JPS62174713A - Endoscope device - Google Patents

Endoscope device

Info

Publication number
JPS62174713A
JPS62174713A JP62013308A JP1330887A JPS62174713A JP S62174713 A JPS62174713 A JP S62174713A JP 62013308 A JP62013308 A JP 62013308A JP 1330887 A JP1330887 A JP 1330887A JP S62174713 A JPS62174713 A JP S62174713A
Authority
JP
Japan
Prior art keywords
light
solid
image
filter
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62013308A
Other languages
Japanese (ja)
Other versions
JPH059004B2 (en
Inventor
Shunpei Tanaka
俊平 田中
Hidetoshi Yamada
秀俊 山田
Masahiro Hirata
平田 正博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP62013308A priority Critical patent/JPS62174713A/en
Publication of JPS62174713A publication Critical patent/JPS62174713A/en
Publication of JPH059004B2 publication Critical patent/JPH059004B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Endoscopes (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Closed-Circuit Television Systems (AREA)
  • Color Television Image Signal Generators (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

PURPOSE:To speedily and easily discriminate between an affected part and normal parts by providing a means which lights a body to be observed with light having the visible ray range and infrared ray range, an optical system and a solid-state image pickup device, and a means which separates light in front of them. CONSTITUTION:An infrared ray and a visible ray from a light source 21 after being passed through a rotary filter 22 which has three sections obtained by dividing a wavelength range of 700-1,200nm into three illuminate the object of observation of a patient at the tip part of an endoscope and then an image signal is sent to a signal switching circuit 28 through the solid-state image pickup device. Light reflected by a half-mirror 23, on the other hand, is also sent to the circuit 28 through a light receiving element 24. A checkered filter 45 having wavelength selectivity is provided in front of the device 5. The three primary colors passed through filters 22 and 45 are mixed again to display an image on a monitor TV 34. The normal parts and affected part of the patient differ in the reflection factor of wavelength light, so they are discriminated speedily and easily on the monitor TV.

Description

【発明の詳細な説明】 本発明は生体体腔内または機械的構成部品等の空洞内を
観察するために使用する内視鏡装置に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an endoscope device used for observing the inside of a living body cavity or a cavity such as a mechanical component.

従来このような内視鏡においては、光学式ファイバ束に
より被観察体の像を生体体腔外或いは空洞外に導き出し
、光学式ファイバの出射端面に結像された光学像を、接
眼レンズ系を介して観察している。また他の方法として
、上記光学式ファイバの代わりに内視鏡の鞘の先端位置
に固体撮像装置を設置し、この固体撮像装置の受光面に
結像された光学像を電気信号に変換しリード線により生
体体腔外或いは空洞外に導き出し、必要な信号処理を行
った後TVモニター上に表出しようとする試みも提案さ
れている。
Conventionally, in such endoscopes, an image of the object to be observed is guided outside the living body cavity or cavity using an optical fiber bundle, and an optical image formed on the output end surface of the optical fiber is transmitted through an eyepiece system. I am observing. Another method is to install a solid-state imaging device at the tip of the endoscope sheath instead of the optical fiber described above, and convert the optical image formed on the light-receiving surface of this solid-state imaging device into an electrical signal. It has also been proposed to lead the signal out of the body cavity or cavity using a wire and display it on a TV monitor after performing necessary signal processing.

上述された内視鏡においては、被観察体から得られる情
報は可視光波長領域に限定されている。
In the endoscope described above, the information obtained from the object to be observed is limited to the visible light wavelength region.

すなわち、前者は光学的に直接肉眼で像を見るので当然
可視光波長領域外のものは観察できないし、後者の場合
固体撮像装置は赤外波長領域にも感光するので赤外波長
領域の像情報は検出可能であるが、像をカラー化する場
合赤外波長領域の像情報は色バランスをとる上で邪魔に
なる。そこで、色の忠実性を上げる目的で、普通は赤外
線カットフィルタ等で赤外波長領域の照明光は被観察体
に照射しないようにするか、あるいは、照射しても固体
撮像装置受光面には達しないようなフィルタを設ける必
要がある。
In other words, in the former case, the image is viewed optically directly with the naked eye, so it is naturally impossible to observe anything outside the visible light wavelength range, and in the latter case, the solid-state imaging device is also sensitive to infrared wavelength ranges, so image information in the infrared wavelength range cannot be observed. can be detected, but when colorizing an image, image information in the infrared wavelength region becomes a hindrance to achieving color balance. Therefore, in order to improve color fidelity, it is common practice to use an infrared cut filter or the like to prevent illumination light in the infrared wavelength range from irradiating the object to be observed, or even if it is irradiated, the light receiving surface of the solid-state image sensor is It is necessary to provide a filter to prevent this from occurring.

このような内視鏡で被観察体の像を観察する場合、特に
生体内では患部と正常部とを見わけるのに微妙な色調の
差を検知しなければならない。一般にその差を検知(認
知)するには高度な知識と経験が必要とされ、その上検
知するまでに長時間を要し、また検知の間中注意力も集
中していなければならなかった。
When observing an image of an object to be observed using such an endoscope, it is necessary to detect subtle differences in color tone to distinguish between an affected area and a normal area, especially in a living body. Generally, detecting (recognizing) the difference requires a high degree of knowledge and experience, and it takes a long time to detect it, and requires concentrated attention during the detection.

