JPS6199568A - Brazing method of aluminum and its alloy - Google Patents

Brazing method of aluminum and its alloy

Info

Publication number
JPS6199568A
JPS6199568A JP22348984A JP22348984A JPS6199568A JP S6199568 A JPS6199568 A JP S6199568A JP 22348984 A JP22348984 A JP 22348984A JP 22348984 A JP22348984 A JP 22348984A JP S6199568 A JPS6199568 A JP S6199568A
Authority
JP
Japan
Prior art keywords
flux
brazing
aluminum
alloy
joining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22348984A
Other languages
Japanese (ja)
Inventor
Tomiyoshi Kanai
金井 富義
Shoichi Furuta
古田 正一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altemira Co Ltd
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Priority to JP22348984A priority Critical patent/JPS6199568A/en
Publication of JPS6199568A publication Critical patent/JPS6199568A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To exhibit an excellent brazing effect and to perform easily the adjustment as well by mixing KAlF4 and KF at the specified rate as a flux. CONSTITUTION:The mixture mixing KAlF4 and KF at the rate of 80-99.8:20-0.2wt% is used as a flux in the brazing method of aluminum materials. The minute powder of a flux is suspended in the liquid of water, etc. and after this suspension being coated on the joining member consisting of aluminum or its alloy and being dried it is heated at the prescribed temp. in a nonoxidizing atmosphere and brazed with melting the brazing material for joining.

Description

【発明の詳細な説明】 産業上の利用分野 この発明はアルミニウム及びその合金のろう付け方法、
特にろう付け仕様によるアルミニウム製熱交換器の製造
に好適に用いられるアルミニウム材のろう付け方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a method for brazing aluminum and its alloys,
In particular, the present invention relates to a method for brazing aluminum materials, which is suitably used for manufacturing aluminum heat exchangers according to brazing specifications.

なお、以下の記述において、アルミニウムの用語は、そ
の合金を含む意味において用いられる。
In the following description, the term aluminum is used to include its alloy.

従来の技術及び問題点 従来、自動車用ラジェーター、カークーラー用エバポレ
ーターあるいはコンデンサー等のアルミニウム製熱交換
器をフラックスろう付け仕様によって製造する場合、塩
化物系のフラックスを用いて熱交換器用構成部材をろう
付1ノ接合する方法が多く用いられている。
Conventional technology and problems Conventionally, when manufacturing aluminum heat exchangers such as automobile radiators, car cooler evaporators, or condensers using flux brazing specifications, chloride-based flux was used to braze the heat exchanger components. A method of joining is often used.

しかしながら、このような塩化物系フラックスを用いる
場合には、使用する当該フラックスが本質的に水溶性で
あり、強い吸湿性を有しているために、ろう付け後速か
にフラックスの残漬を洗浄除去する必要があり、このた
めに設備費が高くなると共に、工程が複雑化して多大の
作業負担がかかる欠点があった。また、上記洗浄が不完
全である場合はもちろん、がなり充分に洗浄された場合
でさえ、接合部の金属中にとり込まれたフラックス成分
の残留により、アルミニウム部材を比較的早期に腐食さ
せてしまうおそれがあった。
However, when using such chloride-based flux, the flux used is essentially water-soluble and has strong hygroscopicity, so it is necessary to immediately remove any remaining flux after brazing. It is necessary to wash and remove it, which increases equipment costs, complicates the process, and imposes a heavy workload. In addition, even if the above-mentioned cleaning is incomplete, or even if the cleaning is thorough, the aluminum parts will corrode relatively quickly due to residual flux components incorporated into the metal of the joint. There was a risk.

