JPS62174644A - Oxygen sensor - Google Patents

Oxygen sensor

Info

Publication number
JPS62174644A
JPS62174644A JP1480686A JP1480686A JPS62174644A JP S62174644 A JPS62174644 A JP S62174644A JP 1480686 A JP1480686 A JP 1480686A JP 1480686 A JP1480686 A JP 1480686A JP S62174644 A JPS62174644 A JP S62174644A
Authority
JP
Japan
Prior art keywords
electrodes
rhodium
oxygen sensor
oxygen
titania
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1480686A
Other languages
Japanese (ja)
Inventor
Kazuhiro Yamamoto
一博 山本
Satoshi Abe
安部 敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Japan Electronic Control Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Electronic Control Systems Co Ltd filed Critical Japan Electronic Control Systems Co Ltd
Priority to JP1480686A priority Critical patent/JPS62174644A/en
Publication of JPS62174644A publication Critical patent/JPS62174644A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To improve the responsiveness of an oxygen sensor which uses titania of an electric resistance change type by forming the electrodes of an material added with rhodium or the rhodium itself. CONSTITUTION:The two electrodes 12, 13, spaced at a prescribed distance, are mounted to one side of an alumina substrate 1 and a titania layer 4 is coated thereon in the form of covering the two electrodes 12, 13. An oxygen concn. is detected by the electric resistance change of the titania layer interposed between the two electrodes 12 and 13. The electrodes 12, 13 are formed of the material added with the rhodium or the rhodium itself. The rhodium is added at about >=1wt% to platinum which is an electrode forming material in the case of constituting the electrodes of the material added with the rhodium. The response delay in the control of, for example, the changeover from the region where the oxygen concn. is low (air-fuel ratio rich) to the region where said concn. is high (air-fuel ratio lean) in accordance with the output voltage of the oxygen sensor is thereby suppressed.

Description

【発明の詳細な説明】 〈産業上の利用分野) 本発明は膜構造酸素センサに関し、特に電気抵抗変化型
のチタニア(酸化チタン)を用いる酸素センサに関する
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a membrane structure oxygen sensor, and particularly to an oxygen sensor using electrical resistance variable titania (titanium oxide).

〈従来の技術〉 酸素センサは、例えば内燃機関の排気管に装着して該機
関に供給される混合気の空燃比と密接な関係にある排気
中の酸素濃度を検出するもので、空燃比フィードバック
制御におけるフィードバック信号の提供等に用いる。
<Prior art> Oxygen sensors are installed, for example, in the exhaust pipe of an internal combustion engine to detect the oxygen concentration in the exhaust gas, which is closely related to the air-fuel ratio of the air-fuel mixture supplied to the engine. Used for providing feedback signals in control, etc.

かかる酸素センサとしては、例えば、特開昭55−13
7334号公報等に記載されているように、検出素子と
してジルコニア(酸化ジルコニウム)を使用したものが
広く知られている。
As such an oxygen sensor, for example, Japanese Patent Application Laid-Open No. 55-13
As described in Japanese Patent No. 7334, etc., devices using zirconia (zirconium oxide) as a detection element are widely known.

しかし、このジルコニア系の酸素センサは、被検出気体
中酸素濃度を基準気体中酸素濃度との差に応じた起電力
を発生させるものであるため、基準気体導入部が必要に
なって、小型化、軽量化に限度があり、部品点数も多い
こと等の不都合があった。
However, this zirconia-based oxygen sensor generates an electromotive force according to the difference between the oxygen concentration in the detected gas and the reference gas oxygen concentration, so a reference gas introduction part is required, making it difficult to downsize. However, there were disadvantages such as there was a limit to the weight reduction and the number of parts was large.

そこで、これらの不都合を解消するものとして、酸素濃
度に応じて電気抵抗値が直接変化するチタニア(酸化チ
タン)を検出素子とした酸素センサが開発されている。
In order to solve these problems, an oxygen sensor has been developed that uses titania (titanium oxide) as a detection element, the electrical resistance of which changes directly depending on the oxygen concentration.

