JPS62172731A - Etching method - Google Patents

Etching method

Info

Publication number
JPS62172731A
JPS62172731A JP1415286A JP1415286A JPS62172731A JP S62172731 A JPS62172731 A JP S62172731A JP 1415286 A JP1415286 A JP 1415286A JP 1415286 A JP1415286 A JP 1415286A JP S62172731 A JPS62172731 A JP S62172731A
Authority
JP
Japan
Prior art keywords
etching
conductive layer
type conductive
power source
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1415286A
Other languages
Japanese (ja)
Other versions
JPH0528898B2 (en
Inventor
Masaki Hirata
平田 雅規
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1415286A priority Critical patent/JPS62172731A/en
Publication of JPS62172731A publication Critical patent/JPS62172731A/en
Publication of JPH0528898B2 publication Critical patent/JPH0528898B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Pressure Sensors (AREA)
  • Weting (AREA)

Abstract

PURPOSE:To render a silicon wafer uniform in thickness by a method wherein the value of a positive-polarity DC voltage is caused to gradually lower during a prescribed period of time prior to the end of etching for a P-type conductive layer. CONSTITUTION:A quartz beaker 1 accommodates such as etchant 2 as KOH, EDP or hydrazine by which silicon is anisotropically affected. The etchant 2 is heated by a heater 3 to 90-180 deg.C. A platinum electrode 4 is connected to the cathode of a variable power source 6 and, with the etchant 2 stabilized at a reference potential, the N-type conductive layer of a P-N junction silicon wafer 5 is connected to the anode of the variable power source 6. In this process, the surface to be etched of the P-N junction silicon wafer 5 is covered by a mask 10. Immersion in the etchant 2 of the P-N junction silicon wafer 5 with a voltage from the variable power source 6 applied thereto results in the anisotropic etching of a diaphragm in the P-type conductive layer. Etching terminates, the termination starting at the wafer outer circumference, upon reaching the N-type conductive layer of the etching effect. During this process, the output voltage of the variable power source 6 is caused to lower with the passage of time. Etching proceeds concentrically toward the center from the wafer outer circumference. The lowering of the power source voltage eliminates the concentration of electric currents on minority chips, for the realization in the wafer surface of a diaphragm equipped with a uniform thickness.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はエツチング方法に関し、特にN型導電層とP型
導電層とからなるシリコンウェーハ〜のエツチング方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an etching method, and more particularly to a method for etching a silicon wafer comprising an N-type conductive layer and a P-type conductive layer.

〔従来の技術〕[Conventional technology]

従来、シリコンダイアフラムを形成するとき、水酸化カ
リウム溶液(KOH,以下KOHと記す)やエチレンジ
アミン・ピロカテコール溶液(EDP1以下EDP  
と記す)のような異方性エツチング液を用いて、エツチ
ング速度を制御することによりダイアフラムの厚さを制
御してい几。
Conventionally, when forming a silicon diaphragm, potassium hydroxide solution (KOH, hereinafter referred to as KOH) or ethylenediamine-pyrocatechol solution (EDP1 or less) was used.
The thickness of the diaphragm is controlled by controlling the etching rate using an anisotropic etching solution such as

あるいは、高濃度ホウ素含有層でのエツチング速度の低
下を利用したり、PN接合ウェーノーを用い友電気化学
的なエツチング方法によりダイアフラム厚の制御が行わ
れていた。
Alternatively, the diaphragm thickness has been controlled by utilizing the reduction in etching rate in a layer containing high concentration boron, or by electrochemical etching using a PN junction wafer.

例えば、アイ・イー・イー・イー・トランザクションズ
・オン・エレクトロン・デバイス(I EEETRAN
SACTION8ONELECTRONDEVICE−
8)第ED−30巻、1983年7月、第7号に記載さ
れている報告もその一例である。
For example, IEE TRANSACTIONS ON ELECTRON DEVICES (IEEETRAN)
SACTION8ONE ELECTRON DEVICE-
8) The report described in Vol. ED-30, July 1983, No. 7 is also an example.

シリコンダイアフラムは圧力センサや発振子に使われて
いる構造体である。圧力センナの圧力感度はダイアフラ
ムの厚さに密接に関連している6第2図は圧力センサの
断面図である。
Silicon diaphragms are structures used in pressure sensors and oscillators. The pressure sensitivity of a pressure sensor is closely related to the thickness of the diaphragm.6 FIG. 2 is a cross-sectional view of the pressure sensor.