そこで、最近このような問題を解消するろう付け方法と
して、例えば特公昭58−27037月公報等に見られ
るように、フルオロアルミニウム錯塩(K3 Au F
e及びKAρF< )を組成物とするフン化物系フラッ
クスを用いて、熱交換器用構成部材をろう付け接合する
方法が促唱されている。この方法によれば、上記フラッ
クスが本来的に非腐食性であるため、ろう付け後の脱フ
ワックス処理が不要となるのみならず、フラックスを水
等に懸濁させて水性懸濁液となしうるため接合部材への
塗布作業等も容易に行え、しかも該フラックスが水にほ
とんど不溶性であるため、フラックス成分の配合割合の
不均一化を避は安定したろう付けを11いうるなどの優
れた効果を期待することができる。
Recently, as a brazing method to solve this problem, a method using fluoroaluminum complex salt (K3 Au F
A method of brazing and joining components for a heat exchanger using a fluoride-based flux having a composition of e and KAρF< ) has been promoted. According to this method, since the above-mentioned flux is inherently non-corrosive, not only does dewaxing treatment after brazing become unnecessary, but also the flux can be suspended in water etc. to form an aqueous suspension. Therefore, it is easy to apply the flux to the joining parts, and since the flux is almost insoluble in water, it has excellent effects such as avoiding uneven blending of flux components and achieving stable brazing. can be expected.

゛)シかしながら、上記のろう付け方法においては、こ
のような優位性にも拘わらず、使用されるべきフラック
スの製造簡易性の点で問題を有づるちのであった。即ち
、上記ろう付け方法は、実際に工業的に生産して使用に
供されるようなフラックスでは、その組成比率が一般に
、なるべく融点の低いKAQF4とに3△QFaの共晶
点に近い範囲内で89定されるのが実情である。
(2) However, despite these advantages, the above-mentioned brazing method has a problem in terms of ease of manufacturing the flux to be used. That is, in the above-mentioned brazing method, in the case of flux that is actually industrially produced and used, the composition ratio is generally within a range as close as possible to the eutectic point of KAQF4 and 3ΔQFa, which have a low melting point. The reality is that it is determined by 89.

これは、フラックスの融点は使用ろう材との関係でろう
材の融点よりも10℃〜20’C程度低い方が好ましく
、さらにこの範囲に6いてはより低い方が実用上好まし
いという一般的要シhに基づくものであるが、このよう
な組成比率を実現するフラックスの製造方法としては、
多くの場合、AgF2とKFとを出発物質とし、該出発
物質を、その共晶混合物であるKAQF4とKI AA
 Fsとが上記の所期する比率となるような適正な比率
で乾燥状態にて混合し、このα合物を一旦溶融し、さら
にその溶融湯合物を冷却凝固せしめて製造する方法が採
用されているため、工数が多く調製が面倒であるという
ような問題があった。
This is based on the general principle that the melting point of flux should preferably be about 10°C to 20'C lower than the melting point of the brazing filler metal used, and furthermore, it is practically preferable that the melting point be lower within this range. The method for manufacturing flux that achieves such a composition ratio is as follows:
In many cases, AgF2 and KF are used as starting materials, and the starting materials are mixed with their eutectic mixture KAQF4 and KIAA.
A manufacturing method is adopted in which the α compound is mixed with Fs in a dry state at an appropriate ratio to achieve the above-mentioned desired ratio, the α compound is once melted, and the molten mixture is further cooled and solidified. Therefore, there were problems such as a large number of man-hours and troublesome preparation.

この発明は、このような事情に鑑み、上記フッ化物系フ
ラックスと同等の優れたろう付け効果を発揮すると共に
その調製を簡易に行いうるフラックスを開発することを
目的とし、該フラックスを使用して行うろう付け方法を
提供するものである。
In view of these circumstances, the purpose of this invention is to develop a flux that exhibits the same excellent brazing effect as the above-mentioned fluoride-based flux and can be easily prepared. A brazing method is provided.