このチタニアを検出素子とする酸素センサとしては、例
えば第4図(A)、  (B)に示すようなセンサ部構
造を有したものがある。
As an oxygen sensor using titania as a detection element, there is one having a sensor structure as shown in FIGS. 4(A) and 4(B), for example.

即ち、基板1として用いるアルミナ(ANZCh)の仮
焼結体−側に電極2,3として用いる白金(Pt)を所
定間隔をあけて塗布し、これらを約1500℃で焼成す
る。更に、電極2,3を包覆するようにチタニア(T 
i O□)を塗布して約1200℃で焼成し、多孔性の
チタニア層を形成する。尚、アルミナ基板1の厚さは1
龍程度、チタニア層4の厚さは20μ程度である。
That is, platinum (Pt) to be used as electrodes 2 and 3 is applied at a predetermined interval to the − side of the pre-sintered body of alumina (ANZCh) used as substrate 1, and then fired at about 1500°C. Furthermore, titania (T) is applied so as to cover the electrodes 2 and 3.
iO□) is applied and fired at about 1200°C to form a porous titania layer. In addition, the thickness of the alumina substrate 1 is 1
The thickness of the titania layer 4 is about 20 μm.

かかる構成の酸素センサによると、電極2,3間に介在
するチタニア層4の電気抵抗値が第5図に示すように酸
素濃度によって変化するので、その抵抗値変化を電圧変
化として取り出すことで、酸素濃度を形成することがで
きる。
According to the oxygen sensor having such a configuration, the electrical resistance value of the titania layer 4 interposed between the electrodes 2 and 3 changes depending on the oxygen concentration as shown in FIG. 5, so by extracting the resistance value change as a voltage change, Oxygen concentration can be formed.

〈発明が解決しようとする問題点) しかしながら、かかる従来の酸素センサにおいては、電
極2,3として白金(Pt)を用いており、酸素センサ
の出力電圧に基づく酸素濃度の低い領域(空燃比リッチ
)から高い領域(空燃比リーン)への切換制御に応答遅
れが生じる等応答性が劣る点で問題があった。
<Problems to be Solved by the Invention> However, in such conventional oxygen sensors, platinum (Pt) is used for the electrodes 2 and 3, and the oxygen concentration is low (air-fuel ratio rich) based on the output voltage of the oxygen sensor. ) to a high range (lean air-fuel ratio), there was a problem in that responsiveness was poor, such as a delay in response.

本発明はこのような従来の問題点に鑑みなされたもので
、電極の形成材料の改善により、応答性に優れた酸素セ
ンサを提供することを目的とする。
The present invention was made in view of these conventional problems, and it is an object of the present invention to provide an oxygen sensor with excellent responsiveness by improving the material for forming the electrodes.

く間i点を解決するための手段〉 このため本発明は、電気抵抗変化型のチタニアを用いる
酸素センサにおいて、電極をロジウムの添加物若しくは
ロジウム自体で形成した。
Means for solving the gap i point> For this reason, in the present invention, in an oxygen sensor using electrical resistance variable titania, the electrode is formed of rhodium additive or rhodium itself.

徴とする酸素センサ。Oxygen sensor.

(作用) そして、上記構成においては、例えば、酸素センサの出
力電圧に基づく酸素濃度の低い領域(空燃比リッチ)か
らから高いwIJj!(空燃比リーン)への切換制御に
応答遅れを抑制できる等酸素センサの応答性を向上する
ことができる。
(Function) In the above configuration, for example, wIJj! is high from a low oxygen concentration region (air-fuel ratio rich) based on the output voltage of the oxygen sensor! The responsiveness of the oxygen sensor can be improved, such as suppressing response delay in switching control to (air-fuel ratio lean).

〈実施例〉 以下、本発明の一実施例を第1図〜第3図に基づいて説
明する。
<Example> Hereinafter, an example of the present invention will be described based on FIGS. 1 to 3.

