JPS62172684A - Resistance heating unit - Google Patents

Resistance heating unit

Info

Publication number
JPS62172684A
JPS62172684A JP1391386A JP1391386A JPS62172684A JP S62172684 A JPS62172684 A JP S62172684A JP 1391386 A JP1391386 A JP 1391386A JP 1391386 A JP1391386 A JP 1391386A JP S62172684 A JPS62172684 A JP S62172684A
Authority
JP
Japan
Prior art keywords
resistance heating
parts
weight
added
heating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1391386A
Other languages
Japanese (ja)
Inventor
満尾 浩治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP1391386A priority Critical patent/JPS62172684A/en
Publication of JPS62172684A publication Critical patent/JPS62172684A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は導電性抵抗体に電流を流すことによって生ず
る発熱作用を利用した抵抗加熱体に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a resistance heating element that utilizes the heat generation effect produced by passing a current through a conductive resistor.

適当な抵抗率を有する導電体(導電性抵抗体)例えば炭
素、黒鉛、炭化珪素、ゲルマニウム、ニッケルクロム、
鉄クロム、珪化モリブデン、ジルコニア発熱体、タンク
ロマイト発熱体等に電流を流すと発熱し、直接抵抗過熱
は加熱体自体の内部加熱であるため、高温を得やすく熱
効率が大て種々の熱源として利用されている。しかし上
記直接抵抗加熱は導電性抵抗体に直接電流を流すもので
、その用途が限定されていた。
Electrical conductors (conductive resistors) with appropriate resistivity, such as carbon, graphite, silicon carbide, germanium, nickel chromium,
When current is passed through iron chromium, molybdenum silicide, zirconia heating elements, tank chromite heating elements, etc., heat is generated. Direct resistance heating is internal heating of the heating element itself, so it is easy to obtain high temperatures and has high thermal efficiency, so it can be used as a various heat source. has been done. However, the above-mentioned direct resistance heating involves passing a current directly through a conductive resistor, and its applications are limited.

この発明は、水硬系、マグネシウムセメント系、燒物系
、金属系、ガラス系、或いは合成樹脂系をも発熱させる
ことができる抵抗加熱体を提供することを目的とするも
のであって、上記目的に沿うこの発明の抵抗加熱体の一
つは、導電性抵抗体と導電体の均一分散系よりなること
を特徴とし、他の一つは上記抵抗加熱体の表面に酸化防
止層または及び絶縁層が設けられていることを特徴とす
る。
The object of the present invention is to provide a resistance heating element capable of generating heat even in a hydraulic system, a magnesium cement system, a sintered system, a metal system, a glass system, or a synthetic resin system. One of the resistance heating elements of the present invention that meets the purpose is characterized by being composed of a uniformly dispersed system of a conductive resistor and a conductor, and the other one is characterized by having an anti-oxidation layer or an insulating layer on the surface of the resistance heating element. It is characterized by having a layer.

実施例1 塩化コバルト20%水溶液5重量部にクエン酸20%水
溶液10重量部を加え、次にアンモニア含有量2.8%
のアンモニア水20重量部を加えて添加剤をつくり、該
添加剤2〜20%含有水100重量部とポルトランドセ
メント400重量部を混錬し、硬化後電流を流したとこ
ろ発熱した。
Example 1 10 parts by weight of a 20% citric acid aqueous solution was added to 5 parts by weight of a 20% cobalt chloride aqueous solution, and then an ammonia content of 2.8% was added.
An additive was prepared by adding 20 parts by weight of ammonia water, and 100 parts by weight of water containing 2 to 20% of the additive was kneaded with 400 parts by weight of Portland cement. After curing, when an electric current was applied, heat was generated.

実施例2 実施例1の添加剤2〜20%含有水125重量部にポル
トランドセメント250重量部を加え混錬してスラリー
をつくり、該スラリーに黒鉛50重量部を加えて混錬し
、硬化後電流を流したところ発熱した。
Example 2 250 parts by weight of Portland cement was added to 125 parts by weight of water containing 2 to 20% of the additive of Example 1 and kneaded to make a slurry. 50 parts by weight of graphite was added to the slurry and kneaded, and after hardening. When a current was passed through it, it generated heat.

実施例3 実施例1の添加剤2〜20%含有水125重量部にポル
トランドセメント250重量部を加え混錬してスラリー
をつくり、該スラリーに黒鉛30重量部、炭化珪素30
重量部を加えて混錬し、硬化後電流を流したところ発熱
した。
Example 3 250 parts by weight of Portland cement was added to 125 parts by weight of water containing 2 to 20% of the additive of Example 1 and kneaded to make a slurry, and 30 parts by weight of graphite and 30 parts by weight of silicon carbide were added to the slurry.
Parts by weight were added and kneaded, and when an electric current was applied after curing, heat was generated.

実施例4 クエン酸4重量部に水95重量部を加えてクエン酸水溶
液をつくり、該クエン酸水溶液にマンガン1重量部を加
えて溶解させ、次にアンモニア含有量2.8%のアンモ
ニア水20重量部を加えて添加剤をつくり、該2〜20
%含有水100重量部とポルトランドセメント400重
量部を混錬し、硬化後電流を流したところ発熱。
Example 4 A citric acid aqueous solution was prepared by adding 95 parts by weight of water to 4 parts by weight of citric acid, 1 part by weight of manganese was added to the citric acid aqueous solution to dissolve it, and then 20 parts by weight of ammonia water with an ammonia content of 2.8% was added. Add 2 to 20 parts by weight to make an additive.
100 parts by weight of water and 400 parts by weight of Portland cement were mixed, and after curing, an electric current was applied to generate heat.

