JPS62170183A - Tungsten or molybdenum heater which is excellent in acid errosion resistant properties and manufacture of the same - Google Patents

Tungsten or molybdenum heater which is excellent in acid errosion resistant properties and manufacture of the same

Info

Publication number
JPS62170183A
JPS62170183A JP61009847A JP984786A JPS62170183A JP S62170183 A JPS62170183 A JP S62170183A JP 61009847 A JP61009847 A JP 61009847A JP 984786 A JP984786 A JP 984786A JP S62170183 A JPS62170183 A JP S62170183A
Authority
JP
Japan
Prior art keywords
tungsten
molybdenum
ceramic
heater
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61009847A
Other languages
Japanese (ja)
Inventor
福原 由雄
深沢 美治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61009847A priority Critical patent/JPS62170183A/en
Publication of JPS62170183A publication Critical patent/JPS62170183A/en
Pending legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、耐酸化消耗性に優れたタングステンもしくは
モリブデンヒーターおよびその製造方法に関し、さらに
詳しくは、表面に高温強度および耐酸化性に優れ、緻密
かつ密着性の良好なセラミックス被覆層を有するタング
ステンもしくはモリブデンヒーターと、該ヒーターを高
い製造効率で製造する方法に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a tungsten or molybdenum heater with excellent oxidative wear resistance and a method for manufacturing the same. The present invention also relates to a tungsten or molybdenum heater having a ceramic coating layer with good adhesion, and a method for manufacturing the heater with high manufacturing efficiency.

[発明の技術的背景とその問題点] タングステン(W)もしくはモリブデン(MO)よりな
るヒーターは例えばステンレス鋼板の焼鈍用加熱炉など
の各種用途に重用されているが、W、Mo材が高温で酸
化されて消耗しやすいことから、W、MOよりなる基体
を#醸化性に優れたセラミックス層で被覆して実用に供
することが、WもしくはMO製上ヒーター用途を拡げる
上で重要である。
[Technical background of the invention and its problems] Heaters made of tungsten (W) or molybdenum (MO) are used in various applications, such as heating furnaces for annealing stainless steel sheets, but W and Mo materials cannot be used at high temperatures. Since it is easily oxidized and consumed, it is important to cover the substrate made of W or MO with a ceramic layer with excellent fermentation properties and put it into practical use in order to expand the applications of the upper heater made of W or MO.

かかる被覆層の形成に際しては、通常、CVD法、大気
中で行なわれる溶射法およびWもしくはMOO体表面に
セラミックス粉末を塗布後焼付ける方法などが適用され
ている。
When forming such a coating layer, CVD method, thermal spraying method performed in the atmosphere, and method of coating ceramic powder on the surface of W or MOO body and then baking it, etc. are usually applied.

しかしながら、これらの方法には、得られたセラミック
ス被覆層の健全度が低い、具体的には、基体との密着性
が良好でない、また被覆層がw1密でなく、酸化物の巻
き込みがあるため、ヒーターの使用環境に制約を受ける
などの問題や工程が繁雑であって量産性に欠けるなどの
問題がある。
However, these methods have problems such as low soundness of the obtained ceramic coating layer, specifically, poor adhesion with the substrate, and the coating layer is not W1 dense and oxides are included. However, there are problems such as restrictions on the environment in which the heater is used, and problems such as the complicated process and lack of mass production.

[発明の目的] 本発明は従来のかかる問題を解消し、緻密で、健全度の
高いセラミックス被覆層を有するタングステンもしくは
モリブデンヒーターと、それを簡易な工程により量産し
うる方法の提供を目的とする。
[Objective of the Invention] The purpose of the present invention is to solve these conventional problems and provide a tungsten or molybdenum heater having a dense and highly sound ceramic coating layer, and a method for mass-producing the same through simple steps. .

