JPS62170453A - Shape memory alloy - Google Patents

Shape memory alloy

Info

Publication number
JPS62170453A
JPS62170453A JP1145886A JP1145886A JPS62170453A JP S62170453 A JPS62170453 A JP S62170453A JP 1145886 A JP1145886 A JP 1145886A JP 1145886 A JP1145886 A JP 1145886A JP S62170453 A JPS62170453 A JP S62170453A
Authority
JP
Japan
Prior art keywords
shape memory
temperature
alloy
ingot
strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1145886A
Other languages
Japanese (ja)
Inventor
Tokio Hamada
浜田 登喜夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP1145886A priority Critical patent/JPS62170453A/en
Publication of JPS62170453A publication Critical patent/JPS62170453A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an alloy having satisfactory workability and showing a significant shape memory effect in a state in which the atoms are irregularly arranged, by adding a specified amount of Pt to Fe. CONSTITUTION:Fe and 25-30atom% Pt are melted and the resulting molten alloy is cast into an ingot. This ingot is repeatedly subjected to cold rolling and process annealing three times to form a strip and this strip is heat treated to carry out final strain relieving. The strip memorizes the shape during the final strain relieving. The arrangement of the atoms is in an irregular state.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、形状記憶合金に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to shape memory alloys.

(従来技術とその問題点) 金属が元の形を記憶しており、これを低温で変形させ、
これを加熱すると元の形に戻る形状記憶現象を示す合金
が近年開発されてきている。
(Prior art and its problems) Metal remembers its original shape, and by deforming it at low temperatures,
In recent years, alloys have been developed that exhibit a shape memory phenomenon in which they return to their original shape when heated.

これらの合金で実用に供されているものはNi−Tiと
銅基合金で、各種の配管の継手、温度の窓の開閉等の温
度によって作動する機械部品、歯列矯正用ワイヤー等の
医療材料として利用されている。
These alloys that are in practical use are Ni-Ti and copper-based alloys, which are used in various piping joints, mechanical parts that operate depending on temperature such as opening and closing temperature windows, and medical materials such as orthodontic wires. It is used as.

しかし、これらの合金の殆んどは、結晶格子の中で特定
の原子が規則的に配列した金属間化合物であるために、
鍛造、圧延、線引き等の加工が困難であること、及び特
定の原子の規則化の熱処理が必要であること等の欠点が
ある。
However, since most of these alloys are intermetallic compounds in which specific atoms are regularly arranged in the crystal lattice,
It has drawbacks such as difficulty in processing such as forging, rolling, and wire drawing, and the need for heat treatment to regularize specific atoms.

(発明の目的) 本発明は、上記欠点を解消せんとするもので、加工性が
良好で、しかも原子が不規則な配列状態で良好な形状記
憶効果を示す合金を提供することを目的とするものであ
る。
(Objective of the Invention) The present invention aims to eliminate the above-mentioned drawbacks, and aims to provide an alloy that has good workability and also exhibits a good shape memory effect when atoms are arranged in an irregularly arranged state. It is something.

(発明の構成) 形状記憶現象は、合金を高温から冷却した際に急激に結
晶構造が変わり始める温度、即ちMS温度及び低温から
加熱した際に結晶構造が元に戻り始める温度、即ちAs
温度と、Ms湯温度As温度の温度差、高温和と低温和
、即ちマルテンサイト相の結晶構造、これらの相の加工
による変形挙動、加工によるMs湯温度As温度の変化
、及び高温和と低温和以外の析出相の有無等に密接な関
連がある。
(Structure of the Invention) The shape memory phenomenon is caused by the temperature at which the crystal structure of an alloy starts to change rapidly when it is cooled from a high temperature, that is, the MS temperature, and the temperature at which the crystal structure starts to return to its original state when it is heated from a low temperature, that is, As
The temperature difference between the temperature and the Ms hot water temperature As temperature, the high sum and low sum sum, that is, the crystal structure of the martensitic phase, the deformation behavior of these phases due to processing, the change in the Ms hot water temperature As temperature due to processing, and the high sum and low sum There is a close relationship with the presence or absence of precipitated phases other than the sum.