実施例5 実施例4の添加剤2〜20%含有水125重量部にポル
トランドセメント250重量部を加え混錬してスラリー
をつくり、該スラリーに黒鉛50重量部を加えて混錬し
、硬化後電流を流したところ発熱した。
Example 5 250 parts by weight of Portland cement was added to 125 parts by weight of water containing 2 to 20% of the additive of Example 4 and kneaded to make a slurry. 50 parts by weight of graphite was added to the slurry and kneaded, and after hardening. When a current was passed through it, it generated heat.

実施例6 実施例4の添加剤2〜20%含有水125重量部にポル
トランドセメント250重量部を加え混錬してスラリー
をつくり、該スラリーに黒鉛30重量部、炭化珪素30
重量部を加えて混錬し、硬化後電流を流したところ発熱
した。
Example 6 250 parts by weight of Portland cement was added to 125 parts by weight of water containing 2 to 20% of the additive of Example 4 and kneaded to make a slurry, and 30 parts by weight of graphite and 30 parts by weight of silicon carbide were added to the slurry.
Parts by weight were added and kneaded, and when an electric current was applied after curing, heat was generated.

以上水硬系抵抗加熱体6例について説明したが、何れも
固形物であるセメント粒子間に金属(コバルト、マンガ
ン)または金属化合物が溶液状態でイオンとして、或い
はコロイドとして均一に分散され、水の減少等により固
化或いは反応してセメント粒子間を結合したり、満たし
たりし、固化または反応物が連続すること等によりセメ
ント系硬化物を導電体化したものと考えられる。導電体
は電流を流すとその抵抗率に応じた発熱をするので、黒
鉛や炭化珪素等の導電性抵抗体を加える迄もなく発熱す
るが、導電性抵抗体を加えると、導電体である固化また
は反応物が導電性抵抗体に電流を流して導電性抵抗体も
発熱する。
Six examples of hydraulic resistance heating bodies have been described above, and in all of them, metals (cobalt, manganese) or metal compounds are uniformly dispersed between solid cement particles as ions or colloids in a solution state. It is thought that the cement-based cured material is made into a conductor by solidifying or reacting due to reduction or the like, bonding or filling the spaces between cement particles, and solidifying or by the continuity of the reactant. When an electric current is passed through a conductor, it generates heat according to its resistivity, so adding a conductive resistor such as graphite or silicon carbide will naturally generate heat, but when a conductive resistor is added, the solidification of the conductor Alternatively, the reactant causes a current to flow through the conductive resistor and the conductive resistor also generates heat.

水硬系抵抗加熱体には、水硬性物質としてポルトランド
セメントの他に高炉セメント、フライアツシユセメント
、ジェットセメント、早強ポルトランドセメント、アル
ミナセメント、石膏、水■、水酸化カルシウムとポゾラ
ン等、水と反応して、または水の存在下で硬化するもの
やマグネシウムセメント(塩化マグネシウムの濃縮溶液
を酸化マグネシウムと練り合わせる)を使用することが
でき、金属または金属化合物の溶液には、塩化コバルト
、塩化ニッケル、塩化第2鉄、塩化アルミニウム、塩化
マンガン、塩化第2クロム、塩化マグネシウム、塩化カ
ルシウム、塩化ストロンチウム、塩化バリウム、塩化リ
チウム、塩化ナトリウム、塩化カリウム、塩化ルビジウ
ム等の金属塩化物水溶液や、硫酸アルミニウム水溶液、
マンガンを酸に溶解した溶液、或いはマンガンを酸に溶
解し更にアンモニア水を加えた溶液、或いはこれらの2
以上の混合または混合反応溶液等が使用される。また導
電性抵抗体には炭素、黒鉛、炭化珪素、珪化モリブデン
、ゲルマニウム、ニッケルクロム、鉄クロム、クロム、
酸化鉄、窒化珪素、ジルコニア発熱体、タンクロマイト
発熱体等の1または2以上を使用することができる。
In addition to Portland cement, hydraulic materials used in hydraulic resistance heating elements include blast furnace cement, fly-ash cement, jet cement, early-strength Portland cement, alumina cement, gypsum, water, calcium hydroxide, pozzolan, etc. Those that harden reactively or in the presence of water can be used, as well as magnesium cement (a concentrated solution of magnesium chloride is kneaded with magnesium oxide), and solutions of metals or metal compounds include cobalt chloride, nickel chloride. , aqueous solutions of metal chlorides such as ferric chloride, aluminum chloride, manganese chloride, chromic chloride, magnesium chloride, calcium chloride, strontium chloride, barium chloride, lithium chloride, sodium chloride, potassium chloride, rubidium chloride, and aluminum sulfate. aqueous solution,
A solution of manganese dissolved in acid, or a solution of manganese dissolved in acid and aqueous ammonia added, or two of these.
The above mixture or mixed reaction solution is used. Conductive resistors include carbon, graphite, silicon carbide, molybdenum silicide, germanium, nickel chromium, iron chromium, chromium,
One or more of iron oxide, silicon nitride, zirconia heating element, tanchromite heating element, etc. can be used.