[発明の概要] 本発明者らは、上記目的を達成すべく鋭意研究を重ねる
中で、つぎのような知見を得た。すなわち、前述した従
来の被覆層形成方法のうち、溶射法は作業性よく短時間
で厚膜を形成できるという利点を有しているため 工程
的には上記した本発明の目的に添うものであるが、得ら
れたセラミックス層がポーラスであって被覆層としての
充分な機能を果たすことができないという不都合がある
ということである。
[Summary of the Invention] The present inventors have obtained the following knowledge while conducting intensive research to achieve the above object. That is, among the conventional coating layer forming methods described above, the thermal spraying method has the advantage of being easy to work with and can form a thick film in a short time, so that from a process standpoint, it meets the purpose of the present invention described above. However, there is a disadvantage that the obtained ceramic layer is porous and cannot perform a sufficient function as a covering layer.

そこで1本発明者らは、上記の如き大気中で行なわれる
溶射法ではなく、低圧溶射法、すなわち、低圧の不活性
ガス雰囲気中での溶射法を適用すれば、前述した溶射法
の工程的な利点を充分生かしながら、しかも緻密で健全
度の高い被覆層を得ることができるものと考え、その最
適条件、とくに不活性ガスの圧力を見出して本発明を完
成するに到った。
Therefore, the present inventors believe that if a low-pressure thermal spraying method, that is, a thermal spraying method in a low-pressure inert gas atmosphere, is applied instead of the thermal spraying method performed in the atmosphere as described above, the process of the thermal spraying method described above can be improved. Considering that it is possible to obtain a dense and highly sound coating layer while making full use of these advantages, the present invention was completed by finding the optimum conditions, particularly the pressure of the inert gas.

すなわち、本発明の耐酸化消耗性に優れたタングステン
もしくはモリブデンヒーターは、タングステンもしくは
モリブデンよりなる基体と、該基体表面に形成され耐酸
化性に優れたセラミックスよりなる被覆層とからなるタ
ングステンもしくはモリブデンヒーターであって、該被
覆層が、対理論密度比85%以上のセラミックス溶射法
であることを特徴とし、その製造方法は、タングステン
もしくはモリブデンよりなる基体表面に、圧力50〜5
00Torrの不活性ガス雰囲気で行なう溶射法を適用
してセラミックス層を形成する工程を含むことを特徴と
する。
That is, the tungsten or molybdenum heater with excellent oxidation and wear resistance of the present invention is a tungsten or molybdenum heater consisting of a base made of tungsten or molybdenum and a coating layer made of ceramic with excellent oxidation resistance formed on the surface of the base. The coating layer is formed by a ceramic spraying method with a theoretical density ratio of 85% or more, and the manufacturing method includes applying a pressure of 50 to 50% on the surface of a substrate made of tungsten or molybdenum.
The method is characterized in that it includes a step of forming a ceramic layer by applying a thermal spraying method performed in an inert gas atmosphere of 0.00 Torr.

本発明のタングステンもしくはモリブデンヒーターにお
いて、WもしくはMOよりなる基体表面に形成される被
覆層の材料としては、上述した如く耐酸化性に優れたセ
ラミックスであれば、とくに限定されるものではないが
、高温下で基体との密着性を良好に保持するために高温
強度に優れ、かつ、熱膨張係数が基体であるW又はM。
In the tungsten or molybdenum heater of the present invention, the material of the coating layer formed on the surface of the base made of W or MO is not particularly limited as long as it is a ceramic with excellent oxidation resistance as described above. W or M has excellent high temperature strength to maintain good adhesion to the substrate at high temperatures, and has a thermal expansion coefficient similar to that of the substrate.

のそれと近似したものであることが好ましい。It is preferable that it be similar to that of .

具体的には、MoS i2 、WS i、S i3 N
4、ZrO2,SiCなどをあげることができ、これら
のうち1種あるいは2種以上を積層して使用することが
できる。そして、かかる被覆層は対理論密度比が85%
以上の溶射層として形成されている。この耐理論密度比
が85%未満であると、上述したようにW又はMO基体
が酸化消耗してしまうなど被覆層としての機能を充分に
果たすことができなくなってしまう。また、この被覆層
は後述するように低圧溶射法を適用して形成されるもの
であって、その層厚はとくに限定されるものではないが
、通常は0.5〜5mm程度である。
Specifically, MoS i2 , WS i, S i3 N
4, ZrO2, SiC, etc., and one or more of these can be used in a stacked manner. The coating layer has a theoretical density ratio of 85%.
The above thermal sprayed layer is formed. If this theoretical density ratio is less than 85%, the W or MO substrate will be oxidized and consumed as described above, and the coating layer will not be able to function satisfactorily. Further, this coating layer is formed by applying a low-pressure thermal spraying method as described later, and the layer thickness is not particularly limited, but is usually about 0.5 to 5 mm.