問題点を解決するための手段 この目的を達成するために、この発明者等は、硬々実験
と研究を重ねた結果、遊離のKFを一定の比率でKAρ
F4に添加してフラックスとした場合には、腐食性残漬
、融点、ろう付作業性等の点で何ら問題のない良好なろ
う付けを実現でき、かつその調製に関しては、KAρF
4、KFとも市販品として容易に入手しゃすいことから
、入手後単に両者を混合することにより極めて簡易に調
製を行いつることを見出し、かがる知見に基づいてこの
発明を完成し得たものである。
Means for Solving the Problem In order to achieve this objective, the inventors conducted extensive experiments and research, and as a result, they determined that free KF was converted into KAρ at a certain ratio.
When added to F4 to form a flux, it is possible to achieve good brazing without any problems in terms of corrosive residue, melting point, brazing workability, etc., and regarding its preparation, KAρF
4. Since both KF and KF are easily available as commercial products, we have discovered that it can be prepared extremely easily by simply mixing the two after obtaining them, and based on this knowledge, we have completed this invention. It is.

即ら、この発明に係るアルミニウム材のろう付け方法は
、KAρF4とKFを重量比で80〜99.8 : 2
0−0.2の割合で混合した混合物をフラックスとして
用いることを特徴とし、該フラックスの微粉末を水等の
液体中に懸濁させ、該懸濁液をアルミニウムあるいはそ
の合金からなる接合部材に塗布しかつ乾燥させたのち、
非酸化性雰囲気中で所定温度に加熱し、接合用ろう材を
溶融してろう付けするものである。
That is, in the method for brazing aluminum materials according to the present invention, the weight ratio of KAρF4 and KF is 80 to 99.8:2.
It is characterized in that a mixture mixed at a ratio of 0 to 0.2 is used as a flux, the fine powder of the flux is suspended in a liquid such as water, and the suspension is applied to a joining member made of aluminum or its alloy. After applying and drying,
It is heated to a predetermined temperature in a non-oxidizing atmosphere to melt and braze the joining brazing material.

スラックス中のKAu F4とKFとの混合割合は、こ
れを重!基準で80〜99.8:20〜0.2の割合に
選定することにより、その融点を低いものとしてろう付
加熱時にフラックスを有効に作用せしめ得るものであり
、KFが許容下限値未満ではその効果に乏しく、逆に許
容上限値を超えて過多に混合された場合にも、特に完全
融解4度(液相線温度)の上昇を招いて良好なろう付け
を行うことができなくなると共に、甚しくはフラックス
の反応温度が接合部材としてのアルミニウムの融点以上
になってろう付自体が不可能になるおそれがある。
The mixing ratio of KAu F4 and KF in slacks is very high! By selecting a ratio of 80 to 99.8:20 to 0.2 as a standard, the melting point is low and the flux can be effectively applied during brazing heating, and if KF is less than the allowable lower limit, the It is not very effective, and conversely, even if it is mixed in excess exceeding the allowable upper limit, it will cause a rise of 4 degrees of complete melting (liquidus temperature), making it impossible to perform good brazing, and causing serious problems. Alternatively, the reaction temperature of the flux may exceed the melting point of aluminum as a joining member, making brazing itself impossible.

ろう付けを行うに際し、上記フラックスは、これを水等
の液体中にスラリーの形で懸濁して使用し、この懸濁液
をアルミニウムからなる接合部材の少なくともいずれか
一方に均一に塗布する。この液体中への懸濁および塗布
を行い易くし、ひいてはろう付性を良好にするために、
フラックス成分の粉末粒径は、概ね200μm以下のも
のとするのが良い。また上記の塗布の手段は、噴霧ある
いははけ塗り等を適用することも可能であるが、量産性
に適した均一な塗布手段として浸漬法を用いることが推
奨される。
When performing brazing, the above-mentioned flux is used by suspending it in the form of a slurry in a liquid such as water, and this suspension is uniformly applied to at least one of the joining members made of aluminum. In order to facilitate suspension and application in this liquid and improve brazing properties,
The powder particle size of the flux component is preferably approximately 200 μm or less. Although spraying or brushing can be used as the above-mentioned application method, it is recommended to use a dipping method as a uniform application method suitable for mass production.