第2図に示すように、シリコンウェーハ7のダイアフラ
ム部の端部に拡散抵抗8を形成し、圧力を印加した時の
抵抗値変化で圧力の大きさを検出するものである。圧力
感度はダイアフラムの厚さの2乗に反比例する。即ち、
厚さが2倍になると感度は1/4に低下する。
As shown in FIG. 2, a diffused resistor 8 is formed at the end of the diaphragm portion of the silicon wafer 7, and the magnitude of the pressure is detected by the change in resistance value when pressure is applied. Pressure sensitivity is inversely proportional to the square of the diaphragm thickness. That is,
When the thickness is doubled, the sensitivity decreases to 1/4.

従って、圧力感度ばらつきの小さい圧力センサを製造す
る為には、ダイアフラムの厚さを正確に制御しなければ
ならない。発振子の場合でも、同様に振動周波数を均一
にするために、ダイアフラムの厚さを正確に制御する必
要がある。
Therefore, in order to manufacture a pressure sensor with small variations in pressure sensitivity, the thickness of the diaphragm must be accurately controlled. Similarly, in the case of an oscillator, it is necessary to precisely control the thickness of the diaphragm in order to make the vibration frequency uniform.

高濃度ホウ素含有層によるエツチング制御法は、5X1
0  cm 以上のホウ素濃度が必要であシ、その様な
高濃度の不純物を含むシリコンダイアフラム表面に、圧
力を検出する為の拡散抵抗を形成することは困難である
The etching control method using a high-concentration boron-containing layer is 5X1
A boron concentration of 0 cm or more is required, and it is difficult to form a diffusion resistance for detecting pressure on the surface of a silicon diaphragm containing such a high concentration of impurities.

PN接合ウェーハを用いた電気化学的なエツチング方法
は低不純物濃度のPN接合ウェーハな使えるので、シリ
コンダイアフラム表面に拡散抵抗や集積回路素子を形成
することができ、圧力センナの製造に適している。
Since the electrochemical etching method using a PN junction wafer can be used with a PN junction wafer with a low impurity concentration, it is possible to form diffused resistors and integrated circuit elements on the surface of a silicon diaphragm, and is suitable for manufacturing pressure sensors.

第3図は従来のエツチング方法の一例のエツチング装置
の断面図である。
FIG. 3 is a sectional view of an etching apparatus as an example of a conventional etching method.

第3図に示すように、石英ビー力1に異方性を有するエ
ツチング液2、例えば、KOH,EDP 。
As shown in FIG. 3, an etching solution 2 having anisotropy in the quartz bead force 1, such as KOH or EDP.

ヒドラジン等を八れ、ヒータ3で90〜120℃に加熱
する。白金電極4を定電圧電源9の陰極に接続し、エツ
チング液2の電位を基準電位に固定する。PN接合シリ
コンウエーノS5のエツチング面を所要のマスク10で
覆い、N型導電層を定電圧電源9の陽極に接続する。
Add hydrazine, etc., and heat to 90 to 120°C using heater 3. The platinum electrode 4 is connected to the cathode of a constant voltage power source 9, and the potential of the etching solution 2 is fixed at a reference potential. The etched surface of the PN junction silicon wafer S5 is covered with a required mask 10, and the N-type conductive layer is connected to the anode of the constant voltage power supply 9.

P型導電層が異方性エツチングされN型導電層に達する
と、陽極酸化によシN型導電層の表面に酸化膜が形成さ
れエツチングが停止する。しかしながら、エツチング停
止はウェーハ内の全チップで同時に起らず、P型導電層
のエツチングが速く進むウェーハ周辺部から起る。
When the P-type conductive layer is anisotropically etched and reaches the N-type conductive layer, an oxide film is formed on the surface of the N-type conductive layer by anodic oxidation, and the etching is stopped. However, the etching stop does not occur simultaneously on all chips within the wafer, but occurs from the periphery of the wafer where the P-type conductive layer is etched faster.

そこで、エツチング停止が周辺部から中心部に向って同
心円状に進むにしたがって、N型導電層の露出するチッ
プ数が減少し、電流が少数チップに集中する様になる。
Therefore, as the etching stop progresses concentrically from the periphery toward the center, the number of exposed chips of the N-type conductive layer decreases, and the current concentrates on a small number of chips.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来のエツチング方法は、ウェーハ中心部にお
いては、P型導電層でも陽極酸化が起シエッチングが停
止する。従って、ウェーハ中心部の方がダイアフラム厚
が厚くなり感度が低下するという問題点がある。
In the conventional etching method described above, anodic oxidation occurs even in the P-type conductive layer at the center of the wafer, and etching stops. Therefore, there is a problem that the diaphragm is thicker at the center of the wafer and the sensitivity is lowered.