ついで、本発明のWもしくはMoヒーターの製造方法に
ついて説明する。
Next, a method for manufacturing the W or Mo heater of the present invention will be explained.

本発明方法はWもしくはMoよりなる基体表面に、低圧
溶射法を適用して耐酸化性に優れたセラミックス被覆層
を形成する工程を骨子とするものであるが、この溶射工
程に先立ち、基材表面に例えば粗面化処理を施しておく
と、被覆層と基材との密着性を高めるうえで好ましい。
The method of the present invention is based on the step of forming a ceramic coating layer with excellent oxidation resistance on the surface of a substrate made of W or Mo by applying a low-pressure thermal spraying method. It is preferable to subject the surface to, for example, a roughening treatment in order to improve the adhesion between the coating layer and the base material.

具体的には、エツチングなどの化学的方法や、機械的研
摩方法例えば、20〜70メツシユのAn、O,あるい
はGC粉末を使用して、プラスト圧3〜10kg/cL
l+2程度で行なうブラスト処理方法などを適用するこ
とができる。なお、このホーニング処理のあとに、超音
波洗浄および水素雰囲気下での熱処理を適用して基材表
面を清浄化しておくことが好ましい。
Specifically, chemical methods such as etching, mechanical polishing methods, for example, using 20 to 70 meshes of An, O, or GC powder, with a blast pressure of 3 to 10 kg/cL.
A blasting method performed at about l+2 or the like can be applied. Note that after this honing treatment, it is preferable to apply ultrasonic cleaning and heat treatment in a hydrogen atmosphere to clean the surface of the base material.

続く低圧溶射工程は、上述したセラミックスの粉末を原
料粉末として使用し、低圧の不活性ガス雰囲気中で行な
われる。このとき使用される不活性ガスとしてヘリウム
(He)、アルゴン(Ar)あるいはこれらの混合ガス
をあげることができる。この不活性ガスの圧力は、50
〜500 Torr、好ましくは200〜300Tor
rに設定する必要がある。このガス圧が50Torr未
満である場合には溶射時に使用するキャリヤガスを充分
に使用できない上に溶射原料粉末の飛散をまねき、事実
上コーティングが不可能となり、一方、500Torr
を超えるとコーティング層内に気泡が含有され、コーテ
ィング層の緻密性が低下する。
The subsequent low-pressure thermal spraying process is performed in a low-pressure inert gas atmosphere using the above-mentioned ceramic powder as a raw material powder. Examples of the inert gas used at this time include helium (He), argon (Ar), or a mixed gas thereof. The pressure of this inert gas is 50
~500 Torr, preferably 200-300 Torr
It is necessary to set it to r. If this gas pressure is less than 50 Torr, the carrier gas used during thermal spraying cannot be used sufficiently, and the thermal spray raw material powder will scatter, making coating virtually impossible.
If it exceeds this amount, air bubbles will be included in the coating layer and the density of the coating layer will be reduced.

さらに、原料粉末としては粒度が20〜100゜程度の
ものを使用することが好ましい。
Further, it is preferable to use a raw material powder having a particle size of about 20 to 100 degrees.

具体的には、この工程は、低圧溶射装置を使用、して実
施することができる。すなわち、まず、チャンバー内を
排気して、O,1Torr以下の真空にし、ついで、雰
囲気ガスである不活性ガスを注入して所定の圧にする。
Specifically, this step can be performed using low pressure thermal spray equipment. That is, first, the inside of the chamber is evacuated to a vacuum of 0.1 Torr or less, and then an inert gas as an atmospheric gas is injected to a predetermined pressure.