本発明は、上述のような欠点をなくし、患部と正常部の
識別を迅速かつ容易に行うことができるようにすること
を目的とするものである。生体内の患部と正常部の観察
について、内視鏡装置の識別能力を増す方法として、本
発明では赤外線照射によって得られる不可視情報を可視
情報に変換する方法・を採る。一般に知られているよう
に、固体撮像装置は近赤外領域で高感度である。また照
明用光源も一般には可視波長領域よりも赤外波長領域で
多くのエネルギーを放射することが知られている。とこ
ろで、被観察体から反射される光量は、生体内では可視
光波長領域の赤色(長波長)側で多いことは血液が赤色
をしていることからも予想できる。さらに近赤外光で反
射率が大きくなることも発表されている。これらのこと
から、生体内での赤外光から得られる情報は、生体内で
の特徴抽出に役立つ可能性は充分にある。このように赤
外光で得られた画像情報はTVモニター上で特定の波長
の色で表示する。異なった赤外波長領域の画像だけをT
Vモニター上に(赤)、(緑)、(青)で表示してもよ
いし、可視光波長領域(例えば赤色像)で得られたもの
と、赤外波長領域で得られたものとを同時に表示するよ
うにしてもよい。要するに、生体内の患部を正常部と特
徴づけられる波長領域での像信号の抽出を可能にするこ
とが重要である。
It is an object of the present invention to eliminate the above-mentioned drawbacks and to make it possible to quickly and easily distinguish between an affected area and a normal area. As a method for increasing the discrimination ability of an endoscope apparatus for observing affected and normal parts within a living body, the present invention adopts a method of converting invisible information obtained by infrared irradiation into visible information. As is generally known, solid-state imaging devices have high sensitivity in the near-infrared region. It is also known that illumination light sources generally emit more energy in the infrared wavelength region than in the visible wavelength region. By the way, it can be predicted that the amount of light reflected from an object to be observed is large in the red (long wavelength) side of the visible light wavelength region in a living body because blood is red in color. It has also been announced that the reflectance increases with near-infrared light. For these reasons, there is a good possibility that information obtained from infrared light in a living body is useful for extracting features in a living body. Image information obtained using infrared light in this way is displayed on a TV monitor in colors of specific wavelengths. Only images in different infrared wavelength regions are
It is also possible to display (red), (green), and (blue) on the V monitor, or to display images obtained in the visible wavelength region (for example, a red image) and those obtained in the infrared wavelength region. They may be displayed simultaneously. In short, it is important to be able to extract image signals in a wavelength range that characterizes an affected area within a living body as a normal area.

本発明の内視鏡装置は、少なくとも1つの可視波長領域
の光と少なくとも1つの赤外波長領域の光で被観察体を
同時に照明する手段と、被観察体の内部に挿入される部
分の先端に配置され、被観察体から反射された光を受け
て結像面に被観察体像を形成する光学系と、この光学系
の結像面位置に配置され、被観察体像を電気信号に変換
する固体撮像装置と、上記光学系と固体撮像装置との間
に配置され、被観察体から反射された光を少なくとも1
つの赤外波長領域の光と少なくとも1つの可視波長領域
の光とに分離するフィルタと、上記固体撮像装置から出
力される上記各波長領域の光による被観察体像を表わす
電気信号を受けて画像の表示を行う手段とを具えること
を特徴とするものである。
The endoscope apparatus of the present invention includes means for simultaneously illuminating an object to be observed with at least one light in the visible wavelength region and at least one light in the infrared wavelength region, and a distal end of a portion to be inserted into the inside of the object to be observed. an optical system that receives light reflected from the object and forms an image of the object on the imaging plane, and an optical system that converts the image of the object into an electrical signal. A solid-state imaging device to be converted is arranged between the optical system and the solid-state imaging device, and is arranged to convert light reflected from an object to be observed into at least one
A filter that separates light into two infrared wavelength ranges and at least one visible wavelength range; and an electric signal representing an image of the object to be observed by the light in each of the wavelength ranges output from the solid-state imaging device. The invention is characterized by comprising means for displaying.

次に図面にしたがって本発明の詳細な説明する。Next, the present invention will be explained in detail according to the drawings.

第1図AおよびBは人体臓器の反射スペクトルを示す。Figures 1A and 1B show reflection spectra of human organs.

第1図Aは胃のスペクトルで、はとんど400nm〜1
200nmの波長まで平らであり、その反射率は数10
%である。一方策1図Bは血液のスペクトルで、400
nm−1200nmまで数%から100%近くまで変化
している。両者を比較すると、特に赤外波長領域(80
Qnm〜1200nm)でその差が大きいことがわかる
Figure 1A shows the spectrum of the stomach, which ranges from 400 nm to 1
It is flat up to a wavelength of 200 nm, and its reflectance is several 10
%. On the other hand, Figure B is the spectrum of blood, 400
It changes from several % to nearly 100% from nm to 1200 nm. Comparing the two, we find that especially in the infrared wavelength region (80
It can be seen that the difference is large between Qnm and 1200 nm).

例えば、胃の中に血液に似たような組織あるいは血液を
多重に含んだようなものが存在し、その存在を認知しよ
うとした場合、近赤外波長領域で比較した方がその差が
はっきりし、その効果が著しいことは明らかである。
For example, if there is tissue that resembles blood or something that contains multiple blood layers in the stomach, and you are trying to recognize its existence, the difference will be clearer if you compare it in the near-infrared wavelength region. However, it is clear that the effect is significant.

現状の光学的内視鏡では、人間の比視感度(400nm
〜700 nm)の波長領域でのみしか観察して判断す
ることができない。−万CCDの感度領域は400nm
から1200nmに及んでおり、近赤外波長領域の情報
を得るのに充分である。
Current optical endoscopes have a human specific luminous efficiency (400 nm).
It is possible to make a judgment by observing only in the wavelength range (~700 nm). -The sensitivity range of 10,000 CCD is 400nm
This ranges from 1200 nm to 1200 nm, which is sufficient to obtain information in the near-infrared wavelength region.

また、一般の光源に用いられる光源ランプは、可視光よ
りむしろ近赤外波長領域の波長のエネルギーを多量に放
射している。近赤外波長領域の波長で被観察体を照射す
ることは、一般に用いられる赤外光カットフィルタの分
光特性をより長波長側に移すだけでよく、その技術的困
難性はない。
Furthermore, light source lamps used as general light sources emit a large amount of energy in the near-infrared wavelength region rather than visible light. Irradiating an object to be observed with wavelengths in the near-infrared wavelength region requires only shifting the spectral characteristics of commonly used infrared cut filters to longer wavelengths, and there is no technical difficulty.