本発明の目的は、シリコンウェーハの全面でダイアフラ
ムの厚さを均一にできるエツチング方法を提供すること
にある。
An object of the present invention is to provide an etching method that can make the thickness of a diaphragm uniform over the entire surface of a silicon wafer.

〔問題点を解決するための手段〕[Means for solving problems]

本発明のエツチング方法は、N型導電層とP型導電層と
からなるシリコンウェーハの前記Nff1導電層に正極
性の直流電圧を印加して前記P型導電層をエッチングに
より除去する電気化学的なエツチング方法において、前
記P型導電層のエツチングが終了する所定時間前から前
記正極性の直流電圧の値を順次低下させるように構成さ
れる。
The etching method of the present invention is an electrochemical method in which a positive DC voltage is applied to the Nff1 conductive layer of a silicon wafer consisting of an N-type conductive layer and a P-type conductive layer to remove the P-type conductive layer by etching. The etching method is configured such that the value of the positive DC voltage is sequentially lowered from a predetermined time before the etching of the P-type conductive layer is completed.

〔作用〕[Effect]

印加電圧を定電圧ではなく、P型導電層のエツチングが
終了する所定時間前から順次減少させることによシ、ウ
ェーハ中心部の少数チップへの電流集中をなくシ、ウェ
ーハ面内で厚さの均一なシリコンダイアフラムが得られ
る。
By decreasing the applied voltage sequentially from a predetermined time before the etching of the P-type conductive layer ends, instead of using a constant voltage, current concentration on a small number of chips at the center of the wafer can be eliminated, and the thickness can be reduced within the wafer surface. A uniform silicon diaphragm is obtained.

〔実施例〕〔Example〕

次に1本発明の実施例について図面を参照して説明する
Next, an embodiment of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例のエツチング装置の断面図で
ある。
FIG. 1 is a sectional view of an etching apparatus according to an embodiment of the present invention.

第1図において、石英と一カ1はエツチング液に侵され
ない様に高純度の透明石英がよい。エツチング液2はシ
リコンに対して異方性のあるKOHやEDP  やヒド
ラジンを用いる。ヒータ3でエツチング液を90〜18
0(沸点)℃に加熱する。白金電極4を可変電源6の陰
極側に接続し、エツチング液2を基準電位に固定する。
In FIG. 1, the quartz plate 1 is preferably made of high-purity transparent quartz so as not to be affected by the etching solution. As the etching liquid 2, KOH, EDP, or hydrazine, which is anisotropic with respect to silicon, is used. Heater 3 heats the etching solution to 90-18
Heat to 0 (boiling point) °C. A platinum electrode 4 is connected to the cathode side of a variable power source 6, and the etching solution 2 is fixed at a reference potential.

PN接合シリコンウェーハ5はN型導電層側を可変電源
6の陽極側に接続する。
The N-type conductive layer side of the PN junction silicon wafer 5 is connected to the anode side of the variable power source 6.

この時、PN接合シリコンウェーハ5のエツチング面は
所定のマスクlOで覆っておく。エツチング液2がKO
Hの場合、マスク10は窒化シリコン膜や金、クロムの
金属薄膜が必要であるが、EDP やヒドラジンの場合
は酸化膜でよい。
At this time, the etched surface of the PN junction silicon wafer 5 is covered with a predetermined mask IO. Etching solution 2 is KO
In the case of H, the mask 10 needs to be a silicon nitride film or a metal thin film of gold or chromium, but in the case of EDP or hydrazine, an oxide film may be used.

可変電源6から5■の電圧を印加しながら、エツチング
液に浸すと、P湯導電層のダイアフラム部が異方性エツ
チングされる。例えば、(100)面シリコンウェーハ
を用いるとダイアフラム支持部の傾斜は54.1と々る
。エツチングがN型導電層に達すると、ウェーハの外周
部から順にエツチングが停止する。
When immersed in an etching solution while applying a voltage of 5 cm from the variable power source 6, the diaphragm portion of the P-water conductive layer is anisotropically etched. For example, when a (100) plane silicon wafer is used, the slope of the diaphragm support is 54.1. When the etching reaches the N-type conductive layer, the etching stops sequentially from the outer periphery of the wafer.