尚、第1図において、第4図と同一要素のものには同一
符号を付して説明を節単にする。
In FIG. 1, the same elements as those in FIG. 4 are given the same reference numerals to simplify the explanation.

即ち、第1図において、アルミナ基板1の一側に所定の
間隔をあけて2つの電極12.13が装着され、該2つ
の電極12.13を包覆する形でチタニア層4がコーテ
ィングされ、2つの電極12.13間に介在するチタニ
ア層4の電気抵抗変化によって酸素濃度を検出する構成
は従来と同様である。
That is, in FIG. 1, two electrodes 12.13 are attached to one side of the alumina substrate 1 at a predetermined interval, and the titania layer 4 is coated to cover the two electrodes 12.13. The configuration for detecting the oxygen concentration based on the change in electrical resistance of the titania layer 4 interposed between the two electrodes 12 and 13 is the same as the conventional one.

そして、かかる酸素センサにおいて、前記電極12、1
3をロジウム(Rh)の添加物若しくはロジウム(Rh
)自体で形成しである。
In such an oxygen sensor, the electrodes 12, 1
3 as rhodium (Rh) additive or rhodium (Rh)
) is formed by itself.

電極1.2.13をロジウムの添加物で構成する場合は
、従来の電極形成材料である白金(Pt)にロジウム(
Rh)を1wt%以上添加する。
When electrode 1.2.13 is composed of rhodium additive, rhodium (
Rh) is added in an amount of 1 wt% or more.

このように、電極12.13をロジウムの添加物若しく
はロジウム自体で形成した結果、酸素センサの応答性を
向上することができる。
As a result of forming the electrodes 12, 13 from rhodium additives or from rhodium itself, the responsiveness of the oxygen sensor can be improved.

これは、本考案者らの実験により明らかになっている。This has been made clear through experiments conducted by the present inventors.

即ち、第2図はその実験結果を示すグラフであり、横軸
には白金(Pt)とロジウム(Rh)の混合比率を示し
てあり、図の右側に行くに従って、ロジウム(Rh)の
添加量が多く、左側に行くに従って、白金(Pt)の添
加量が多くなる。
That is, Fig. 2 is a graph showing the experimental results, and the horizontal axis shows the mixing ratio of platinum (Pt) and rhodium (Rh), and the amount of rhodium (Rh) added increases toward the right side of the figure. The amount of platinum (Pt) added increases toward the left.

又、縦軸には、酸素センサの出力電圧に基づく酸素濃度
の低い領域(空燃比リッチ)から高い領域(空燃比リー
ン)への切換制御時の応答遅れを示すものとして、起電
力(mV)を示しである。
In addition, the vertical axis shows the electromotive force (mV), which indicates the response delay during switching control from a low oxygen concentration region (air-fuel ratio rich) to a high oxygen concentration region (air-fuel ratio lean) based on the output voltage of the oxygen sensor. It shows.

実験には、プロパンバーナを使用し、第3図に示すよう
な回路即ち、チタニア抵抗5と比較抵抗6の直列回路に
1■の電圧を印加し、該チタニア抵抗5と比較抵抗6の
間から出力を取り出す回路にて、該プロパンバーナ燃焼
時の空燃比λをリッチ(λ=0.9 )からリーン(λ
=1.1 )に変化させた場合に所定時間後出力される
起電力(mV)を計測する。
In the experiment, a propane burner was used, and a voltage of 1 cm was applied to a circuit as shown in FIG. The output output circuit changes the air-fuel ratio λ during combustion in the propane burner from rich (λ = 0.9) to lean (λ
= 1.1), the electromotive force (mV) output after a predetermined time is measured.

この場合、出力される起電力(mV)は、応答遅れによ
り適正値に近付かず大きく現れ、応答遅れが少ない場合
には、適正値に近付いて小さく現れる。
In this case, the output electromotive force (mV) does not approach the proper value and appears large due to the response delay, and when the response delay is small, it approaches the proper value and appears small.