第2図は本発明者等が開発した内視鏡装置の一例の体腔
内に挿入される部分の先端を示す。本例は直視型であり
、光源(第3図参照)からの光を光導体1で内部に導き
、照明用ガラス窓2を通して被観察物体を照明する。被
観察物体からの反射光を撮像用ガラス窓3を経て取り入
れ、結像レンズ4によりCCD、BBD等の自己走査型
2次元面体撮像装置5の受光面に結像させる。この固体
撮像装置5は多数の感光素子を平面的に配列したもので
ある。その出力信号をリード線束6を経て外部へ導出す
る。このリード線束6には外部の発振器(第3図参照)
から固体撮像装置5を動作させるためのクロック信号を
供給するリード線をも含むものである。
FIG. 2 shows the distal end of the portion inserted into the body cavity of an example of an endoscope device developed by the present inventors. This example is a direct view type, in which light from a light source (see FIG. 3) is guided into the interior by a light guide 1, and an object to be observed is illuminated through a glass window 2 for illumination. Reflected light from an object to be observed is taken in through an imaging glass window 3, and an image is formed by an imaging lens 4 on a light receiving surface of a self-scanning two-dimensional surface imaging device 5 such as a CCD or BBD. This solid-state imaging device 5 has a large number of photosensitive elements arranged in a plane. The output signal is led out through the lead wire bundle 6. This lead wire bundle 6 is connected to an external oscillator (see Figure 3).
It also includes a lead wire for supplying a clock signal for operating the solid-state imaging device 5 from the solid-state imaging device 5 .

光導体1およびリード線束6を鞘7内に挿入する。また
レンズ4および固体撮像装置5は外匣8内に配置し、こ
れを鞘7の先端に配置する。
The light guide 1 and the lead wire bundle 6 are inserted into the sheath 7. Further, the lens 4 and the solid-state imaging device 5 are placed inside an outer case 8, which is placed at the tip of the sheath 7.

第3図Aは外部に配置される部分の一実施例の構成を示
す。鞘7の端部から突出する光導体1の入射端面1aと
対向して光!21を配置する。光#i21は赤外線およ
び可視光線を放射するもので、ここから出た光線は回転
フィルタ22を通して光導体lの入射端面1aに入射し
、被観察体への照明光とされる。なお光導体1のコアは
、一般に多成分のガラスでは近赤外波長領域で減衰すの
で、近赤外波長領域でも減衰しない石英等を心材に用い
たファイバを束ねたバンドルを使用するのが望ましい。
FIG. 3A shows the construction of one embodiment of the externally arranged part. Opposing the incident end face 1a of the light guide 1 protruding from the end of the sheath 7, the light! Place 21. The light #i21 emits infrared rays and visible rays, and the light rays emitted therefrom pass through the rotating filter 22 and enter the incident end face 1a of the light guide 1, and are used as illumination light for the object to be observed. Since the core of the light guide 1 is generally made of multi-component glass, it is attenuated in the near-infrared wavelength region, so it is desirable to use a bundle of fibers whose core material is made of quartz or the like, which does not attenuate even in the near-infrared wavelength region. .

回転フィルタ22はモーフ2oにより所定速度で定速回
転させるように配置する。受光素子24および色切換信
号回路25を以てスイッチングパルス発生回路を構成し
、回転フィルタ22の回転角によって変化する通過波長
領域を検出して、固体撮像装置5の駆動パルスおよび固
体撮像装置5から得られる像信号等を回転フィルタ22
の回転と同期させる。すなわち、ハーフミラ−23で反
射した光を受光素子24に入射させ、この受光素子24
の出力を色切換信号回路25に供給する。色切換信号回
路25は電流増幅器およびレベル検出回路を以て構成ル
、受光素子24の出力電流信号を電圧信号に変換し、レ
ベル検出回路で、青、緑および赤色のそれぞれのタイミ
ング信号を作る。更にこのような色切換信号回路の電流
増幅器の出力を微分し、レベルを揃えて発振回路27の
トリガ信号とする。信号切換回路28は、撮像装置5か
らリード線束6を経て外部に導出される画像信号を増幅
器26を経て受信し、光導体1に入射する光の色の種類
に同期して各別の出力端子28B、28Gおよび28R
に供給する動作を行うものである。この信号切換回路2
8には半導体アナログスイッチ等の高速動作のスイッチ
を用いる。発振回路27では色切換回路25からのトリ
ガ信号を受け、撮像装置5の走査信号およびモニター用
ブラウン管34の水平偏向回路32および垂直偏向回路
33への同期信号を供給する。水平偏向回路32はモニ
ター用ブラウン管34の青、緑および赤の各ビームを水
平方向に振らせるための出力増幅器で構成し、垂直偏向
回路33はこれらのビームを垂直方向に振らせる出力増
幅器で構成する。
The rotating filter 22 is arranged so as to be rotated at a predetermined speed by the morph 2o. The light-receiving element 24 and the color switching signal circuit 25 constitute a switching pulse generation circuit, which detects a passing wavelength region that changes depending on the rotation angle of the rotary filter 22, and obtains the drive pulse of the solid-state imaging device 5 and the solid-state imaging device 5. Rotating filter 22 for image signals, etc.
synchronize with the rotation of. That is, the light reflected by the half mirror 23 is made incident on the light receiving element 24, and the light receiving element 24
The output is supplied to the color switching signal circuit 25. The color switching signal circuit 25 includes a current amplifier and a level detection circuit, converts the output current signal of the light receiving element 24 into a voltage signal, and uses a level detection circuit to generate timing signals for each of blue, green, and red. Furthermore, the output of the current amplifier of such a color switching signal circuit is differentiated, and the levels are made uniform to be used as a trigger signal for the oscillation circuit 27. The signal switching circuit 28 receives the image signal led out from the imaging device 5 via the lead wire bundle 6 via the amplifier 26, and outputs it to each different output terminal in synchronization with the color type of light incident on the light guide 1. 28B, 28G and 28R
It performs the operation of supplying the This signal switching circuit 2
8 uses a high-speed operation switch such as a semiconductor analog switch. The oscillation circuit 27 receives the trigger signal from the color switching circuit 25 and supplies a scanning signal for the imaging device 5 and a synchronization signal to the horizontal deflection circuit 32 and vertical deflection circuit 33 of the monitor cathode ray tube 34. The horizontal deflection circuit 32 consists of an output amplifier for deflecting the blue, green, and red beams of the monitor cathode ray tube 34 in the horizontal direction, and the vertical deflection circuit 33 consists of an output amplifier for deflecting these beams in the vertical direction. do.