そして、プラズマアークガスとしてArガスを溶射ガン
に導入し、溶射ガンでプラズマアークを発生させるとと
もに、粉末供給装置により原料粉末を溶射ガンに供給し
上記プラズマアークで溶融しつつ、基体表面に溶射する
。なお、このとき基体の表面温度を200〜800″C
程度に保持することが好ましい。
Then, Ar gas is introduced into the spray gun as a plasma arc gas, the spray gun generates a plasma arc, and the raw material powder is supplied to the spray gun by the powder supply device and is melted by the plasma arc and sprayed onto the surface of the substrate. . At this time, the surface temperature of the substrate is set at 200 to 800"C.
It is preferable to maintain the temperature at a certain level.

かかる低圧溶射工程終了後、セラミックス被覆層が形成
された基材を900〜1200’O程度の温度で熱処理
することは、被覆層の歪みを緩和し、そして結晶結合力
を増加し、かつ、被覆層と基材との密着性を高める上で
好ましい。具体的には、この熱処理工程はW又はMO基
体に直接通電することによって実施することができ、こ
の熱処理のあと、さらにセラミックスの被覆を行なうと
、より健全度の高い被覆層を得ることができるという利
点がある。
After the low-pressure spraying process is completed, the base material on which the ceramic coating layer is formed is heat-treated at a temperature of about 900 to 1200°C to alleviate the distortion of the coating layer, increase the crystal bonding strength, and improve the coating strength. This is preferable in terms of improving the adhesion between the layer and the base material. Specifically, this heat treatment step can be carried out by directly applying electricity to the W or MO substrate, and if a ceramic coating is further performed after this heat treatment, a coating layer with higher integrity can be obtained. There is an advantage.

[発明の実施例] 実施例1.2 所定形状に加工したW又はMo基体表面を#30のGC
砥粒と水との混合物を使用しブラスト圧7kg/cm2
によりホーニング処理したのち、表示のセラミックス粉
末を使用し、表示の条件で低圧溶射を行なった。なお、
溶射装置は市販されている通常の低圧溶射装置を使用し
、かつセラミックス粉末はすべて粒度30〜75戸、純
度99.0%以上のものであった。また、該工程中、基
材の表面温度は500″Cに保持した。この溶射工程終
了後に、被覆層の形成された基体に真空中で通電するこ
とにより熱処理した。
[Embodiments of the invention] Example 1.2 The surface of a W or Mo substrate processed into a predetermined shape was subjected to #30 GC
Blasting pressure 7kg/cm2 using a mixture of abrasive grains and water
After honing, low-pressure thermal spraying was performed using the indicated ceramic powder under the indicated conditions. In addition,
A commercially available ordinary low-pressure thermal spraying device was used as the thermal spraying device, and all ceramic powders had a particle size of 30 to 75 mm and a purity of 99.0% or more. During this process, the surface temperature of the base material was maintained at 500''C. After the thermal spraying process was completed, the base material on which the coating layer was formed was heat-treated by applying electricity in a vacuum.

このようにして得られたW又はMoヒーターの被覆層の
対理論密度比(%)を測定して表中に示した。また、そ
れらのヒーター各3個を実際に、tooo’cで24時
間使用した際の基体の外観変化を観察することにより耐
酸化性を評価し、結果を表に併記した。
The theoretical density ratio (%) of the coating layer of the W or Mo heater thus obtained was measured and shown in the table. In addition, oxidation resistance was evaluated by observing changes in the appearance of the substrate when three of these heaters were actually used at too'c for 24 hours, and the results are also listed in the table.

比較例1.2 セラミックス層として従来法、すなわち、大気圧中での
溶射法(比較例1)およびCVD法(比較例2)を適用
して形成されたものを有するM。
Comparative Example 1.2 M having a ceramic layer formed by applying a conventional method, that is, a thermal spraying method at atmospheric pressure (Comparative Example 1) and a CVD method (Comparative Example 2).

電極につき、上記実施例と同様の評価を行ない結果を表
に示した。
The electrodes were evaluated in the same manner as in the above examples, and the results are shown in the table.

さらに、実施例および比較例の製造工程において、所定
の厚さの被覆層を形成するのに要する時間を実施例を1
として算出することによりそれぞれの量産性を評価し結
果を表中に示した。
Furthermore, in the manufacturing process of Examples and Comparative Examples, the time required to form a coating layer of a predetermined thickness was compared to that of Example 1.
The mass productivity of each was evaluated by calculating as follows, and the results are shown in the table.