本発明者は、pt金合金マルテンサイト相の結晶構造に
ついて研究した処、原子の配列を規則化処理したF e
−24,9at%pt合金が、形状記憶効果のあること
を明らかにした。この形状記憶効果はX線回折の結果よ
り規則度が高い場合fcc−=fct熱弾性型マルテン
サイト変態によるものであることを明らかにした。
The present inventor conducted research on the crystal structure of the martensitic phase of a pt gold alloy, and found that F e
It was revealed that -24,9 at% pt alloy has a shape memory effect. The results of X-ray diffraction revealed that this shape memory effect is due to fcc-=fct thermoelastic martensitic transformation when the degree of order is high.

本発明は、上記Fe−Pt合金について、さらに研究を
進めた結果、原子の配列が不規則でも形状記憶効果のあ
る合金を見い出した。
As a result of further research into the Fe--Pt alloy, the present invention discovered an alloy that has a shape memory effect even when the atoms are arranged irregularly.

本発明の形状記憶合金は、Feに、25〜30a t%
のPtを含有させたものから成るものである。
The shape memory alloy of the present invention contains 25 to 30 at% of Fe.
It is made of Pt containing Pt.

本発明の形状記憶合金に於いて、Feに25〜30at
%のptを含有させる理由は、25a t%未満では溶
解鋳造時、fcc−+bccへの変態が一部起こり、変
態により体積変化が大きいためインゴットが割れ、また
このインゴットを冷間圧延するのが難しく、加工性が悪
いからであり、30a t%を超えると、Ms温度が液
体窒素温度(77K)以下になってしまい、実用上形状
記憶効果を利用することが難しいからである。
In the shape memory alloy of the present invention, 25 to 30 at
The reason why PT is contained is that if it is less than 25at%, some transformation to fcc-+bcc will occur during melting and casting, and the volume change will be large due to the transformation, which will cause the ingot to crack, and it will be difficult to cold-roll this ingot. This is because it is difficult and has poor workability, and if it exceeds 30 at%, the Ms temperature will drop below the liquid nitrogen temperature (77K), making it difficult to utilize the shape memory effect in practice.

(実施例) 本発明の形状記憶合金の一実施例について説明する。F
eと26.4at%Ptとを溶解して合金となし、次に
これを鋳造して縦lO龍、横20+n、長さ50龍のイ
ンゴットを作り、次いでこのインゴットを冷間圧延と8
00℃の中間焼鈍を3回繰り返して幅20龍、長さ10
00mm、厚さ0.1■1の帯状板を作り然る後800
〜900℃で熱処理して最終歪みとりを行った。この帯
状板は最終歪みとりの際の形状を記憶していて、原子の
配列は不規則状態である。
(Example) An example of the shape memory alloy of the present invention will be described. F
E and 26.4 at% Pt are melted to form an alloy, which is then cast to make an ingot with a length of 10 mm, a width of 20 + n, and a length of 50 mm, and then this ingot is cold rolled and
Intermediate annealing at 00°C was repeated three times to obtain a width of 20 mm and a length of 10 mm.
After making a strip plate of 0.00mm and thickness of 0.1cm, 800
Final distortion was removed by heat treatment at ~900°C. This band-shaped plate remembers its shape at the time of final strain relief, and the atoms are arranged in an irregular state.

この形状記憶合金の帯状板は、第1図aに示す形状であ
るが、液体窒素温度(77K)で第1図すに示す如く変
形し、温度が上昇するに従って第1図Cに示す如く次第
に元の形状に戻っていき、室温になると第1図dに示す
如く完全に元の形状に復する。
This shape memory alloy strip plate has the shape shown in Figure 1a, but it deforms as shown in Figure 1C at liquid nitrogen temperature (77K), and as the temperature rises, it gradually deforms as shown in Figure 1C. It returns to its original shape, and when it reaches room temperature, it completely returns to its original shape as shown in FIG. 1d.