信号切換回路28の出力端子28G、28Rおよび28
Bからの各出力を、モニター用ブラウン管34の緑格子
、赤格子および資格子を動作させるのに充分な電圧とな
るように、緑色増幅器29、赤色増幅器30および青色
増幅器31にそれぞれ供給する。
Output terminals 28G, 28R and 28 of the signal switching circuit 28
The respective outputs from B are supplied to a green amplifier 29, a red amplifier 30, and a blue amplifier 31, respectively, so that the voltage is sufficient to operate the green grating, red grating, and qualifier of the monitor cathode ray tube 34.

第3図Bは外部に配置される部分のさらに他の実施例の
構成を示す図で、6′は固体撮像装置からの信号線、3
5は増幅器、36はA/D変換器、37は回転フィルタ
22と同期して切換わるスイッチング回路、38a、3
8bおよび38cは各波長領域の情報を収納するメモリ
、39はTVモニターに表示するに必要なTV信号処理
回路である。本例では、3波長領域の情報を時系列的に
順次与波長領域に割当てられたメモ’J38a、38b
および38Cに書込み、読出すときは同時に読出して、
TVモニターに適合した信号処理を行う。
FIG. 3B is a diagram showing the configuration of still another embodiment of the externally arranged portion, in which 6' is a signal line from the solid-state imaging device;
5 is an amplifier, 36 is an A/D converter, 37 is a switching circuit that switches in synchronization with the rotary filter 22, 38a, 3
8b and 38c are memories for storing information in each wavelength range, and 39 is a TV signal processing circuit necessary for displaying on a TV monitor. In this example, information on three wavelength regions is stored in memos 'J38a and 38b that are sequentially assigned to given wavelength regions in chronological order.
When writing and reading to and 38C, read at the same time,
Performs signal processing suitable for TV monitors.

メモリ38a、38bおよび38cにはりフレッシュ機
能をもたせ、何回も同じ信号を読み出させる。また各メ
モリ38a、38bおよび38Cはそれぞれ複数のメモ
リから成り、読み出しながら書き込むこともできる。
The memories 38a, 38b, and 38c are provided with a refresh function to read out the same signal many times. Furthermore, each of the memories 38a, 38b, and 38C is composed of a plurality of memories, and can be written while being read.

第4図は回転フィルタ22を示す。回転フィルタ22は
3つの部分40.41および42に等分され、例えば、
部分40は700nrn 〜800nm(赤色)、部分
41は800nm〜900nm(赤外領域)、部分42
は600nm〜700nm(橙色)のそれぞれの波長の
光を透過するものとする。このようなフィルタ22の回
転と同期して信号切換回路28を駆動し、例えば赤色部
分40を透過した光により得られる像信号を緑色出力端
子28Gを介して緑色チャンネルに供給し、モニタ用ブ
ラウン管34上で緑色像として映出させ、赤外領域部分
41を透過した光により得られる像信号を赤色出力端子
28Rを経て赤色像として表示し、橙色部分42を透過
した光で得られる像信号を青色出力端子28Bを経て青
色像として表示することができる。この場合多照明光波
長領域から得られた像信号は、必ずしもモニター用ブラ
ウン管34上で同じか似たような色で表示させる必要は
なく、例えば部分40に対応する出力を赤色に、部分4
1のそれは青色に、部分42のそれは緑色にそれぞれ表
示することは当然考えられる。
FIG. 4 shows the rotating filter 22. FIG. The rotating filter 22 is equally divided into three parts 40, 41 and 42, e.g.
Part 40 is 700nrn to 800nm (red), part 41 is 800nm to 900nm (infrared region), part 42
shall transmit light of each wavelength of 600 nm to 700 nm (orange). The signal switching circuit 28 is driven in synchronization with the rotation of the filter 22, and, for example, an image signal obtained by the light transmitted through the red portion 40 is supplied to the green channel via the green output terminal 28G, and the image signal is sent to the monitor cathode ray tube 34. The image signal obtained from the light transmitted through the infrared region portion 41 is displayed as a red image via the red output terminal 28R, and the image signal obtained from the light transmitted through the orange region 42 is displayed as a blue image. It can be displayed as a blue image via the output terminal 28B. In this case, the image signals obtained from multiple illumination light wavelength regions do not necessarily need to be displayed in the same or similar colors on the monitor cathode ray tube 34; for example, the output corresponding to the portion 40 is displayed in red,
It is naturally possible to display the portion 1 in blue and the portion 42 in green.

またその組合せは多数あるが、患部上正常部との識別が
最もし易いように、これらの組合せを行えば良い。
Although there are many combinations, these combinations may be used in such a way that it is easiest to distinguish between the affected area and the normal area.

上述した回転フィルタ22の各部分は、表1の如く種々
の波長領域を設定し得る。しかしながら、波長領域の組
合せはこれに限られるものではない。
Each part of the rotating filter 22 described above can be set to various wavelength ranges as shown in Table 1. However, the combination of wavelength regions is not limited to this.

なお、本実施例にふいては、入射端面1aを円形状とし
たが、スリット状又は長方形状であってもよい。
Although the incident end face 1a is circular in this embodiment, it may be slit-shaped or rectangular.