アルミニウムからなる接合部材は、上記フラックスの塗
布後これを乾燥させ、次いで接合部材より融点の低いア
ルミニウム合金ろう材を用いて不活性ガス雰囲気等の非
酸化性雰囲気中で、上記接合部材の融点より低くかつフ
ラックスの融点よりも高い約580〜620℃に加熱す
ることにより、ろう材を溶融してろう付け接合が達成さ
れる。上記ろう材にはS1含有屋約4゜5〜13.5w
t%程度のAρ−81系合金が用(いa tt 6 (
7)ヵ50、あ9、ようう□147.□0点から、通常
接合されるべき部材の少なくとも一方のアルミニウム製
構成部材にクラッドして使用されるのが望ましい。
After applying the above-mentioned flux, the joining member made of aluminum is dried, and then is heated in a non-oxidizing atmosphere such as an inert gas atmosphere using an aluminum alloy brazing filler metal whose melting point is lower than that of the joining member. By heating to about 580-620° C., which is low and above the melting point of the flux, the brazing material is melted and a brazed joint is achieved. The above brazing filler metal contains S1 about 4°5~13.5w.
Approximately t% of Aρ-81 alloy is used (a tt 6 (
7) Ka50, A9, You□147. □ From point 0, it is desirable to use it as a cladding to at least one aluminum component of the members to be normally joined.

発明の効果 上述のようなこの発明の実施によれば、従来とは異なる
組成のフッ化物系フランクスを用いることによってアル
ミニウム材の極めて良好なろう付け接合を達成しうる。
Effects of the Invention According to the present invention as described above, extremely good brazing of aluminum materials can be achieved by using a fluoride Franks having a composition different from conventional ones.

即ち、使用するフラックスが、従来のフッ化物系フラッ
クスと同程度の溶融温度範囲を示してフラックスと使用
ろう材間における融点の適正関係を充分満足しうると共
に、接合部表面の酸化物破壊作用、ろう材の濡れ拡がり
促進作用等において優れたフラックス作用を示し、遜色
のない充分に強固なろう付け接合部の形成を可能とする
。しかちこの発明に用いるフラックスは、水等の液体に
容易に懸濁し得て接合部材への塗布作業性等にも浸れ、
またろう付け後の残渣が非腐食性のものであるため、従
来の塩化物系フラックスを用いる場合のように、ろう付
け後フラックス残漬を洗浄除去する必要性がなくなるの
で、一連のろう付け作業工程の簡素化をはかりつつ、一
層腐食のおそれの少ない完全な接合状態のアルミニウム
ろう付け製品の製造を可能とする。さらに、フラックス
の調製に関しては、市販品として豊富に取引きされ入手
の容易なKAρF4とKFとを単体で入手後一定の比率
で混合するのみで良イア)1ら、従来(DK3A(l 
Fs −KA(l F4系フラックスのような繁雑な調
製工程が不要となり、調製を極めて簡易に行いうる効果
をも奏するものである。
In other words, the flux used exhibits a melting temperature range comparable to that of conventional fluoride-based fluxes, which satisfies the appropriate melting point relationship between the flux and the brazing filler metal used, and also reduces the destructive effect of oxides on the surface of the joint. It exhibits an excellent flux effect in promoting wetting and spreading of the brazing filler metal, making it possible to form brazed joints that are comparable and sufficiently strong. However, the flux used in this invention can be easily suspended in liquids such as water, and can be easily applied to joining members.
In addition, since the residue after brazing is non-corrosive, there is no need to wash and remove flux residue after brazing, unlike when using conventional chloride flux. It is possible to manufacture perfectly bonded aluminum brazed products with less risk of corrosion while simplifying the process. Furthermore, regarding the preparation of flux, it is possible to prepare KAρF4 and KF, which are abundantly traded and easily available as commercial products, by simply mixing them at a certain ratio after obtaining them alone.
Fs-KA(l) Complex preparation steps such as those for F4-based fluxes are not required, and the preparation can be performed extremely easily.