上記実施例で添加剤にクエン酸を加えたのは、塩化コバ
ルト水溶液の場合、塩化コバルト水溶液を直接加えると
セメントのアルカリ液と反応して直ちにゲル化し金属化
合物の分散が良好に行われないが、クエン酸を加えると
反応が遅れて分散が良好に行われるように見受けられる
からであり、マンガンにクエン酸を加えたのはマンガン
を溶解するためである。また共にアンモニア水を加えた
のは、クエン酸を加えることにより低下するセメント系
硬化物の強度低下を防止するためである。そして加える
酸はクエン酸に限定されるものでなく、糖酸類及びその
塩を含むヒドロキシカルボン酸類(具体的にはタルトロ
ン酸、リンゴ酸、酒石酸、クエン酸、グルコン酸、グル
コ糖酸、グロン酸、グルクロン酸、アスコルビン酸、グ
リコール酸、グリセリン酸トリヒドロキシグルタール酸
、テトラヒドロキシアシビン酸、2‐ケトグルタル酸、
2‐ケトグルコン酸、オキザル酢酸、及びこれらのナト
リウム、カリウム、カルシウム、リチウム、アンモニウ
ム、マグネシウム等の塩を含む)の水溶液、硫酸や硝酸
等のごく薄い濃度の希釈液等が使用される。また加える
アルカリ性液体ははアンモニア水に限定されるものでは
なく、アンモニア水、重曹水溶液、かせいソーダ水溶液
、炭酸ソーダ水溶液等のアルカリ性液体の1または2以
上を加えることができる。そして添加剤が反応してゲル
化し沈殿物を生じるような場合は、使用水に複数剤で加
えることができる。また実施例では添加剤に酸性液体1
例としてクエン酸水溶液を、アルカリ性液体1例として
アンモニア水を加えたが、石膏、アルミナセメント等の
水硬性物質の性質は夫々異り、酸性液体及びアルカリ性
液体の添加、非添加、及び添加するときの添加量は、水
硬性物質の性質によって選定することができる。例えば
石膏の場合アンモニア水は必ずしも必要ではない。また
マグネシウムセメント硬化物はそれ自体導電体であるた
め、必ずしも添加剤を加える必要がなく、導電性抵抗体
を加えて混錬し硬化させるだけで発熱体とすることがで
きる。
The reason why citric acid was added to the additive in the above example is that if the cobalt chloride aqueous solution is added directly, it will react with the alkaline solution of cement and immediately gel, making it difficult to disperse the metal compound well. This is because adding citric acid slows down the reaction and seems to improve dispersion, and the reason why citric acid was added to manganese was to dissolve manganese. The reason why ammonia water was added to both was to prevent the strength of the cement-based cured product from decreasing due to the addition of citric acid. The acid added is not limited to citric acid, but also hydroxycarboxylic acids including sugar acids and their salts (specifically tartronic acid, malic acid, tartaric acid, citric acid, gluconic acid, glucosaccharic acid, gulonic acid, Glucuronic acid, ascorbic acid, glycolic acid, glyceric acid, trihydroxyglutaric acid, tetrahydroxyacibic acid, 2-ketoglutaric acid,
An aqueous solution of 2-ketogluconic acid, oxalacetic acid, and their salts such as sodium, potassium, calcium, lithium, ammonium, magnesium, etc., and a very diluted solution of sulfuric acid or nitric acid are used. Further, the alkaline liquid to be added is not limited to aqueous ammonia, and one or more of alkaline liquids such as aqueous ammonia, aqueous sodium bicarbonate solution, aqueous caustic soda solution, and aqueous soda carbonate solution can be added. If the additives react to form a gel and precipitate, multiple additives can be added to the water used. In addition, in the example, 1 part of acidic liquid was added to the additive.
Citric acid aqueous solution was added as an example, and ammonia water was added as an example of alkaline liquid, but the properties of hydraulic substances such as gypsum and alumina cement are different, and when acidic liquid and alkaline liquid are added, not added, and when added. The amount of addition can be selected depending on the properties of the hydraulic substance. For example, in the case of gypsum, ammonia water is not necessarily necessary. Further, since the cured magnesium cement material is itself a conductor, it is not necessarily necessary to add additives, and it can be made into a heating element simply by adding a conductive resistor, kneading, and hardening.

次に合成樹脂系抵抗加熱体につき説明する。Next, the synthetic resin resistance heating body will be explained.

実施例7 実施例1で使用した添加剤10重量部にヘキスト合成株
式会社製モヒトン20重量部を加えて混合し、これに黒
鉛25重量部を加えて混錬した後加熱養生して硬化させ
、硬化後電流を流したところ発熱した。
Example 7 20 parts by weight of Mohiton manufactured by Hoechst Synthesis Co., Ltd. was added to 10 parts by weight of the additive used in Example 1 and mixed, 25 parts by weight of graphite was added thereto, kneaded, and then heated and cured to harden. When a current was applied after curing, it generated heat.

実施例8 実施例4で使用した添加剤20重量部にモヒトン35重
量部を加えて混合し、これに黒鉛35重量部を加えて混
錬した後加熱して硬化させ、硬化後電流を流したところ
発熱した。
Example 8 35 parts by weight of Mohitone was added to 20 parts by weight of the additive used in Example 4 and mixed, and 35 parts by weight of graphite was added thereto and kneaded, heated and cured, and after curing, an electric current was applied. Then I developed a fever.

実施例9 実施例1で使用した添加剤5重量部、モヒトン25重量
部を混合し、 これにポルトランドセメント20重量部
を加えて混錬した後黒鉛10重量部を加えて混錬し、硬
化後電流を流したところ発熱した。
Example 9 5 parts by weight of the additive used in Example 1 and 25 parts by weight of Mohiton were mixed, 20 parts by weight of Portland cement was added to this, kneaded, 10 parts by weight of graphite was added and kneaded, and after hardening. When a current was passed through it, it generated heat.

実施例10 実施例4で使用した添加剤10重量部、モヒトン20重
量部を混合し、これにポルトランドセメント20重量部
を加えて混錬した後黒鉛10重量部を加えて混錬し硬化
後電流を流したところ発熱した。
Example 10 10 parts by weight of the additive used in Example 4 and 20 parts by weight of Mohitone were mixed, 20 parts by weight of Portland cement was added thereto and kneaded, and then 10 parts by weight of graphite was added and kneaded. When I flushed it, it developed a fever.