表1 上述した例では、照明光学系中に回転フィルタ22を設
けて、被観察体を所定の波長領域の光で順次に照射した
が、本発明によれば、赤外領域の光と可視光とにより被
観察体を照明し、固体撮像装置の前方に所定の波長領域
の光を選択するフィルタを配置する。次にこのような本
発明の内視鏡装置の例を幾つか説明する。
Table 1 In the above example, the rotating filter 22 was provided in the illumination optical system and the object to be observed was sequentially irradiated with light in a predetermined wavelength range, but according to the present invention, light in the infrared region and visible light A filter for selecting light in a predetermined wavelength range is placed in front of the solid-state imaging device. Next, some examples of such an endoscope apparatus of the present invention will be explained.

第5図は本発明のフィルタ45の実施例を示す図である
。本例では、固体撮像装置の受光面上に各波長選択性の
あるフィルタ部分45a、45bおよび45Cを市松模
様に配置し、フィルタ部分45a、45bおよび45C
のうち少なくとも1つを赤外波長領域にのみ透過性のあ
るものとする。
FIG. 5 is a diagram showing an embodiment of the filter 45 of the present invention. In this example, filter portions 45a, 45b and 45C having wavelength selectivity are arranged in a checkerboard pattern on the light receiving surface of the solid-state imaging device.
At least one of them is transparent only in the infrared wavelength region.

例えば、フィルタ部分45aをR(赤色)、45bをG
(緑色)および45CをIR(赤外波長領域の1つ)と
決めることもできる。固体撮像装置から得られた信号は
、既知の単板式カラーTVカメラの信号処理と同様な処
理をすることによって、各波長領域に応じた像信号を分
離し、TV画面上に色像を表示できる信号処理を行う。
For example, the filter portion 45a is R (red) and the filter portion 45b is G.
(green) and 45C can also be determined as IR (one of the infrared wavelength regions). The signal obtained from the solid-state imaging device is processed in a manner similar to that of known single-chip color TV cameras to separate image signals according to each wavelength range and display a color image on the TV screen. Perform signal processing.

第6図は第5図のフィルタ45を組込んだ本発明の内視
鏡装置を示す図で、内視鏡鞘先端に配置した結像レンズ
4により、被観察体の像を上述した光学フィルタ45を
経て固体撮像装置5に入射させる。固体撮像装置5から
の信号を増幅器およびクランプ回路51を経てスイッチ
ング回路52に供給する。このスイッチング回路52を
固体撮像装置駆動回路53により同期駆動し、フィルタ
45の各波長領域から得られた信号を順次に緑、青およ
び赤色チャンネルの増幅器およびフィルタ54a、54
bおよび54Cに供給する。これらの出力信号をさらに
信号処理回路55に供給し、TVモニターに適合した所
定の色信号を得ることができる。
FIG. 6 is a diagram showing an endoscope apparatus of the present invention incorporating the filter 45 shown in FIG. 45 and enter the solid-state imaging device 5. A signal from the solid-state imaging device 5 is supplied to a switching circuit 52 via an amplifier and a clamp circuit 51. This switching circuit 52 is synchronously driven by a solid-state imaging device drive circuit 53, and the signals obtained from each wavelength region of the filter 45 are sequentially transmitted to the green, blue and red channel amplifiers and filters 54a and 54.
b and 54C. These output signals are further supplied to a signal processing circuit 55 to obtain a predetermined color signal suitable for a TV monitor.

第7図は本発明内視鏡装置に用いるフィルタのさらに他
の実施例を示す。本例のフィルタ46のフィルタ部分4
6aおよび46bは、それぞれ赤色像信号および緑色像
信号を透過するいわゆるストライプフィルタ46を構成
するものとする。
FIG. 7 shows still another embodiment of the filter used in the endoscope apparatus of the present invention. Filter portion 4 of filter 46 in this example
6a and 46b constitute a so-called stripe filter 46 that transmits a red image signal and a green image signal, respectively.

第8図は第7図に示すフィルタを使用する場合の本発明
内視鏡装置に用いる光分解系の一例を示す側面図である
。この場合には、2個の固体撮像装置5a、5bを用い
る。すなわち、1つの固体撮像装置はある特定の波長領
域の像信号を、他の固体撮像装置は他の特定のあるいは
複数の波長領域の像を得るだめのもので、上記波長領域
のうちの少なくとも1つが赤外波長領域の像を得るだめ
のものであることを特徴とする。例えば、被観察物体か
ら反射しレンズを通過した光9がペンタプリズム10に
入射し、ダイクロイック面11で赤外波長領域光が反射
され、赤色光と緑色光が透過し直進する。ダイクロイッ
ク面11で反射された赤外波長領域光12はミラー面1
3でふたたび反射され、赤外線透過フィルタ47を介し
て第1の固体撮像装置5aに入射する。ダイクロイック
面11を透過した光は、光透過性ブロック14中を通過
し、ストライプフィルタ46のフィルタ部分46aおよ
び46bのフィルタ作用により、赤色光および緑色光が
透過し、第2の固体撮像装置5bに入射する。
FIG. 8 is a side view showing an example of a photolysis system used in the endoscope apparatus of the present invention when the filter shown in FIG. 7 is used. In this case, two solid-state imaging devices 5a and 5b are used. That is, one solid-state imaging device is used to obtain an image signal in a specific wavelength range, and another solid-state imaging device is used to obtain an image signal in another specific wavelength range or a plurality of wavelength ranges, and at least one of the wavelength ranges is used. It is characterized in that it is only capable of obtaining images in the infrared wavelength region. For example, light 9 reflected from an object to be observed and passed through a lens enters the pentaprism 10, infrared wavelength region light is reflected by the dichroic surface 11, and red light and green light are transmitted and travel straight. The infrared wavelength region light 12 reflected by the dichroic surface 11 is reflected by the mirror surface 1.
3 and enters the first solid-state imaging device 5a via the infrared transmission filter 47. The light transmitted through the dichroic surface 11 passes through the light-transmitting block 14, and due to the filtering action of the filter portions 46a and 46b of the stripe filter 46, red light and green light are transmitted, and are transmitted to the second solid-state imaging device 5b. incident.