実施例 次に、この発明の利点を明らかにするために、そのいく
つかの実施例を種々の比較例との対比において示t0 A1050合金からなる肉厚0.7tnmの中空扁平状
押出しチューブ材を、直管部を有する蛇行状に曲成する
と共に、該チューブ材を挾んで両側にA1100合金か
らなる厚さ1.0IrIInの側板を配置し、次いでB
A12で表わされる厚す0 、145IItIR(7)
両面プレージングシート(A3003合金芯材の両面に
、A4343合金皮材を片面クラツド率12%でクラッ
ドしたもの)からなるコルゲートフィシ材を前記側板と
押出しチューブ材との間及びチューブ材の直管部どうし
の間に介在せしめてコルゲートフィン型熱交換器に組立
てた。
EXAMPLES Next, in order to clarify the advantages of the present invention, some examples thereof will be shown in comparison with various comparative examples. , is bent into a serpentine shape having a straight tube part, and side plates with a thickness of 1.0IrIIn made of A1100 alloy are placed on both sides sandwiching the tube material, and then B
Thickness represented by A12 0, 145IItIR(7)
A corrugated fiber material consisting of a double-sided plating sheet (A3003 alloy core material clad on both sides with A4343 alloy skin material at a cladding rate of 12% on one side) is placed between the side plate and the extruded tube material and in the straight pipe of the tube material. It was assembled into a corrugated fin type heat exchanger by interposing it between the parts.

そして、下表の試料N091〜6に示ず各種組成のフラ
ックスに水を加えて濃度8%の懸濁液とし、この懸濁液
中に上記熱交換器組立物を浸漬し、乾燥した。尚フラッ
クス成分の粉末粒径はいずれも50μm以下とした。
Then, water was added to fluxes of various compositions not shown in samples Nos. 091 to 6 in the table below to obtain a suspension with a concentration of 8%, and the heat exchanger assembly was immersed in this suspension and dried. Incidentally, the powder particle size of each flux component was 50 μm or less.

然る後、上記各組立物をN2ガスにて、露点−35℃に
調整した炉中で、610℃×5分間加熱し、ろう付けを
行い、その模トーチによりA7NO1ユニオンを所定ケ
所にろう付けして熱交換器を得た。
After that, each of the above assemblies was heated and brazed at 610°C for 5 minutes with N2 gas in a furnace adjusted to a dew point of -35°C, and the A7NO1 union was brazed in the designated place using the simulated torch. A heat exchanger was obtained.

そして、上記により得られた各熱交換器のろう付け状態
を調べる一方、各フラックスの融解開始温度((i!i
l相II!A温度)と完全融解温度とを測定した。その
結果を同表に示す。
Then, while examining the brazing state of each heat exchanger obtained above, the melting start temperature of each flux ((i!i
l phase II! A temperature) and complete melting temperature were measured. The results are shown in the same table.

この結果から明らかなように、本発明フランクスを用い
た試料N0.1〜4の場合においては、ろう付け状態も
良好で融解開始温度、完全融解温度とも低いものであっ
た。これに対し、KFが許容上@値を超えた範囲で混合
されたフラックスを用いた試料N o、 5の場合には
、良好な接合状態が得られずしかも融解開始温度、完全
融[度とも高いものであり、またKFを含まないフラッ
クスを用いた試料No、6の場合にはるう付け状態は良
好であったが完全R解温度が高いものであった。従って
KAΩF4にKFを所定割合添加することにより、フラ
ックスの完全融解温度を低下しうろことが判る。
As is clear from this result, in the case of samples No. 1 to 4 using Franks of the present invention, the brazing condition was good and both the melting start temperature and the complete melting temperature were low. On the other hand, in the case of sample No. 5, which used a flux mixed with KF exceeding the permissible @ value, a good bonding state could not be obtained, and both the melting start temperature and complete melting degree were low. In addition, in the case of sample No. 6 using a flux not containing KF, the welding condition was good, but the complete R solution temperature was high. Therefore, it can be seen that by adding a predetermined proportion of KF to KAΩF4, the complete melting temperature of the flux can be lowered.

また従来既知の塩化物系フラックスを用いた場合との比
較では、次のとおりであった。
In addition, a comparison with the case where a conventionally known chloride-based flux was used showed the following results.