以上合成樹脂系抵抗加熱体4例について説明したが、添
加剤にはアンモニア等のアルカリ性液体及びクエン酸等
の酸性液体は必ずしも必要ではない。そして他の金属ま
たは金属化合物の溶液を添加剤として使用してよいこと
はいう迄もなく、黒鉛や炭化珪素等の導電性抵抗体を加
えないものも抵抗加熱体として利用することができる。
Although four examples of synthetic resin resistance heating bodies have been described above, the additives do not necessarily include alkaline liquids such as ammonia and acidic liquids such as citric acid. It goes without saying that solutions of other metals or metal compounds may be used as additives, and those without the addition of a conductive resistor such as graphite or silicon carbide can also be used as a resistance heating element.

また合成樹脂系は熱硬化性であってもよく熱可塑性であ
ってもよい。合成樹脂系抵抗加熱体は比較的低温型加熱
体として利用することができる。次に燒物系抵抗加熱体
につき説明する。
Further, the synthetic resin system may be thermosetting or thermoplastic. A synthetic resin resistance heating element can be used as a relatively low-temperature heating element. Next, the sintered resistance heating element will be explained.

実施例11 実施例1または4で使用された添加剤2〜20%含有水
で焼物原料を練り、成形して乾燥させた後焼成して燒物
系抵抗加熱体を得た。
Example 11 A pottery raw material was kneaded with water containing 2 to 20% of the additive used in Example 1 or 4, shaped, dried, and fired to obtain a pottery-based resistance heating body.

実施例12 実施例1または4で使用した添加剤2〜20%含有水で
ポルトランドセメントと焼物原料同重量の混合物を練り
、成形して硬化させた後焼成して燒物系抵抗加熱体を得
た。
Example 12 A mixture of Portland cement and the same weight of pottery raw material was kneaded with water containing 2 to 20% of the additive used in Example 1 or 4, molded, hardened, and fired to obtain a pottery-based resistance heating body. Ta.

実施例13 実施例11と12の混合物に黒鉛と炭化珪素を混合して
おき、乾燥または硬化後非酸■雰囲気で焼成して燒物系
抵抗加熱体を得た。
Example 13 Graphite and silicon carbide were mixed in the mixture of Examples 11 and 12, dried or hardened, and then fired in a non-acid atmosphere to obtain a sintered resistance heating element.

以上燒物系抵抗加熱体について説明したが、添加物に他
の添加剤を使用してもよく、珪灰反応を利用した珪灰系
硬化物や、セメント系硬化物を加熱焼成して燒物系抵抗
加熱体とすることもできる。金属または金属化合物の固
化または反応物は、その種類によりばい焙熔剤となり、
セメント等の粒子を結合する。
Although we have described the sintered resistance heating element above, other additives may be used as additives, such as silica-based hardened products using a silica reaction or cement-based hardened products that are heated and fired to create a sintered resistance heating element. It can also be a heating body. Depending on the type, solidified or reacted metals or metal compounds can become roasting agents;
Binds particles such as cement.

金、銀、銅、鉄、ニッケル、等の金属は導体であり、金
属中に炭素、炭化珪素、黒鉛、窒化珪素等の導電性抵抗
体を均一に分散させると抵抗加熱体となる。
Metals such as gold, silver, copper, iron, and nickel are conductors, and when a conductive resistor such as carbon, silicon carbide, graphite, and silicon nitride is uniformly dispersed in the metal, a resistance heating element is obtained.

実施例14 黒鉛25容量部、炭化珪素25容量部、ステンレス50
容量部の均一混合物を、粉末冶金法を利用して焼結させ
、金属系抵抗加熱体を得た。
Example 14 25 parts by volume of graphite, 25 parts by volume of silicon carbide, 50 parts by volume of stainless steel
A volumetric portion of the homogeneous mixture was sintered using a powder metallurgy method to obtain a metal resistance heating element.

上記実施例でステンレスを他の金属に、また黒鉛と炭化
珪素を他の導電性抵抗体に代えてよいことはいう迄もな
い。また導電性抵抗体と金属の比重が略同一の場合は、
溶融金属内に導電性抵抗体を分散させ固化させてつくる
ことができる。
It goes without saying that in the above embodiments, stainless steel may be replaced with other metals, and graphite and silicon carbide may be replaced with other conductive resistors. Also, if the specific gravity of the conductive resistor and the metal are approximately the same,
It can be made by dispersing a conductive resistor in molten metal and solidifying it.

またガラスは高温において導電性抵抗体となる。そして
色ガラスは金属のコロイド粒子をガラス中に分散させた
ものであり、例えば■色ガラスはカリ鉛ガラスに銅また
は金を分散させたもの、黄色ガラスはソーダ石灰ガラス
に酸化セレン、酸化ウラン、または酸化セリウム等を加
えてつくったもの、青色ガラスはコバルト、青緑色ガラ
スは酸化銅、緑色ガラスはクロムを加えてつくられたも
のであるが、金属または金属化合物の添加量を増大させ
ると導電体となり、電流を流すと発熱する。そして珪化
モリブデン等の導電性抵抗体を混合して固化させたもの
はガラス系抵抗加熱体となる。
Glass also becomes a conductive resistor at high temperatures. Colored glass is made by dispersing colloidal particles of metal into the glass. For example, colored glass is made by dispersing copper or gold in potassium lead glass, and yellow glass is made by dispersing selenium oxide, uranium oxide, and so on in soda lime glass. Blue glass is made with cobalt, blue-green glass is made with copper oxide, and green glass is made with chromium. However, increasing the amount of metal or metal compound added increases conductivity. It becomes a body and generates heat when an electric current is passed through it. A glass resistance heating element is obtained by mixing and solidifying a conductive resistor such as molybdenum silicide.