第9図は第8図の光分解系を本発明内視鏡装置の体腔内
に挿入される部分に組込んだ一構成例を示す図である。
FIG. 9 is a diagram showing an example of a configuration in which the photolysis system shown in FIG. 8 is incorporated into a portion of the endoscopic device of the present invention to be inserted into a body cavity.

この例では被観察物体からの反射光を撮像用ガラス窓3
を経て取り入れ、結像レンズ4とペンタプリズム10と
、光透過性ブロック14と、固体撮像装置5aおよび5
bによって結像し、光分解し、電気信号に変える。リー
ド線束6には、撮像装置5aおよび5bからの映像信号
をとり出すためのリード線が収容されており、他は第2
図の説明に示した通りの構成をとる。
In this example, the reflected light from the object to be observed is captured by the imaging glass window 3.
, the imaging lens 4, the pentaprism 10, the light-transmitting block 14, and the solid-state imaging devices 5a and 5.
imaged by b, photodecomposed, and converted into electrical signals. The lead wire bundle 6 accommodates lead wires for taking out video signals from the imaging devices 5a and 5b, and the other lead wires are stored in the second lead wire bundle 6.
The configuration is as shown in the explanation of the figure.

第10図は生体体腔内の正常部と患部についての反射曲
線図で、正常部の反射曲線をA、患部の反射曲線をBで
示す。いま!5,12および13の各波長領域を通す分
光フィルタを用いて分光し、これら各波長領域の光によ
って固体撮像装置から得られる電気信号を、例えばそれ
ぞれR(赤色)、G(緑色)およびB(青色)の電気信
号に同期させて画像表示すると、正常部については反射
曲線へがほぼ平坦な軌跡を描くためR,GおよびBの反
射率が一定となり、その結果混色されて白色となる。し
かし患部についてみると、反射曲線Bの如き軌跡を描き
波長領域*、、I22及びLにおける各反射率をα、β
およびTとするとαR+βG−I−rBの割合で混色さ
れるため、正常な白色の表示装置に色のついた患部の部
分が明瞭に色が出て表示される。可視域ではたとえ従来
のような可視域のIt、GおよびBのフィルタを通した
としても反射曲線Aと反射曲線Bはほとんど同じなため
、正常部と異常部の差を表示装置で識別することは困難
である。
FIG. 10 is a reflection curve diagram of a normal part and an affected part in a living body cavity, where the reflection curve of the normal part is shown as A, and the reflection curve of the affected part is shown as B. now! Spectral filters that pass the wavelength ranges 5, 12, and 13 are used to separate the light, and the electrical signals obtained from the solid-state imaging device using the light in these wavelength ranges are converted into, for example, R (red), G (green), and B ( When an image is displayed in synchronization with an electric signal of blue color, the reflection curve of the normal part traces a substantially flat trajectory, so the reflectance of R, G, and B becomes constant, and as a result, the colors are mixed and become white. However, if we look at the affected area, it will draw a locus like reflection curve B, and the reflectance in the wavelength range *, I22 and L will be α, β.
and T, the colors are mixed at a ratio of αR+βG−I−rB, so that the colored affected area is clearly displayed in color on a normal white display device. In the visible range, even if it passes through the conventional It, G, and B filters in the visible range, reflection curves A and B are almost the same, so the difference between normal and abnormal areas can be identified using a display device. It is difficult.

本発明は上述した例にのみ限定されるものではなく、幾
多の変更、変形が可能である。上述した例では3個の波
長領域の像を得る例について説明したが、これに限定さ
れるものではない。波長領域を数多(とることによって
さらに多くの情報を(尋ることもできる。この場合、現
在普及しているTVモニターではR(赤色)、G(緑色
)、B(青色)の3原色を発光し、その混合によって種
々の色調の像を表示しているので、これらの混合によっ
て3色以上の色像を表示してもよいし、あるいは各波i
領域ごとの像を一度フレームメモリに蓄えておいて順次
切換えて、メモリからの像信号を3波長領域づつ読み出
して、3原色にTVモニター上で表示することも考えら
れる。
The present invention is not limited to the above-mentioned examples, and can be modified and modified in many ways. Although the above example describes an example in which images in three wavelength regions are obtained, the present invention is not limited to this. It is also possible to obtain even more information by selecting a large number of wavelength regions. In this case, currently popular TV monitors display the three primary colors of R (red), G (green), and B (blue). Since it emits light and displays images of various tones by mixing them, it is possible to display a color image of three or more colors by mixing them, or each wave i
It is also conceivable to once store images for each area in a frame memory and to sequentially switch between them, read out image signals from the memory in three wavelength areas and display them on a TV monitor in three primary colors.

以上詳述したように、本発明の内視鏡装置によれば、3
色分解フィルタを回転させることにより時系列的に順次
被写体色像に対応した原色像信号を得る場合において、
欠点とされていた色分解−信号伝送一色合成の過程にお
ける色バランスの忠実性を高めることができる。すなわ
ち、従来上記欠点の原因とされていた ■ 固体撮像素子の青感度の不良性、 ■ 照明光の色温度を理想状態にすることの困難性、 ■ 信号伝送路、信号処理回路での歪の不完全排除性、 ■ 光合成の段階におけるCRTの各原色発光スペク 
ルの理想状態への未宙達性 等について、これら諸種の原因を取り除くことができ、
生体内部の患部と正常部の識別を容易かつ迅速に行うこ
とができ、加えて、従来に増して正確な検知を期待する
ことができる効果を有するものである。
As detailed above, according to the endoscope device of the present invention, three
In the case where primary color image signals corresponding to the subject color images are sequentially obtained in time series by rotating the color separation filters,
It is possible to improve the fidelity of color balance in the process of color separation-signal transmission and one-color synthesis, which has been considered a drawback. In other words, the causes of the above-mentioned shortcomings were: ■ Poor blue sensitivity of solid-state image sensors, ■ Difficulty in achieving the ideal color temperature of illumination light, and ■ Distortion in signal transmission paths and signal processing circuits. Incomplete exclusion property, ■ Emission spectra of each primary color of CRT at the stage of photosynthesis
These various causes of the failure to reach the ideal state can be removed.
The present invention has the effect that it is possible to easily and quickly distinguish between a diseased part and a normal part inside a living body, and in addition, more accurate detection can be expected than in the past.