[発明の効果] 以上の説明から明らかなように、本発明のW又はMOヒ
ーターはその表面に極めて緻密なセラミックス被覆層を
有するため、耐酸化消耗性に優れたものであって、その
使用環境に制約を受けることがない。しかもその製造法
は工程的に簡便であるとともに製造に要する時間も短く
量産性の高いものである。つまり1本発明方法は、従来
法である大気圧溶射法では達し得ない高品質な被覆層な
らびにCVD法では達し得ない高い量産性を同時に満足
するものであり、したがって、その工業的価値は大であ
る。
[Effects of the Invention] As is clear from the above description, the W or MO heater of the present invention has an extremely dense ceramic coating layer on its surface, so it has excellent oxidation and wear resistance, and is suitable for the environment in which it is used. is not subject to any restrictions. Moreover, the manufacturing method is simple in terms of process, requires a short manufacturing time, and is highly suitable for mass production. In other words, the method of the present invention simultaneously satisfies a high-quality coating layer that cannot be achieved with the conventional atmospheric pressure spraying method and high mass productivity that cannot be achieved with the CVD method, and therefore has great industrial value. It is.

Claims (6)

【特許請求の範囲】[Claims] (1)タングステンもしくはモリブデンよりなる基体と
、該基体表面に形成された耐酸化性に優れたセラミック
スよりなる被覆層とからなるタングステンもしくはモリ
ブデンヒーターであって、該被覆層が、対理論密度比8
5%以上のセラミックス溶射層であることを特徴とする
耐酸化消耗性に優れたタングステンもしくはモリブデン
ヒーター。
(1) A tungsten or molybdenum heater consisting of a base made of tungsten or molybdenum and a coating layer made of ceramic with excellent oxidation resistance formed on the surface of the base, the coating layer having a theoretical density ratio of 8.
A tungsten or molybdenum heater with excellent oxidation and wear resistance, characterized by a 5% or more ceramic sprayed layer.
(2)該セラミックスが、高温強度に優れ、かつ該タン
グステンもしくはモリブデンの熱膨張係数と近似した熱
膨張係数を有するセラミックスである特許請求の範囲第
1項に記載のヒーター。
(2) The heater according to claim 1, wherein the ceramic has excellent high-temperature strength and has a coefficient of thermal expansion similar to that of tungsten or molybdenum.
(3)該高温強度に優れ、かつ該タングステンもしくは
モリブデンの熱膨張係数と近似した熱膨張係数を有する
セラミックスが、ケイ化モリブデン、ケイ化タングステ
ン、酸化ジルコニウム、窒化ケイ素、ケイ化シリコーン
のうち少なくとも1種である特許請求の範囲第2項に記
載のヒーター。
(3) The ceramic having excellent high-temperature strength and having a thermal expansion coefficient similar to that of tungsten or molybdenum is at least one of molybdenum silicide, tungsten silicide, zirconium oxide, silicon nitride, and silicon silicide. The heater according to claim 2, which is a seed.
(4)タングテンもしくはモリブデンよりなる基体表面
に、圧力50〜500Torr不活性ガス雰囲気で行な
う溶射法を適用してセラミックス層を形成する工程を含
むことを特徴とする耐酸化消耗性に優れたタングステン
もしくはモリブデンヒーターの製造方法。
(4) Tungsten or molybdenum with excellent oxidation and wear resistance, which includes a step of forming a ceramic layer on the surface of a substrate made of tungsten or molybdenum by applying a thermal spraying method carried out in an inert gas atmosphere at a pressure of 50 to 500 Torr. Manufacturing method of molybdenum heater.
(5)該セラミックスが、高温強度に優れ、かつ該タン
グステンもしくはモリブデンの熱膨張係数と近似した熱
膨張係数を有するセラミックスである特許請求の範囲第
4項に記載の方法。
(5) The method according to claim 4, wherein the ceramic has excellent high-temperature strength and has a coefficient of thermal expansion similar to that of tungsten or molybdenum.
(6)該高温強度に優れ、かつ該タングステンもしくは
モリブデンの熱膨張係数と近似した熱膨張係数を有する
セラミックスが、ケイ化モリブデン、ケイ化タングステ
ン、酸化ジルコニウム、窒化ケイ素、ケイ化シリコーン
のうち少なくとも1種である特許請求の範囲第5項に記
載の方法。
(6) The ceramic having excellent high-temperature strength and having a thermal expansion coefficient similar to that of tungsten or molybdenum is at least one of molybdenum silicide, tungsten silicide, zirconium oxide, silicon nitride, and silicon silicide. 6. The method according to claim 5, which is a species.
JP61009847A 1986-01-22 1986-01-22 Tungsten or molybdenum heater which is excellent in acid errosion resistant properties and manufacture of the same Pending JPS62170183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61009847A JPS62170183A (en) 1986-01-22 1986-01-22 Tungsten or molybdenum heater which is excellent in acid errosion resistant properties and manufacture of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61009847A JPS62170183A (en) 1986-01-22 1986-01-22 Tungsten or molybdenum heater which is excellent in acid errosion resistant properties and manufacture of the same

