid passage pipes (2'') and between the liquid passage pipe (2') and the side plate (6), and header brake) (7) (7) and header tank (8) (8)
were placed in place and temporarily assembled into the heat exchanger assembly.

然る後、上記各組立物を実施例1と同じフラックス懸濁
液を用いかつ同一の条件で加熱してろう付を行い、その
後入ロバイブ(9)と出口バイブ(lO)とを所定箇所
にろう付して熱交換器(ラジェター)(5”)を得た。
After that, each of the above assemblies was heated and brazed using the same flux suspension and under the same conditions as in Example 1, and then the input vibrator (9) and the outlet vibrator (lO) were placed in the predetermined locations. A heat exchanger (radiator) (5") was obtained by brazing.

そして上記により得られた各熱交換器の耐食性を調べる
ため、実施例1と同様の方法で800時間のCASS試
験を実施し、通液管に生じた孔食の深さを調べた。その
結果を第3表に示す。
In order to examine the corrosion resistance of each of the heat exchangers obtained above, a CASS test was conducted for 800 hours in the same manner as in Example 1, and the depth of pitting corrosion that occurred in the liquid passage tubes was examined. The results are shown in Table 3.

第3表 第2表及び第3表の結果から明らかなように、本発明に
よれば耐食性に極めて優れた熱交換器を製作しうるちの
であることを確認しえた。
As is clear from the results in Tables 2 and 3, it has been confirmed that the present invention can produce a heat exchanger with extremely excellent corrosion resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図はこの発明の一実施例を示すもので、
第1図は熱交換器の正面図、第2図は第1図に示す熱交
換器の通液管構成用押出し形材の斜視図、第3図及び第
4図は他の実施例を示すもので、第3図は通液管の斜視
図、第4図は熱交換器の正面図である。 (2)(2”)・・・通液管、(3)(3−)・・・フ
ィン、(5)(!M)・・・熱交換器。 以上
FIG. 1 and FIG. 2 show an embodiment of this invention.
Fig. 1 is a front view of the heat exchanger, Fig. 2 is a perspective view of an extruded section for forming liquid passage pipes of the heat exchanger shown in Fig. 1, and Figs. 3 and 4 show other embodiments. 3 is a perspective view of the liquid passage pipe, and FIG. 4 is a front view of the heat exchanger. (2)(2”)...Liquid pipe, (3)(3-)...Fin, (5)(!M)...Heat exchanger.

Claims (1)

【特許請求の範囲】[Claims]  Cu:0.4〜1.0wt%及び必要に応じてさらに
Mn:0.2〜0.8wt%を含有し、残部がアルミニ
ウム及び不可避不純物からなるアルミニウム合金によっ
て形成した熱交換器用通液管と、該通液管よりも電極電
位の卑なアルミニウムまたはアルミニウム合金により形
成したフィンとを、KAlF_4:80〜99.8wt
%、KF:20〜0.2wt%の混合物からなるフラッ
クスを用いてろう付することを特徴とする耐食性に優れ
たアルミニウム製熱交換器のろう付方法。
A liquid flow pipe for a heat exchanger formed of an aluminum alloy containing Cu: 0.4 to 1.0 wt% and, if necessary, Mn: 0.2 to 0.8 wt%, the balance being aluminum and inevitable impurities. , KAlF_4: 80 to 99.8 wt.
%, KF: A method for brazing an aluminum heat exchanger with excellent corrosion resistance, characterized by brazing using a flux consisting of a mixture of 20 to 0.2 wt%.
JP61017623A 1986-01-28 1986-01-28 Brazing method of aluminum heat exchanger with excellent corrosion resistance Expired - Lifetime JPH0677808B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61017623A JPH0677808B2 (en) 1986-01-28 1986-01-28 Brazing method of aluminum heat exchanger with excellent corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61017623A JPH0677808B2 (en) 1986-01-28 1986-01-28 Brazing method of aluminum heat exchanger with excellent corrosion resistance

Publications (2)

Publication Number Publication Date
JPS62176672A true JPS62176672A (en) 1987-08-03
JPH0677808B2 JPH0677808B2 (en) 1994-10-05

Family

ID=11948993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61017623A Expired - Lifetime JPH0677808B2 (en) 1986-01-28 1986-01-28 Brazing method of aluminum heat exchanger with excellent corrosion resistance

Country Status (1)

Country Link
JP (1) JPH0677808B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05192765A (en) * 1991-10-18 1993-08-03 Nippondenso Co Ltd Aluminum brazing method and furnace therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6174769A (en) * 1984-09-17 1986-04-17 Furukawa Alum Co Ltd Production of aluminum heat exchanger

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6174769A (en) * 1984-09-17 1986-04-17 Furukawa Alum Co Ltd Production of aluminum heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05192765A (en) * 1991-10-18 1993-08-03 Nippondenso Co Ltd Aluminum brazing method and furnace therefor

Also Published As

Publication number Publication date
JPH0677808B2 (en) 1994-10-05

Similar Documents

Publication Publication Date Title
US4831701A (en) Method of making a corrosion resistant aluminum heat exchanger using a particulate flux
CN1066014A (en) The method of brazing metal surfaces
JPH0148120B2 (en)
JPH0422666B2 (en)
JPH0232072B2 (en)
JP2000063970A (en) Extruded heat-exchanger tube made of aluminum alloy
JP3534450B2 (en) Heat exchanger manufacturing method
JP3351249B2 (en) Aluminum alloy brazing method
JP3189517B2 (en) Manufacturing method of heat exchanger tube material for non-corrosive flux brazing
US2981648A (en) Aluminum soldering slurry
JPS62176672A (en) Brazing method for aluminum made heat exchanger having excellent corrosion resistance
JPS6199568A (en) Brazing method of aluminum and its alloy
JPS6342547B2 (en)
JPS6018294A (en) Aluminum-brazed joint
JPS61242754A (en) Brazing method for aluminum made heat exchanger
JPS61103675A (en) Brazing method of aluminum and its alloy
JPS6037292A (en) Brazing method of aluminum and alloy thereof
JP3434999B2 (en) Heat exchanger excellent in brazing property and method for manufacturing the heat exchanger
JP2000061624A (en) Brazing method for aluminum material
JPS61103674A (en) Production of aluminum brazing article having excellent corrosion resistance
JPS5971998A (en) Aluminum heat exchanger
JP3434997B2 (en) Aluminum alloy powder brazing material with excellent brazing properties
JPS6037293A (en) Brazing method of aluminum and alloy thereof
JPH03114663A (en) Heat exchanger made of al alloy
JPS6174771A (en) Production of aluminum heat exchanger