実施例15 熔融したソーダ石灰ガラス90重量部にコバルト1〜1
0重量部を加え混錬してコバルトをコロイド状で均一に
分散させ、冷却固化させてガラス系抵抗加熱体を得た。
Example 15 90 parts by weight of molten soda lime glass and 1 to 1 part of cobalt
0 parts by weight was added and kneaded to uniformly disperse cobalt in colloidal form, and the cobalt was cooled and solidified to obtain a glass resistance heating element.

実施例16 熔融したソーダ石灰ガラス90重量部にコバルト1〜1
0重量部を加えて混錬し、コバルトをコロイド状にして
分散させ、次に同容量の珪化モリブデンを加えて混錬し
、冷却固化させてガラス系抵抗加熱体を得た。
Example 16 90 parts by weight of molten soda lime glass and 1 to 1 part of cobalt
0 parts by weight was added and kneaded to make cobalt into a colloid and dispersed, then the same amount of molybdenum silicide was added and kneaded, and the mixture was cooled and solidified to obtain a glass resistance heating element.

以上ガラス系抵抗加熱体について説明したが、ガラスの
1種である水ガラスも、これに金属化合物溶液を加えて
固化させたり、熔融水ガラスに金属または金属化合物を
加え分散させた後冷却固化させることにより、或いはこ
れに導電性抵抗体を加えて分散させることにより、ガラ
ス系抵抗加熱体にすることができる。
Although we have explained the glass-based resistance heating element above, water glass, which is a type of glass, is also made by adding a metal compound solution to it and solidifying it, or by adding a metal or metal compound to molten water glass and dispersing it, then cooling and solidifying it. Alternatively, by adding and dispersing a conductive resistor thereto, a glass-based resistance heating body can be obtained.

以上導電性抵抗体と導電性導電体が一体化した硬化物系
抵抗加熱体につき説明したが、何れも電極を埋設するか
、電極を押圧するか、電極を着脱自在に取付けること等
により電流を流した。尚抵抗加熱体の表面に絶縁層を設
けることはいう迄もない。また抵抗加熱体は硬化物に限
定されず、粉体または及び繊維で導電性抵抗体と導電体
が均一に分散されていてもよい。
The above explanation has been about a cured resistance heating body in which a conductive resistor and a conductive conductor are integrated. It flowed. It goes without saying that an insulating layer is provided on the surface of the resistance heating element. Further, the resistance heating body is not limited to a cured product, and may be a powder or fiber in which a conductive resistor and a conductor are uniformly dispersed.

第1図は黒鉛粉1容量部、炭化珪素粉1容量部、ステン
レス粉2容量部の均一分散系1を、絶縁凾2内に圧縮し
て充填したもので、2aは絶縁蓋、3は電極、4は電源
である。第2図は第1図と同じ均一分散系1′の圧縮体
両側に板状電極3、3′を設けたものであり、2′は絶
縁枠、4は電源である。第1図及び第2図で均一分散系
1.1′は、導電性抵抗体と導電体が例えば黒鉛粉とス
テンレス繊維、炭化珪素繊維とステンレス繊維、炭素繊
維とステンレス粉のように、粉体または及び繊維の均一
分散系であつてもよい。両側の電極を電源に繋ぐと発熱
する。尚第1図及び第2図では均一分散系に代えて炭素
等の導電性抵抗体のみを粉体または及び繊維で使用し、
窒素ガス封入或いは真空吸引して酸化を防止することが
でき、特に第2図では板状電極を金属箔等の薄い金属シ
ートにし絶縁枠2′を絶縁性接着剤として可焼性抵抗加
熱体をすることができ共に通電すると発熱するが、均一
分散系の方が効果的と考えられる。尚第1、2図のよう
に均一分散系を使用するときも、窒素ガス封入や真空吸
引して酸化防止を行ってもよい。表面には絶縁層を設け
る。
Figure 1 shows a homogeneous dispersion system 1 of 1 volume part of graphite powder, 1 volume part of silicon carbide powder, and 2 volume parts of stainless steel powder compressed and filled into an insulating box 2, where 2a is an insulating lid and 3 is an electrode. , 4 is a power supply. FIG. 2 shows the same homogeneous dispersion system 1' as in FIG. 1, with plate electrodes 3, 3' provided on both sides of the compressed body, 2' being an insulating frame, and 4 being a power source. In the homogeneous dispersion system 1.1' in Figures 1 and 2, the conductive resistor and the conductor are powders, such as graphite powder and stainless steel fibers, silicon carbide fibers and stainless fibers, carbon fibers and stainless steel powder, etc. Alternatively, it may be a uniformly dispersed system of fibers. When the electrodes on both sides are connected to a power source, they generate heat. In addition, in Figures 1 and 2, only a conductive resistor such as carbon is used in the form of powder or fiber instead of a uniformly dispersed system.
Oxidation can be prevented by filling in nitrogen gas or by vacuum suction. In particular, in Fig. 2, the plate electrode is made of a thin metal sheet such as metal foil, the insulating frame 2' is made of insulating adhesive, and a flammable resistance heating element is used. Although both of them generate heat when energized, a uniformly dispersed system is considered to be more effective. In addition, even when using a uniform dispersion system as shown in FIGS. 1 and 2, oxidation may be prevented by nitrogen gas injection or vacuum suction. An insulating layer is provided on the surface.