Publications (1)

Publication Number Publication Date
JPS62170183A true JPS62170183A (en) 1987-07-27

Family

ID=11731521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61009847A Pending JPS62170183A (en) 1986-01-22 1986-01-22 Tungsten or molybdenum heater which is excellent in acid errosion resistant properties and manufacture of the same

Country Status (1)

Country Link
JP (1) JPS62170183A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151240A (en) * 2000-11-14 2002-05-24 Inoac Corp Ceramic heater
WO2008072364A1 (en) * 2006-11-20 2008-06-19 Uragami Fukashi Device capable of moving while being in intimate contact with object surface
CN106498496A (en) * 2016-11-02 2017-03-15 苏州恒嘉晶体材料有限公司 A kind of heating element of tungsten processing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151240A (en) * 2000-11-14 2002-05-24 Inoac Corp Ceramic heater
WO2008072364A1 (en) * 2006-11-20 2008-06-19 Uragami Fukashi Device capable of moving while being in intimate contact with object surface
CN106498496A (en) * 2016-11-02 2017-03-15 苏州恒嘉晶体材料有限公司 A kind of heating element of tungsten processing method

Similar Documents

Publication Publication Date Title
JPH0395288A (en) Abrasive coated with refractory metal oxide and grinding wheel made therefrom
JP2003073794A (en) Heat-resistant coated member
CN112501584A (en) Composite coating based on graphite substrate and preparation method thereof
JPS62170183A (en) Tungsten or molybdenum heater which is excellent in acid errosion resistant properties and manufacture of the same
JP3929140B2 (en) Corrosion resistant member and manufacturing method thereof
JPH11236286A (en) Production of boron carbide coating
JP3129383B2 (en) Oxide-coated silicon carbide material and its manufacturing method
JP3784180B2 (en) Corrosion resistant material
JPH01136961A (en) Ceramic-matrix having metallic layer and its manufacture
JP2002037660A (en) Plasma-resistant alumina ceramic and method for producing the same
JPS61143686A (en) Silicon carbide sintered body for heat-resistant jig having excellent dimensional accuracy
JPH03146470A (en) Silicon carbide-based material
JPS6316464B2 (en)
JP3901338B2 (en) BN-AlN laminate and use thereof
JPH1160356A (en) Aluminum nitride composite base, aluminum nitride composite heat generating body using the same, aluminum nitride composite electrostatic chuck, and same chuck with heater
JPH0692761A (en) Sic-cvd coated and si impregnated sic product and its manufacture
JPS6128626B2 (en)
JPS59150002A (en) Heat treating plate for powder metallurgy
JPS62169077A (en) Structural material for nuclear fusion reactor and manufacture thereof
JPH02255593A (en) Graphite susceptor for plasma cvd
JPH08290968A (en) Composite material
JPS6155918A (en) Semiconductor manufacturing apparatus
JP2001322067A (en) Extra-abrasive grain coated with metal carbide, its manufacturing method and extra-abrasive grain tool
JP2004315352A (en) Heat-resistant coating member
JPH05220668A (en) Highly hard powder for coating and its manufacture