〈塩化物系フラックス) 表中の試料N0.8に示す組成の塩化物系フラックスを
、粒径50μm以下に粉砕して濃度40%の水性懸濁液
とし、前記チューブ材とフィン材との組立物に剛着せし
めて大気中で常法によりろう付けを行った。そして、こ
のろう付け品を、湯洗後、硫酸と硝酸の混液に浸漬し、
更に水洗、乾燥の後、その耐食性を調べるためJIS−
H−8681に基づくキャス試験を実施した。
<Chloride-based flux) A chloride-based flux having the composition shown in sample No. 8 in the table was pulverized to a particle size of 50 μm or less to form an aqueous suspension with a concentration of 40%, and then assembled with the tube material and fin material. It was firmly attached to an object and brazed in the atmosphere using a conventional method. After washing this brazed product with hot water, it is immersed in a mixture of sulfuric acid and nitric acid.
Furthermore, after washing with water and drying, JIS-
A CASS test based on H-8681 was conducted.

その結果、このろう付け品は表中右端欄に示すように、
約300時間でチューブ材に貞通孔が発生するものであ
った。
As a result, this brazed product is as shown in the rightmost column of the table.
Holes were formed in the tube material after about 300 hours.

これに対し、ろう付け後全く洗浄を施すことなくキャス
試験に供した本発明によるろう付1ノ品では、チューブ
材に貫通孔が発生するまでの時間が900時間以上にも
及び、明らかに耐食性に優れたものであることが認めら
れた。
On the other hand, in the case of the first brazed product according to the present invention, which was subjected to the CAST test without any cleaning after brazing, it took more than 900 hours for through holes to occur in the tube material, and the corrosion resistance was clearly demonstrated. It was recognized that it was excellent.

また、従来既知のKIAρFs−KAρF4系フラック
スのろう付性を調べたところ以下のとおりであった。
Furthermore, the brazing properties of the conventionally known KIAρFs-KAρF4 type flux were investigated and the results were as follows.

(フッ化物系フラックス) 従来のフッ化物系フラックスは、表中の試料N0.7に
示すに3AuFaとKAΩF4との配合比となるように
KFとAl2F3とをd合、溶融、凝固し、この溶融凝
固物を粉砕して粒径5Oμm以下の粉末に調製した。そ
してこれを濃度8%の水性懸濁液にして、以降本発明の
実施例と同様の条件でろう付けを行った。この場合のろ
う付け状態は、充分に良好なものであり、かつ非腐食性
の点でも良好なものであった。また、融解間@温度は約
545℃、完全融解温度は約585℃であった。
(Fluoride-based flux) Conventional fluoride-based flux is produced by combining, melting, and solidifying KF and Al2F3 so that the mixing ratio of 3AuFa and KAΩF4 is as shown in sample No. 7 in the table. The coagulated material was pulverized to prepare a powder with a particle size of 50 μm or less. Then, this was made into an aqueous suspension with a concentration of 8%, and thereafter brazing was performed under the same conditions as in the examples of the present invention. The brazing condition in this case was sufficiently good and non-corrosive. Further, the temperature during melting was about 545°C, and the complete melting temperature was about 585°C.

この結果から、本発明に係るフラックスを用いたろう付
け方法は、上記フッ化物系フラックスを用いたろう付け
方法と同程度の優れたろう付け性能を発揮しうるちので
あることが判る。
This result shows that the brazing method using the flux according to the present invention can exhibit brazing performance as excellent as the brazing method using the fluoride-based flux described above.

[以下余白][Margin below]

Claims (1)