次に固化または硬化物系抵抗加熱体の具体例について説
明する。第3図及び第4図は抵抗加熱体2例を示し、1
″は固化または硬化物系抵抗加熱体、3″は固化または
硬化物系抵抗加熱体1″に埋設された電極、4は電源で
あり、両側の電極3″、3″を電源4に繋ぐと固化また
は硬化物系抵抗加熱体に電流が流れて発熱する。尚電極
は抵抗加熱体の両側に着脱自在に或いは圧着して取付け
ることができる。また第5図に示されるように電極3″
′、3″′を型枠として原料を打設し固化または硬化さ
せて抵抗加熱体1″をつくってもよい。
Next, specific examples of solidified or cured material-based resistance heating bodies will be described. Figures 3 and 4 show two examples of resistance heating bodies, 1
'' is a solidified or hardened material-based resistance heating element, 3'' is an electrode embedded in the solidified or cured material-based resistance heating material 1'', 4 is a power source, and when the electrodes 3'' and 3'' on both sides are connected to the power source 4. Electric current flows through the solidified or cured material resistance heating element to generate heat.The electrodes can be attached to both sides of the resistance heating element removably or by pressure bonding.Also, as shown in FIG.
The resistance heating element 1'' may be manufactured by casting the raw material using molds ', 3''' and solidifying or hardening it.

表面には絶縁層を設ける。An insulating layer is provided on the surface.

第6図は電極1例を示し、両側の電極3″、3″を、絶
縁線5によって織り、編み、或いはその他の適切な手段
で所定の位置に固定したものであり、抵抗加熱体となる
固化または硬化原料内に埋設して固化または硬化させ、
抵抗加熱体とすることができる。
Figure 6 shows an example of an electrode, in which electrodes 3'', 3'' on both sides are fixed in place by weaving, knitting or other suitable means with insulated wire 5, forming a resistance heating element. Solidify or harden by embedding it in the raw material to solidify or harden it,
It can be a resistance heating element.

以上抵抗加熱体多例について説明したが、電極にはステ
ンレス電極、人造黒鉛電極、炭素電極、自焼成電極等を
使用することができ、電流は直流であってもよく交流で
あってもよい。また固化または硬化物系抵抗加熱体は含
泡体であってもよく、補強の目的で繊維を分散させたも
のであってもよい。そして上記繊維は導電体または及び
導電性抵抗体であってもよい。そして水硬系、マグネシ
ウムセメント系、合成樹脂系及び燒物系抵抗加熱体は、
その原料に更に酸化鉄等の金属酸化物や金属の導電性粉
体、または及び珪酸ゾル、水ガラス、シリコン等の珪酸
系液体を加えてつくることができる。また抵抗加熱体が
水硬系であるときは、原料を注入成形、プレス成形、プ
レス脱成形、バイブレーションプレス成形してもよく、
養生には普通養生、水中養生、オートクレーブ養生等を
行うことができる。また水中には抵抗かねつ体をおき電
極を電源に繋いで発熱させると、水中温度養生となる。
Although many examples of resistance heating bodies have been described above, stainless steel electrodes, artificial graphite electrodes, carbon electrodes, self-firing electrodes, etc. can be used as the electrodes, and the current may be direct current or alternating current. Further, the solidified or cured resistance heating body may be a foam-containing body, or may be one in which fibers are dispersed for the purpose of reinforcement. The fibers may also be electrically conductive or electrically conductive resistors. Hydraulic type, magnesium cement type, synthetic resin type and sintered type resistance heating elements are
It can be produced by further adding a metal oxide such as iron oxide, a metal conductive powder, or a silicate-based liquid such as silicate sol, water glass, or silicon to the raw material. In addition, when the resistance heating element is hydraulic, the raw material may be injection molded, press molded, press demolded, or vibration press molded.
For curing, normal curing, underwater curing, autoclave curing, etc. can be performed. In addition, by placing a resistor or other body in the water and connecting the electrode to a power source to generate heat, underwater temperature curing can be achieved.

また抵抗加熱体にはその表面に絶縁層または及び酸化防
止層を設けることができる。粉状または及び繊維状の均
一分散系を窒素ガス内に内在させることは酸化防止層構
成の一つとなる。絶縁層または及び酸化防止層は、絶縁
塗料または及び酸化防止塗料を抵抗加熱体表面に塗設し
たり、絶縁性または及び酸化防止性■を施し焼成するこ
とによりつくることができる他、絶縁材または及び酸化
防止剤を物理蒸着、化学蒸着、或いは物理化学的蒸着に
より抵抗加熱体表面に蒸着させてつくることができる。
Further, the resistance heating element can be provided with an insulating layer or an anti-oxidation layer on its surface. Incorporating a uniformly dispersed powder or fibrous system within nitrogen gas is one way to configure the antioxidant layer. The insulating layer or antioxidant layer can be made by applying an insulating paint or an antioxidant paint to the surface of the resistance heating element, or by applying an insulating or antioxidant property and baking it, or by applying an insulating or antioxidant paint to the surface of the resistance heating element and baking it. It can be produced by depositing an antioxidant and an antioxidant on the surface of the resistance heating element by physical vapor deposition, chemical vapor deposition, or physicochemical vapor deposition.

そして蒸着物にはガラス質や各種酸化物を使用すること
ができる。絶縁層が酸化防止層を兼用するときは一層で
もよいが、絶縁層及び酸化防止層を別々に設けてもよい
Glass and various oxides can be used as the deposited material. When the insulating layer also serves as an anti-oxidation layer, it may be a single layer, but the insulating layer and the anti-oxidation layer may be provided separately.

この発明で1実施例に使用したものまたは方法が他の実
施例に適切であれば、要旨を変更しない範囲内で他の実
施例に使用し、利用し、若しくは応用することができる
If something or a method used in one embodiment of the present invention is appropriate for another embodiment, it can be used, utilized, or applied to the other embodiments without changing the gist thereof.