この時、可変電源6の出力電圧を時間と共に低下させる
。この方法は、例えば、プログラム可能電源を用い予め
電圧低下速度をプログラムで設定しておけばよい。
At this time, the output voltage of the variable power supply 6 is lowered over time. In this method, for example, a programmable power supply may be used and the voltage drop rate may be set in advance by a program.

電圧の低下速度はシリコンウェーハ・のPJI導電層及
びN型導電層の比抵抗や厚さ、ダイアフラムの寸法等に
より異なる。−例を示すと、P湯導電層が300関、厚
さ350μm、 N型導電層が3Ω個、厚さ20μmで
ダイアフラムの寸法が1−の時、電圧の低下速度は0.
2〜0.6V/−が適当である。
The speed at which the voltage decreases varies depending on the specific resistance and thickness of the PJI conductive layer and the N-type conductive layer of the silicon wafer, the dimensions of the diaphragm, etc. - To give an example, when the P-type conductive layer is 300mm thick and 350μm thick, the N-type conductive layer is 3Ω and 20μm thick, and the diaphragm size is 1-, the rate of voltage drop is 0.
2 to 0.6 V/- is suitable.

エツチングはウェーハ外周部から中心部に向って同心円
状に進むが、電源電圧を低下させることにより少数チッ
プへの電流集中がなくなり、ウェーハ面内で均一な厚さ
を有するダイアフラムが得られる。この場合、電圧は最
終的に3Vtで低下させる。
Etching progresses concentrically from the outer periphery of the wafer toward the center, but by lowering the power supply voltage, current concentration on a small number of chips is eliminated, and a diaphragm having a uniform thickness within the wafer surface can be obtained. In this case, the voltage is finally lowered to 3Vt.

電圧を低下させる他の方法は、可変電源6の陽極とPN
接合シリコンウェーハとの間に電流計を挿入し、電源電
流を測定しながら、計測値を可変電源60制御部に入力
し計測値に合せて電源電圧を低下させる方式である。こ
の場合、制御はプログラムで設定することができる。
Another way to reduce the voltage is to connect the anode of the variable power supply 6 and the PN
In this method, an ammeter is inserted between the bonded silicon wafer and the power supply current is measured, and the measured value is input to the control section of the variable power supply 60, and the power supply voltage is lowered in accordance with the measured value. In this case, the control can be set programmatically.

なお、電圧の低下速度は実施例に示した値に限定される
ものではなく、PN接合シリコンウェーハの特性やエツ
チング条件によ)他の値に設定してよい。又、初期の印
加電圧や最終の電圧も上記した実施例の値に限定される
ものではない。
Note that the rate of voltage decrease is not limited to the values shown in the examples, and may be set to other values depending on the characteristics of the PN junction silicon wafer and etching conditions. Further, the initial applied voltage and final voltage are not limited to the values in the above embodiments.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明のエツチング方法によれば、
製造したシリコンダイアスラムの厚さがウェーハ面内で
均一となシ、従来の方法によるダイアフラムに比べてば
らつきが極めて改善されるので、シリコン圧力センナの
感度ばらつきを低減できるという効果がある。
As explained above, according to the etching method of the present invention,
Since the thickness of the manufactured silicon diaphragm is uniform within the wafer surface, variations in variation are significantly improved compared to diaphragms produced by conventional methods, which has the effect of reducing variations in sensitivity of silicon pressure sensors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のエツチング装置の断面図、
82図は圧力センサの断面図、第3図は従来のエツチン
グ方法の一例のエツチング装置の断面図である。 1・・・・・・石英ピー力、2・・・・・・エツチング
液、3・・・・・・ヒータ、4・・・・・・白金電極、
5・・・・・・PN接合シリコンウェーハ、6・・・・
・・可変電源、7・・・・・・シリコンウェーハ、8・
・・・・・拡散抵抗、9・・・・・・定電圧電源。 1石突ヒ゛′−力  2エヅナンブ)絖 3ヒータ4伯
金を極 左 PN判ト合シリフ〉つ1−ハロ ゛司−変
電ジ原 沼10 fZ図
FIG. 1 is a sectional view of an etching apparatus according to an embodiment of the present invention;
FIG. 82 is a sectional view of a pressure sensor, and FIG. 3 is a sectional view of an etching device as an example of a conventional etching method. 1...Quartz pea force, 2...Etching liquid, 3...Heater, 4...Platinum electrode,
5...PN junction silicon wafer, 6...
...Variable power supply, 7...Silicon wafer, 8.
...Diffused resistance, 9... Constant voltage power supply. 1st stone thrust force 2nd number) wire 3 heater 4 metal plate left PN size combined series 1-halo ゛゛ji-substation Jigenuma 10 fZ diagram