【特許請求の範囲】[Claims]  KAlF_4とKFを重量比で80〜99.8:20
〜0.2の割合で混合した混合物をフラックスとして用
いることを特徴とし、該フラックスの微粉末を水等の液
体中に懸濁させ、該懸濁液をアルミニウムあるいはその
合金からなる接合部材に塗布しかつ乾燥させたのち、非
酸化性雰囲気中で所定温度に加熱し、接合用ろう材を溶
融してろう付けするアルミニウム及びその合金のろう付
け方法。
Weight ratio of KAlF_4 and KF is 80-99.8:20
It is characterized by using a mixture mixed at a ratio of ~0.2 as a flux, suspending the fine powder of the flux in a liquid such as water, and applying the suspension to a joining member made of aluminum or its alloy. A method for brazing aluminum and aluminum alloys, which is dried and then heated to a predetermined temperature in a non-oxidizing atmosphere to melt and braze a joining brazing filler metal.
JP22348984A 1984-10-23 1984-10-23 Brazing method of aluminum and its alloy Pending JPS6199568A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22348984A JPS6199568A (en) 1984-10-23 1984-10-23 Brazing method of aluminum and its alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22348984A JPS6199568A (en) 1984-10-23 1984-10-23 Brazing method of aluminum and its alloy

Publications (1)

Publication Number Publication Date
JPS6199568A true JPS6199568A (en) 1986-05-17

Family

ID=16798933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22348984A Pending JPS6199568A (en) 1984-10-23 1984-10-23 Brazing method of aluminum and its alloy

Country Status (1)

Country Link
JP (1) JPS6199568A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5224632A (en) * 1989-07-07 1993-07-06 The Procter & Gamble Company Measuring cap
US5261569A (en) * 1991-10-31 1993-11-16 The Procter & Gamble Company Squeezable container for liquid material having a detachable measuring cap
CN105142857A (en) * 2013-04-25 2015-12-09 株式会社神户制钢所 Flux composition and brazing sheet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS572802A (en) * 1980-03-17 1982-01-08 Union Carbide Corp Formation of porous aluminum layer
JPS58132394A (en) * 1982-02-03 1983-08-06 Hitachi Ltd Flux for brazing
JPS58202996A (en) * 1982-05-21 1983-11-26 Hitachi Ltd Brazing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS572802A (en) * 1980-03-17 1982-01-08 Union Carbide Corp Formation of porous aluminum layer
JPS58132394A (en) * 1982-02-03 1983-08-06 Hitachi Ltd Flux for brazing
JPS58202996A (en) * 1982-05-21 1983-11-26 Hitachi Ltd Brazing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5224632A (en) * 1989-07-07 1993-07-06 The Procter & Gamble Company Measuring cap
US5261569A (en) * 1991-10-31 1993-11-16 The Procter & Gamble Company Squeezable container for liquid material having a detachable measuring cap
CN105142857A (en) * 2013-04-25 2015-12-09 株式会社神户制钢所 Flux composition and brazing sheet
CN105142857B (en) * 2013-04-25 2018-01-05 株式会社神户制钢所 Solder flux composition and brazing sheet

Similar Documents

Publication Publication Date Title
US5171377A (en) Brazing flux
JPH0422666B2 (en)
JPH0232072B2 (en)
JPH0455792B2 (en)
JPS6199568A (en) Brazing method of aluminum and its alloy
JPS5827037B2 (en) Method of forming brazed seams
JPS62101396A (en) Manufacture of heat exchanger
JPS60184490A (en) Flux for brazing
JPS6037294A (en) Brazing method of aluminum and alloy thereof
JPS62176672A (en) Brazing method for aluminum made heat exchanger having excellent corrosion resistance
JPS61103675A (en) Brazing method of aluminum and its alloy
JPS61219466A (en) Brazing method for aluminum and its alloy
JPS61103674A (en) Production of aluminum brazing article having excellent corrosion resistance
JPS6037292A (en) Brazing method of aluminum and alloy thereof
JPS6393471A (en) Flux brazing method for aluminum and stainless
JPS606295A (en) Flux for soldering aluminum
JPS63177999A (en) Flux for brazing of aluminum material
JPS6037293A (en) Brazing method of aluminum and alloy thereof
JP2607585B2 (en) Flux for brazing aluminum material and its application method
JPS61242754A (en) Brazing method for aluminum made heat exchanger
JPS61103673A (en) Production of aluminum brazing article excellent in corrosion resistance
JPH0357590A (en) Flux for brazing and brazing method for aluminum material by using this flux
JPS62282799A (en) Flux for brazing aluminum material
US2376578A (en) Brazing alloy
JPS6362319B2 (en)