この発明は前記のように構成され、水硬系、マグネシウ
ムセメント系、燒物系、合成樹脂系、ガラス系、或いは
金属系を発熱させることができ、導電性抵抗体と導電体
の種類の選択、配合調整により発熱温度を所望の温度に
調整することができ、必ずしもサーモスタットを必要と
しない。また導電性抵抗体と導電体は低効率が同一であ
ってもよく、導電体の低効率が導電性抵抗体の低効率よ
り大であっても小さくても発熱するが、導電体の低効率
の方が大であると、電流は導電体を介して導電体抵抗体
により均一に流れ、短時間かつより均一に発熱する。ま
た固化または硬化物系抵抗加熱体は、金属または金属化
合物の配合比が小であっても、導電性抵抗体同志が直接
触れ合っておれば電流が流れて発熱する。また金属また
は金属化合物溶液にクエン酸等の酸性液体を加えた添加
剤や、更にアンモニア水等のアルカリ性液体を加えた添
加剤、例えば実施例1及び4で使用した添加剤と導電性
抵抗体例えばりん状黒鉛は良く混和した泥状物と■り、
密閉状態であれば泥状を維持する。そして少量のポルト
ランドセメントや粘土を加えても密閉状態では泥状を維
持する。また上記泥状物を空気中に放置し或いは加熱す
ると固化または硬化するが、固化または硬化物やこれを
砕いたもの及び上記泥状物も抵抗加熱体となる。
The present invention is configured as described above, and can generate heat in a hydraulic system, a magnesium cement system, a sintered system, a synthetic resin system, a glass system, or a metal system, and can select the type of conductive resistor and conductor. The exothermic temperature can be adjusted to a desired temperature by adjusting the formulation, and a thermostat is not necessarily required. Also, a conductive resistor and a conductor may have the same low efficiency, and heat will be generated regardless of whether the low efficiency of the conductor is greater or less than the low efficiency of the conductive resistor, but the low efficiency of the conductor When is larger, the current flows more uniformly through the conductor and the conductor resistor, and heat is generated more uniformly in a shorter time. Furthermore, in a solidified or cured material-based resistance heating element, even if the blending ratio of the metal or metal compound is small, as long as the conductive resistors are in direct contact with each other, current will flow and heat will be generated. Additionally, additives made by adding an acidic liquid such as citric acid to a metal or metal compound solution, and additives made by adding an alkaline liquid such as aqueous ammonia, for example, the additives used in Examples 1 and 4, and conductive resistors, such as Phosphorous graphite is a well-mixed slurry,
If it is sealed, it will remain muddy. Even if a small amount of Portland cement or clay is added, it remains muddy when sealed. Furthermore, when the muddy material is left in the air or heated, it solidifies or hardens, and the solidified or hardened material, its crushed material, and the muddy material also serve as resistance heating bodies.

即ち泥状物であつても導電体と導電性抵抗体の均一分散
系であればこの発明に包含される。そしてりん状黒鉛や
土状黒鉛等の導電性抵抗体と金属または金属化合物等の
導電体との混合は、金属または金属化合物の溶液を直接
、またはクエン酸水溶液等の酸性液体または及びアンモ
ニア水等のアルカリ性液体を加えて、導電性抵抗体と混
合或いは混合反応させてもよい。この発明の抵抗加熱体
は固化または硬化物の形で、繊維状または及び粉状の形
で、或いは泥状の形で利用することが可能であり、屋根
、道路、歩道橋、陸橋、滑走路、水道管、鉄道の踏切り
ポイント、船舶の甲板、水門、階段等に設置して融雪、
凍結防止を行うことができる他、床暖房、ヒーター、食
品販売機、調理器、湯沸ポット、炊飯器、加熱併用型魔
法■、乾燥器、ボイラー等の熱源や、養豚、ふ卵、養魚
、温室栽培にも利用できる等多々の用途を有する。特に
茶碗、皿、鍋、釜、浴槽等の容器底部に抵抗加熱体をセ
ットするときは、内容物を効率良く加熱することができ
、容器自体を発熱させることができる効果を有する。そ
して抵抗加熱体が金属系であるときはほうろうびきする
こと等により絶縁と酸化防止を行うこともでき、経済性
、清潔性、防火性に優れている。
That is, even if the material is mud-like, it is included in the present invention as long as it is a uniformly dispersed system of a conductor and a conductive resistor. When mixing a conductive resistor such as phosphorescent graphite or earthy graphite with a conductor such as a metal or a metal compound, use a solution of the metal or metal compound directly, or an acidic liquid such as citric acid aqueous solution or ammonia water. An alkaline liquid may be added to mix or mix with the conductive resistor. The resistance heating body of the present invention can be used in the form of a solidified or cured product, in the form of fibers or powder, or in the form of mud, and can be used on roofs, roads, pedestrian bridges, overpasses, runways, It can be installed on water pipes, railroad crossing points, ship decks, water gates, stairs, etc. to melt snow,
In addition to being able to prevent freezing, it can also be used as a heat source for floor heating, heaters, food vending machines, cookers, kettle pots, rice cookers, heating combination magic, dryers, boilers, pig farming, incubation, fish farming, greenhouses, etc. It has many uses, including being able to be used for cultivation. In particular, when a resistance heating element is set at the bottom of a container such as a bowl, plate, pot, cauldron, or bathtub, the contents can be efficiently heated and the container itself can generate heat. When the resistance heating element is made of metal, it can be insulated and prevented from oxidation by enameling, etc., and is excellent in economy, cleanliness, and fire resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第5図は抵抗加熱体5例の説明図、第6図は電
極1例の説明図である。
FIGS. 1 to 5 are explanatory views of five examples of resistance heating bodies, and FIG. 6 is an explanatory view of one example of electrodes.