Claims (1)

【特許請求の範囲】[Claims] N型導電層とP型導電層とからなるシリコンウェーハの
前記N型導電層に正極性の直流電圧を印加して前記P型
導電層をエッチングにより除去する電気化学的なエッチ
ング方法において、前記P型導電層のエッチングが終了
する所定時間前から前記正極性の直流電圧の値を順次低
下させることを特徴とするエッチング方法。
In an electrochemical etching method, the P-type conductive layer is removed by etching by applying a positive DC voltage to the N-type conductive layer of a silicon wafer consisting of an N-type conductive layer and a P-type conductive layer. An etching method characterized in that the value of the positive DC voltage is sequentially lowered from a predetermined time period before the etching of the mold conductive layer is completed.
JP1415286A 1986-01-24 1986-01-24 Etching method Granted JPS62172731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1415286A JPS62172731A (en) 1986-01-24 1986-01-24 Etching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1415286A JPS62172731A (en) 1986-01-24 1986-01-24 Etching method

Publications (2)

Publication Number Publication Date
JPS62172731A true JPS62172731A (en) 1987-07-29
JPH0528898B2 JPH0528898B2 (en) 1993-04-27

Family

ID=11853176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1415286A Granted JPS62172731A (en) 1986-01-24 1986-01-24 Etching method

Country Status (1)

Country Link
JP (1) JPS62172731A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02290524A (en) * 1989-01-30 1990-11-30 Dresser Ind Inc Semiconductor wafer, forming method of the same, transducer and manufacturing method of the same
US7749868B2 (en) 2005-05-18 2010-07-06 Panasonic Electric Works Co., Ltd. Process of forming a curved profile on a semiconductor substrate
US8313632B2 (en) 2005-05-18 2012-11-20 Panasonic Corporation Process of making an optical lens

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02290524A (en) * 1989-01-30 1990-11-30 Dresser Ind Inc Semiconductor wafer, forming method of the same, transducer and manufacturing method of the same
US7749868B2 (en) 2005-05-18 2010-07-06 Panasonic Electric Works Co., Ltd. Process of forming a curved profile on a semiconductor substrate
US8313632B2 (en) 2005-05-18 2012-11-20 Panasonic Corporation Process of making an optical lens

Also Published As

Publication number Publication date
JPH0528898B2 (en) 1993-04-27

Similar Documents

Publication Publication Date Title
US3858150A (en) Polycrystalline silicon pressure sensor
JP2582229B2 (en) Method of manufacturing silicon diagram and silicon pressure sensor
US3853650A (en) Stress sensor diaphragms over recessed substrates
JPS6197572A (en) Manufacture of semiconductor acceleration sensor
EP0050136A1 (en) Silicon pressure sensor
JP3506932B2 (en) Semiconductor pressure sensor and method of manufacturing the same
US3820401A (en) Piezoresistive bridge transducer
JPH0722147B2 (en) Method for selective electrochemical etching of semiconductor materials
US4930347A (en) Solid state microanemometer with improved sensitivity and response time
JPS62172731A (en) Etching method
JP4148547B2 (en) Manufacturing method of semiconductor device
JP3508547B2 (en) Si wafer etching method
JPH05340828A (en) Semiconductor pressure sensor
JPH0779167B2 (en) Integrated semiconductor pressure sensor
JP2000022168A (en) Semiconductor acceleration sensor and manufacture thereof
JPS6261374A (en) Manufacture of silicon diaphragm
JPH0230188A (en) Manufacture of semiconductor pressure sensor
JPH01145873A (en) Manufacture of semiconductor pressure sensor
JPS6097676A (en) Semiconductor pressure sensor and manufacture thereof
JP3460584B2 (en) Si diaphragm and method of manufacturing the same
JPS6267880A (en) Manufacture of semiconductor device
JPH0645617A (en) Manufacture of single-crystal thin-film member
JPH0573276B2 (en)
JPS60211945A (en) Method for formation of thin film
JPH0527971B2 (en)

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

EXPY Cancellation because of completion of term