従って、グラフから明らかなように、従来の白金(Pt
)100%の電極使用のものでは、かなり大きな応答遅
れを生じるが、ロジウム(Rh)を添加した電極使用の
もの或いはロジウム(Rh)100%の電極使用のもの
では、応答遅れを抑制できることが判る。
Therefore, as is clear from the graph, conventional platinum (Pt
) A model using 100% electrodes causes a fairly large response delay, but it can be seen that the response delay can be suppressed by using electrodes doped with rhodium (Rh) or using 100% rhodium (Rh) electrodes. .

〈発明の効果〉 以上説明したように、本発明によれば、電気抵抗変化型
のチタニアを用いる酸素センサにおいて、電極をロジウ
ムの添加物若しくはロジウム自体で形成した構成により
、例えば、酸素センサの出力電圧に基づく酸素濃度の低
い領域(空燃比リッチ)から高い領域(空燃比リーン)
への切換制御に答遅れを抑制できる等、酸素センサの応
答性を向上することができ、信顛性の向上を図ることが
できる。
<Effects of the Invention> As described above, according to the present invention, in an oxygen sensor using electrical resistance variable titania, the electrode is formed of a rhodium additive or rhodium itself, so that, for example, the output of the oxygen sensor can be improved. Low oxygen concentration range (air-fuel ratio rich) to high oxygen concentration range (air-fuel ratio lean) based on voltage
The responsiveness of the oxygen sensor can be improved, such as suppressing response delay in switching control, and reliability can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係わる酸素センサの一実施例を示す断
面図、第2図は同上の酸素センサの応答性を実験により
求めたグラフ、第3図は同上の実験に使用した装置の概
略図、第4図(A)、  (B)は夫々従来の酸素セン
サを示す断面図及び平面図、第5図はチタニアの抵抗値
と酸素濃度との関係を示すグラフである。 1・・・アルミナ基牟反  4・・・チタニア層12゜
13・・・電極 特許出願人   日本電子機器株式会社代 理 人  
弁理士 笹 島 冨二雄第1図       第3図 第4図(A)      第4図(B)第5図 酸素濃度    8
Fig. 1 is a sectional view showing an embodiment of the oxygen sensor according to the present invention, Fig. 2 is a graph obtained by experiment with the responsiveness of the above oxygen sensor, and Fig. 3 is a schematic diagram of the apparatus used in the above experiment. 4A and 4B are a cross-sectional view and a plan view, respectively, showing a conventional oxygen sensor, and FIG. 5 is a graph showing the relationship between the resistance value of titania and the oxygen concentration. 1...Alumina base material 4...Titania layer 12゜13...Electrode patent applicant Japan Electronics Co., Ltd. Agent
Patent Attorney Fujio Sasashima Figure 1 Figure 3 Figure 4 (A) Figure 4 (B) Figure 5 Oxygen concentration 8

Claims (1)

【特許請求の範囲】[Claims]  アルミナ基板の一側に所定の間隔をあけて2つの電極
を装着し、該2つの電極を包覆する形でチタニア層をコ
ーティングしてなり、2つの電極間に介在するチタニア
層の電気抵抗変化によって酸素濃度を検出するようにし
た酸素センサにおいて、前記電極をロジウムの添加物若
しくはロジウム自体で形成したことを特徴とする酸素セ
ンサ。
Two electrodes are attached to one side of an alumina substrate at a predetermined interval, and a titania layer is coated to cover the two electrodes, and the electrical resistance of the titania layer interposed between the two electrodes changes. What is claimed is: 1. An oxygen sensor for detecting oxygen concentration, characterized in that the electrode is made of a rhodium additive or rhodium itself.
JP1480686A 1986-01-28 1986-01-28 Oxygen sensor Pending JPS62174644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1480686A JPS62174644A (en) 1986-01-28 1986-01-28 Oxygen sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1480686A JPS62174644A (en) 1986-01-28 1986-01-28 Oxygen sensor