Claims (8)

【特許請求の範囲】[Claims] (1)導電性抵抗体と導電体の均一分散系よりなること
を特徴とする抵抗加熱体。
(1) A resistance heating body comprising a uniformly dispersed system of a conductive resistor and a conductor.
(2)導電性抵抗体と導電体が粉状または及び繊維状で
均一に分散されていることを特徴とする、特許請求の範
囲第1項記載の抵抗加熱体。
(2) The resistance heating body according to claim 1, wherein the conductive resistor and the conductor are uniformly dispersed in powder or fiber form.
(3)導電性抵抗体と導電体の均一分散系が一体化した
固化または硬化物であることを特徴とする、特許請求の
範囲第1項記載の抵抗加熱体。
(3) The resistance heating body according to claim 1, which is a solidified or cured product in which a uniformly dispersed system of a conductive resistor and a conductor is integrated.
(4)固化または硬化物が水硬系、マグネシウムセメン
ト系、燒物系、金属系、ガラス系、または合成樹脂系で
あることを特徴とする、特許請求の範囲第1項記載の抵
抗加熱体。
(4) The resistance heating element according to claim 1, wherein the solidified or hardened material is hydraulic, magnesium cement, sintered, metal, glass, or synthetic resin. .
(5)固化または硬化物が含泡体であることを特徴とす
る、特許請求の範囲第3項及び第4項記載の抵抗加熱体
(5) The resistance heating body according to claims 3 and 4, wherein the solidified or cured product is a foam-containing body.
(6)固化または硬化物に繊維が分散されていることを
特徴とする、特許請求の範囲第3項〜第5項記載の抵抗
加熱体。
(6) The resistance heating body according to claims 3 to 5, characterized in that fibers are dispersed in the solidified or cured product.
(7)固化または硬化物に分散されている繊維が導電性
抵抗体または及び導電体であることを特徴とする、特許
請求の範囲第6項記載の抵抗加熱体。
(7) The resistance heating body according to claim 6, wherein the fibers dispersed in the solidified or cured product are a conductive resistor or a conductor.
(8)導電性抵抗体と導電体の均一分散系表面に酸化防
止層または及び絶縁層が設けられていることを特徴とす
る抵抗加熱体。
(8) A resistance heating body characterized in that an anti-oxidation layer or an insulating layer is provided on the surface of a uniformly dispersed system of a conductive resistor and a conductor.
JP1391386A 1986-01-27 1986-01-27 Resistance heating unit Pending JPS62172684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1391386A JPS62172684A (en) 1986-01-27 1986-01-27 Resistance heating unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1391386A JPS62172684A (en) 1986-01-27 1986-01-27 Resistance heating unit

Publications (1)

Publication Number Publication Date
JPS62172684A true JPS62172684A (en) 1987-07-29

Family

ID=11846406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1391386A Pending JPS62172684A (en) 1986-01-27 1986-01-27 Resistance heating unit

Country Status (1)

Country Link
JP (1) JPS62172684A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018008695A1 (en) * 2016-07-05 2018-01-11 国際環境開発株式会社 Heat-generating device and method for producing same
CN111108809A (en) * 2017-12-28 2020-05-05 国际环境开发株式会社 Heating device and application thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018008695A1 (en) * 2016-07-05 2018-01-11 国際環境開発株式会社 Heat-generating device and method for producing same
EP3454626A4 (en) * 2016-07-05 2019-07-10 International Engineered Environmental Solutions Inc. Heat-generating device and method for producing same
EP3664574A1 (en) * 2016-07-05 2020-06-10 International Engineered Environmental Solutions Inc. Heat-generating device and method for producing same
US11516887B2 (en) 2016-07-05 2022-11-29 International Engineered Environmental Solutions Inc. Heat-generated device and method for producing same
CN111108809A (en) * 2017-12-28 2020-05-05 国际环境开发株式会社 Heating device and application thereof
CN111108809B (en) * 2017-12-28 2022-08-16 国际环境开发株式会社 Heating device and application thereof

Similar Documents

Publication Publication Date Title
JPS62192B2 (en)
CN106238670A (en) Foundry facing and preparation method and application
CN104646632A (en) Heating and temperature preservation riser sleeve for casting and wet process preparation technology
JPS62172684A (en) Resistance heating unit
CN104591755A (en) Medium-low-temperature intermediate wear-resisting ceramic coating material
JPH0520376B2 (en)
JPH0345014B2 (en)
JPS62186406A (en) Conductive element and manufacture of the same
CN109516754A (en) A kind of light phase transition air entrained concrete, masonry wall and its construction method
JPS6126548A (en) Electric resistance heater
JPS5833195B2 (en) refractory
CN103496989A (en) Preparation method of silica sol combined castable
CN105803294B (en) The electric heating piece and its manufacture method of bio wave are produced after a kind of energization
CN102219531A (en) Early-strength quick-drying refractory mud filling material with good insulativity
JPS62221438A (en) Liquid and solid
SU531619A1 (en) Conductive slurry for making casting ceramic molds
JPH03285843A (en) Inorganic composite functional material
JP2012113914A (en) Heat generation and heat storage material for electromagnetic induction
JP2517175B2 (en) Lightweight concrete panel manufacturing method
JPS6131316A (en) Production of reduced alkali metallic salt of titanic acid
CN1091473A (en) Autoreaction-fusion technology prepares metal-base composites
CN1107449A (en) Decorative colour brick made from tailings
JPH09142904A (en) Concrete waterproofing agent
SU969418A1 (en) Electrically conducting coating for making investment casting shell molds
CN85108358A (en) Precoated sand and process for making shell thereof