第2図a、b、cに上記帯状板のF e −26,4a
t%pt合金のX線回折ピークを示す。第2図aに示す
如く室温での(220)ピークが、温度を191Kに下
げると、第2図すに示す如く広がり、さらに温度を液体
窒素温度(77K)に下げると、第2図Cに示す如く広
がるがピークの分離は不明確である。
Fig. 2 a, b, and c show the above strip plate F e -26,4a.
X-ray diffraction peaks of t%pt alloy are shown. As shown in Figure 2a, the (220) peak at room temperature spreads as shown in Figure 2 when the temperature is lowered to 191K, and when the temperature is further lowered to the liquid nitrogen temperature (77K), it appears in Figure 2C. Although the peaks are spread as shown, the separation of the peaks is unclear.

しかしながらこれは本発明者が既にF e  24.9
at%ptにおいて明らかにしたfcc→fcL変態と
同様な格子変形が生じたことを示している。従って、本
発明の形状記憶合金の形状記憶作用はFCC−fct変
態に基づくものと言える。
However, the inventor has already determined that F e 24.9
This indicates that a lattice deformation similar to the fcc→fcL transformation revealed in at%pt occurred. Therefore, it can be said that the shape memory effect of the shape memory alloy of the present invention is based on FCC-fct transformation.

(発明の効果) 以上の説明で判るように本発明の形状記憶合金は、原子
が不規則な配列状態であっても、良好な形状記憶効果を
示すので、原子の配列を規則化するための熱処理が全く
不要である。また溶解鋳造した際インゴット割れること
がなく、またインゴットを冷間圧延した際、甚だ加工性
が良く、しかも加工途中の中間焼鈍の回数が半減する等
の効果がある。
(Effects of the Invention) As can be seen from the above explanation, the shape memory alloy of the present invention exhibits a good shape memory effect even when the atoms are irregularly arranged. No heat treatment is required. Furthermore, the ingot does not crack when melted and cast, and when the ingot is cold rolled, it has excellent workability, and the number of intermediate annealing steps during processing is halved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図aば本発明の形状記憶合金の室温状態の形状を示
す写真、第1図すは液体窒素温度(77K)での変形状
態を示す写真、第1図Cは温度が上昇して元の形に戻る
状態を示す写真、第1図dは完全に元の形状に戻った状
態を示す写真、第2図a、b、Cは夫々室温、低温、極
低温での本発明の形状記憶合金のX線回折線ピークを示
す図である。 出願人  田中貴金属工業株式会社 図面の浄D(内容に変更なし) 第1図 (d−)□ 第2図 (Q)      (b)      忙)手続補正古
(方式) %式% 1、事件の表示 昭和61年特許廓第11458号 2、発明の名称 形状記憶合金 3、補正をする者 昭和61年3月25日 5、補正の対象  図面の第1図 6、補正の内容 図面の第1図を別紙添付の図面に補正する。
Figure 1a is a photograph showing the shape of the shape memory alloy of the present invention at room temperature, Figure 1 is a photograph showing the deformation state at liquid nitrogen temperature (77K), and Figure 1C is a photograph showing the shape of the shape memory alloy of the present invention at room temperature. Figure 1 (d) is a photograph showing the state in which the shape has completely returned to its original shape, Figure 2 (a), b, and (C) are the shape memory of the present invention at room temperature, low temperature, and cryogenic temperature, respectively. It is a figure showing the X-ray diffraction line peak of an alloy. Applicant: Tanaka Kikinzoku Kogyo Co., Ltd.Drawing D (no change in content) Figure 1 (d-) □ Figure 2 (Q) (b) Busy) Procedural amendment old (method) % formula % 1. Indication of incident Patent Office No. 11458 of 1985 2 Name of the invention Shape memory alloy 3 Person making the amendment March 25, 1985 5 Subject of the amendment Figure 1 of the drawing 6 Details of the amendment Figure 1 of the drawing The amendments will be made to the attached drawings.