Publications (1)

Publication Number Publication Date
JPS62174644A true JPS62174644A (en) 1987-07-31

Family

ID=11871284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1480686A Pending JPS62174644A (en) 1986-01-28 1986-01-28 Oxygen sensor

Country Status (1)

Country Link
JP (1) JPS62174644A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007071855A (en) * 2004-10-19 2007-03-22 National Institute Of Advanced Industrial & Technology Resistive oxygen sensor and air/fuel ratio control system using the same
US7236083B2 (en) 2002-06-27 2007-06-26 National Institute Of Advanced Industrial Science And Technology Resistance type oxygen sensor and oxygen sensor device using it and air/fuel ratio control system
WO2018110539A1 (en) * 2016-12-16 2018-06-21 ヤマハ株式会社 Signal processing device and signal processing method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7236083B2 (en) 2002-06-27 2007-06-26 National Institute Of Advanced Industrial Science And Technology Resistance type oxygen sensor and oxygen sensor device using it and air/fuel ratio control system
JP2007071855A (en) * 2004-10-19 2007-03-22 National Institute Of Advanced Industrial & Technology Resistive oxygen sensor and air/fuel ratio control system using the same
US7578974B2 (en) 2004-10-19 2009-08-25 National Institute Of Advanced Industrial Science And Technology Resistive type oxygen sensor and air/fuel ratio control system using it
JP4625930B2 (en) * 2004-10-19 2011-02-02 独立行政法人産業技術総合研究所 Resistive oxygen sensor and air-fuel ratio control system using it
WO2018110539A1 (en) * 2016-12-16 2018-06-21 ヤマハ株式会社 Signal processing device and signal processing method
CN110073173A (en) * 2016-12-16 2019-07-30 雅马哈株式会社 Signal processing apparatus and signal processing method
JPWO2018110539A1 (en) * 2016-12-16 2019-10-24 ヤマハ株式会社 Signal processing apparatus and signal processing method
CN110073173B (en) * 2016-12-16 2021-12-31 雅马哈株式会社 Signal processing device and signal processing method
US11221269B2 (en) 2016-12-16 2022-01-11 Yamaha Corporation Signal processing device and signal processing method
US11703411B2 (en) 2016-12-16 2023-07-18 Yamaha Corporation Signal processing device and signal processing method

Similar Documents

Publication Publication Date Title
JPS6156779B2 (en)
US6355151B1 (en) Gas sensor
JP6234568B2 (en) Gas sensor for detecting nitrogen oxides and method of operating such a gas sensor
JPS628743B2 (en)
JPH0827247B2 (en) Broadband air-fuel ratio sensor and detector
JP2000146906A (en) Gas sensor element
JPS62174644A (en) Oxygen sensor
JP2002139468A (en) Gas sensor
JPH0638075B2 (en) A rapid method for detecting changes in the atmosphere of combustion exhaust gas.
JP3106971B2 (en) Oxygen sensor
JP2004205357A (en) Detection method of gas concentration
JPH0211862B2 (en)
JP3696494B2 (en) Nitrogen oxide sensor
JP7071951B2 (en) Gas sensor
JPH0410983B2 (en)
JPS60256045A (en) Electrode for oxygen sensor
JPH0348148A (en) Detection of air/fuel ratio
JP3395957B2 (en) Carbon monoxide detection sensor and carbon monoxide detection method using the same
JPS61164148A (en) Oxygen sensor element
JPS61100651A (en) Apparatus for measuring concentration of oxygen
JPS58193454A (en) Detector for concentration of oxygen
JPS62179655A (en) Method and apparatus for detecting air/fuel ratio
JPH0422286Y2 (en)
JPS61283860A (en) Gas filter material for semiconductor gas sensor
JPH0714878Y2 (en) Limiting current type oxygen concentration sensor