【図面の簡単な説明】[Brief explanation of drawings]

第1図AおよびBは人体臓器の反射スペクトルの状態を
示す図、 第2図は本発明者等が開発した内視鏡装置の一例の体腔
内に挿入される部分の先端を示す断面図、第3図Aおよ
びBはそれぞれ内視鏡装置の外部に配置される部分の構
成を示す図、 第4図は第2図に示す内視鏡装置に使用する回転フィル
タを示す図、 第5図は本発明の内視鏡装置に用いるフィルタの一例を
示す図、 第6図は第5図に示したフィルタを用いた本発明の内視
鏡装置の一例を示した構成図、第7図はフィルタのさら
に他の例を示した図、第8図は第7図のフィルタを使用
する場合の本発明装置に用いる光分解系の一例を示す側
面図、第9図は第8図の光分解系を本発明装置の体腔内
に挿入される部分に組込んだ一構成例を示す図、第10
図は生体体腔内の正常部と患部についての反射曲線を示
す図である。 1・・・光導体      2・・・照明用ガラス窓3
・・・撮像用ガラス窓  4・・・結像レンズ5.5a
、5b・・・固体撮像装置 6・・・リード線束 6′・・・固体撮像装置からの信号線 7・・・鞘        訃・・外匣9・・・レンズ
を通過した光 lO・・・ペンタプリズム 11・・・ダイクロイック
面12・・・赤外波長領域光 13・・ベラ−面14・
・・光透過性ブロック 20・・・モータ     21・・・光源22・・・
回転フィルタ  22a・・・光学フィルタ23・・・
ハーフミラ−24・・・受光素子25・・・色切換信号
回路 26・・・増幅器27・・・発振回路    2
8・・・信号切換回路28R・・・赤色出力端子 28G・・・緑色出力端子 28B・・・青色出力端子 29・・・緑色増幅器   30・・・赤色増幅器31
・・・青色増幅器   32・・・水平偏向回路33・
・・垂直偏向回路 34・・・モニター用ブラウン管 35・・・増幅器     36・・・A/D変換器3
7・・・スイッチング回路 38a、38b、38C・・・情報収納メモリ39・・
・TV信号処理回路 40.41.42.45a、45b、45c、46a、
46b・・・フィルタ部分 45.46.47・・・フィルタ 51・・・増幅器・クランプ回路 52・・・スイッチング回路 53・・・固体撮像装置駆動回路 54a、54b、54c・・・信号増幅器・フィルタ5
5・・・信号処理回路 第1図 坂畏(ntn) j反長(nrn) 第2図 第川図 手  続  補  正  書 昭和62年 2月23日 特許庁長官  黒  1) 明  雄  殿2、発明の
名称 内視鏡装置 3、補正をする者 事件との関係  特許出願人 (037)オリンパス光学工業株式会社4、代理人 1、明細書第2頁第20行〜第3頁第1行の「感光する
ので」を「感度を有するので」に訂正する。 2、同第8頁第6行の「減衰すので、」を「減衰するの
で、」に訂正する。
1A and 1B are diagrams showing the state of the reflection spectra of human organs; FIG. 2 is a sectional view showing the tip of the part inserted into the body cavity of an example of the endoscope device developed by the present inventors; 3A and 3B are diagrams showing the configuration of the parts disposed outside the endoscope device, respectively. FIG. 4 is a diagram showing a rotary filter used in the endoscope device shown in FIG. 2. FIG. 5 6 is a diagram showing an example of a filter used in the endoscope device of the present invention, FIG. 6 is a configuration diagram showing an example of the endoscope device of the present invention using the filter shown in FIG. 5, and FIG. FIG. 8 is a side view showing an example of the photolysis system used in the apparatus of the present invention when the filter shown in FIG. FIG. 10 is a diagram showing an example of a configuration in which the system is incorporated into a part of the device of the present invention that is inserted into a body cavity.
The figure shows reflection curves for a normal part and an affected part in a living body cavity. 1... Light guide 2... Glass window for lighting 3
...Imaging glass window 4...Imaging lens 5.5a
, 5b...Solid-state imaging device 6...Lead wire bundle 6'...Signal line 7 from the solid-state imaging device...Sheath...Outer casing 9...Light passing through the lens lO...Penta Prism 11... Dichroic surface 12... Infrared wavelength region light 13... Vera surface 14...
...Light transmitting block 20...Motor 21...Light source 22...
Rotating filter 22a... Optical filter 23...
Half mirror 24... Light receiving element 25... Color switching signal circuit 26... Amplifier 27... Oscillation circuit 2
8...Signal switching circuit 28R...Red output terminal 28G...Green output terminal 28B...Blue output terminal 29...Green amplifier 30...Red amplifier 31
...Blue amplifier 32...Horizontal deflection circuit 33.
・Vertical deflection circuit 34 ・Monitor cathode ray tube 35 ・Amplifier 36 ・A/D converter 3
7... Switching circuits 38a, 38b, 38C... Information storage memory 39...
・TV signal processing circuit 40.41.42.45a, 45b, 45c, 46a,
46b...Filter portion 45.46.47...Filter 51...Amplifier/clamp circuit 52...Switching circuit 53...Solid-state imaging device drive circuit 54a, 54b, 54c...Signal amplifier/filter 5
5...Signal processing circuit Figure 1 Sakahi (ntn) j anti-length (nrn) Figure 2 River diagram Procedures Correction February 23, 1981 Commissioner of the Patent Office Kuro 1) Mr. Akio 2, Name of the invention Endoscope device 3, Relationship with the person making the amendment Patent applicant (037) Olympus Optical Industry Co., Ltd. 4, Attorney 1, Specification page 2, line 20 to page 3, line 1 "Because it is sensitive to light" should be corrected to "because it has sensitivity." 2. In the 6th line of page 8, ``attenuate, so'' is corrected to ``attenuate, so''.