Claims (1)

【特許請求の範囲】[Claims] Feに、25〜30at%のPtを含有させたものから
成る形状記憶合金。
A shape memory alloy made of Fe containing 25 to 30 at% of Pt.
JP1145886A 1986-01-22 1986-01-22 Shape memory alloy Pending JPS62170453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1145886A JPS62170453A (en) 1986-01-22 1986-01-22 Shape memory alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1145886A JPS62170453A (en) 1986-01-22 1986-01-22 Shape memory alloy

Publications (1)

Publication Number Publication Date
JPS62170453A true JPS62170453A (en) 1987-07-27

Family

ID=11778650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1145886A Pending JPS62170453A (en) 1986-01-22 1986-01-22 Shape memory alloy

Country Status (1)

Country Link
JP (1) JPS62170453A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999049092A1 (en) * 1998-03-25 1999-09-30 Kanto Special Steel Works Ltd. Iron-based magnetic shape memory alloy and method of preparing the same
WO2001064966A1 (en) * 2000-02-29 2001-09-07 Japan Science And Technology Corporation Supermagnetostrictive alloy and method for preparation thereof
EP1724365A2 (en) * 2004-10-12 2006-11-22 Heraeus, Inc. Low oxygen content compositions

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51125623A (en) * 1974-07-05 1976-11-02 Univ Osaka Process for porducing and using beta-plus type electronic compound alloy and fe base solid solution alloy with memory
JPS5763655A (en) * 1981-05-29 1982-04-17 Univ Osaka Beta-plus type electron compound alloy and solid solution iron alloy having property of repeatedly memorizing form, their manufacture and using method for them

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51125623A (en) * 1974-07-05 1976-11-02 Univ Osaka Process for porducing and using beta-plus type electronic compound alloy and fe base solid solution alloy with memory
JPS5763655A (en) * 1981-05-29 1982-04-17 Univ Osaka Beta-plus type electron compound alloy and solid solution iron alloy having property of repeatedly memorizing form, their manufacture and using method for them

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999049092A1 (en) * 1998-03-25 1999-09-30 Kanto Special Steel Works Ltd. Iron-based magnetic shape memory alloy and method of preparing the same
WO2001064966A1 (en) * 2000-02-29 2001-09-07 Japan Science And Technology Corporation Supermagnetostrictive alloy and method for preparation thereof
US6800143B1 (en) 2000-02-29 2004-10-05 Japan Science And Technology Agency Supermagnetostrictive alloy and method of preparation thereof
EP1724365A2 (en) * 2004-10-12 2006-11-22 Heraeus, Inc. Low oxygen content compositions
EP1724365A3 (en) * 2004-10-12 2010-02-17 Heraeus, Inc. Low oxygen content compositions

Similar Documents

Publication Publication Date Title
US4707196A (en) Ti-Ni alloy articles having a property of reversible shape memory and a method of making the same
EP0709482B1 (en) Method of manufacturing high-temperature shape memory alloys
US4533411A (en) Method of processing nickel-titanium-base shape-memory alloys and structure
US4654092A (en) Nickel-titanium-base shape-memory alloy composite structure
EP0217857A1 (en) Process for strengthening lead-antimony alloys
JP3308284B2 (en) Manufacturing method of amorphous alloy material
TW200404102A (en) High-strength copper alloy
JPS5928548A (en) Superelastic shape-memory ni-ti base alloy and manufacture thereof
JPH0762472A (en) Copper-based shape memory alloy having high workability and its production
JPS635465B2 (en)
JP2578529B2 (en) Manufacturing method of amorphous alloy molding material
JPH076047B2 (en) Shape memory alloy manufacturing method
US4406712A (en) Cu-Ni-Sn Alloy processing
Rack The influence of prior strain upon precipitation in a high-purity 6061 aluminum alloy
JP3317328B2 (en) Copper alloy
JP2000104131A (en) High strength and high conductivity copper alloy and its production
JPS6132386B2 (en)
JPS62170453A (en) Shape memory alloy
JPS6358907B2 (en)
US4715910A (en) Low cost connector alloy
JPS6361377B2 (en)
US4407776A (en) Shape memory alloys
JPS6356302B2 (en)
JPS605863A (en) Production of high yield heat resistant aluminum alloy for electrical conduction
JPS6050867B2 (en) Manufacturing method of brazeable aluminum alloy