Claims (1)

【特許請求の範囲】[Claims] 1、少なくとも1つの可視波長領域の光と少なくとも1
つの赤外波長領域の光で被観察体を同時に照明する手段
と、被観察体の内部に挿入される部分の先端に配置され
、被観察体から反射された光を受けて結像面に被観察体
像を形成する光学系と、この光学系の結像面位置に配置
され、被観察体像を電気信号に変換する固体撮像装置と
、上記光学系と固体撮像装置との間に配置され、被観察
体から反射された光を少なくとも1つの赤外波長領域の
光と少なくとも1つの可視波長領域の光とに分離するフ
ィルタと、上記固体撮像装置から出力される上記各波長
領域の光による被観察体像を表わす電気信号を受けて画
像の表示を行う手段とを具えることを特徴とする内視鏡
装置。
1. At least one light in the visible wavelength range and at least one
A means for simultaneously illuminating an object to be observed with light in two infrared wavelength regions; an optical system that forms an image of an object to be observed; a solid-state imaging device that is placed at the imaging plane of this optical system and converts the image of the object to be observed into an electrical signal; and an optical system that is placed between the optical system and the solid-state imaging device. , a filter that separates the light reflected from the object to be observed into at least one light in the infrared wavelength range and at least one light in the visible wavelength range, and light in each of the wavelength ranges output from the solid-state imaging device. An endoscope apparatus comprising means for receiving an electrical signal representing an image of an object to be observed and displaying an image.
JP62013308A 1987-01-24 1987-01-24 Endoscope device Granted JPS62174713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62013308A JPS62174713A (en) 1987-01-24 1987-01-24 Endoscope device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62013308A JPS62174713A (en) 1987-01-24 1987-01-24 Endoscope device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP7850779A Division JPS563033A (en) 1979-06-21 1979-06-21 Endoscope device

Publications (2)

Publication Number Publication Date
JPS62174713A true JPS62174713A (en) 1987-07-31
JPH059004B2 JPH059004B2 (en) 1993-02-03

Family

ID=11829549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62013308A Granted JPS62174713A (en) 1987-01-24 1987-01-24 Endoscope device

Country Status (1)

Country Link
JP (1) JPS62174713A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6443228A (en) * 1987-08-11 1989-02-15 Olympus Optical Co Electronic endoscopic apparatus
JPH03242133A (en) * 1990-11-02 1991-10-29 Olympus Optical Co Ltd Endoscope device
US5711755A (en) * 1995-04-14 1998-01-27 Vipera Systems, Inc. Endoscopic diagnostic systems and associated methods employing infrared radiation
US5833596A (en) * 1995-04-14 1998-11-10 Vipera Systems, Inc. Endoscope for imaging infrared emissions within the range of 2 to 14 microns
JP2006006922A (en) * 2004-05-25 2006-01-12 Pentax Corp Color filter and electronic endoscope system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4965686A (en) * 1972-10-31 1974-06-25
JPS5215189A (en) * 1975-07-28 1977-02-04 Olympus Optical Co Endscope device for indicating color picture
JPS5268687U (en) * 1975-11-18 1977-05-21
JPS52129233A (en) * 1976-04-22 1977-10-29 Sony Corp Image pickup equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4965686A (en) * 1972-10-31 1974-06-25
JPS5215189A (en) * 1975-07-28 1977-02-04 Olympus Optical Co Endscope device for indicating color picture
JPS5268687U (en) * 1975-11-18 1977-05-21
JPS52129233A (en) * 1976-04-22 1977-10-29 Sony Corp Image pickup equipment

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6443228A (en) * 1987-08-11 1989-02-15 Olympus Optical Co Electronic endoscopic apparatus
JPH03242133A (en) * 1990-11-02 1991-10-29 Olympus Optical Co Ltd Endoscope device
US5711755A (en) * 1995-04-14 1998-01-27 Vipera Systems, Inc. Endoscopic diagnostic systems and associated methods employing infrared radiation
US5833596A (en) * 1995-04-14 1998-11-10 Vipera Systems, Inc. Endoscope for imaging infrared emissions within the range of 2 to 14 microns
US5944653A (en) * 1995-04-14 1999-08-31 Vipera Systems, Inc. Dual IR and visible channel endodiagnostic apparatus
US5997472A (en) * 1995-04-14 1999-12-07 Vipera Systems, Inc. Endodiagnostic method using differential thermal relaxation and IR imaging
JP2006006922A (en) * 2004-05-25 2006-01-12 Pentax Corp Color filter and electronic endoscope system

Also Published As

Publication number Publication date
JPH059004B2 (en) 1993-02-03

Similar Documents

Publication Publication Date Title
US6638215B2 (en) Video endoscope system
US4974076A (en) Imaging apparatus and endoscope apparatus using the same
JPH0785135B2 (en) Endoscope device
JP2011206546A (en) Autofluorescence imaging system for endoscopy
JP2007526014A (en) Scanning endoscope
JPH029804B2 (en)
JP2002051969A (en) Electronic endoscope device
JPS63234941A (en) Image pickup apparatus
JPH0966023A (en) Video processor system for electronic endoscope for fluorescent diagnosis
JPH08140929A (en) Electronic endoscope apparatus for fluorescence diagnosis
JPS63167577A (en) Image pickup device
JP2003061909A (en) Light source and electronic endoscope
JP4520216B2 (en) Fluorescence observation endoscope device
JPS62174716A (en) Endoscope device
JP2641654B2 (en) Endoscope device
JPS62174713A (en) Endoscope device
JP4459709B2 (en) Fluorescence observation endoscope device
JPH059006B2 (en)
JP2001137172A (en) Fluorescence detection equipment
CN105142492B (en) Endoscopic system
JP3191932B2 (en) Measurement endoscope device
JP3881142B2 (en) Fluorescence display method and apparatus
JPS62174712A (en) Endoscope device
JPH04357929A (en) Endoscope device
JPS62174714A (en) Endoscope device