JPS62168993A - Heat pipe cooling type turbo molecular pump - Google Patents

Heat pipe cooling type turbo molecular pump

Info

Publication number
JPS62168993A
JPS62168993A JP60267982A JP26798285A JPS62168993A JP S62168993 A JPS62168993 A JP S62168993A JP 60267982 A JP60267982 A JP 60267982A JP 26798285 A JP26798285 A JP 26798285A JP S62168993 A JPS62168993 A JP S62168993A
Authority
JP
Japan
Prior art keywords
pump
heat
heat pipe
outside
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60267982A
Other languages
Japanese (ja)
Inventor
Juichi Kawaguchi
川口 重一
Kiyoshi Narita
潔 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP60267982A priority Critical patent/JPS62168993A/en
Publication of JPS62168993A publication Critical patent/JPS62168993A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/059Roller bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/06Lubrication
    • F04D29/063Lubrication specially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/584Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps cooling or heating the machine

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Abstract

PURPOSE:To prevent the overheating of the high temp. part in a machine room as well as a bearing by placing the evaporating end part of a heat pipe at the high temp. pat in a turbo pump and its condensing end part at the low temp. part outside said pump, and piping said heat pipe between these parts. CONSTITUTION:A heat pipe 10 is piped between the inside and outside of a turbo molecular pump with its evaporating end part 10a being placed at the high temp. part in the pump, and its condensing end part 10b placed at the low temp. part outside the pump. Thereby, heat transfer is directly carried out from the evaporating part 10a which is in contact with a motor housing H forming a machine room M and which absorbs heat from the housing H, to the condensing end part 10b which radiates heat under the air cooling action of a cooling fan in the low temp. part outside the pump, through the heat insulated part 10c of said heat pipe 10. Since the heat transfer between the inside and outside of the pump by means of he heat pipe 10 has a large heat transporting quantity and quick responsiveness, a large cooling effect can be given to bearings 4, 4 which transfer heat to the housing H, preventing the overheating of the high temp. part as a whole as well as the bearings 4, 4.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、軸受等に対する冷却性能を高めたヒートパイ
プ冷却式のターボ分子ポンプに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a heat pipe cooling type turbomolecular pump that has improved cooling performance for bearings and the like.

[従来の技術] ターボ分子ポンプは、タービン翼列を構成するロータχ
とステータ翼との相対的な超高速回転により、機械的に
気体分子の流れをつくり出し高真空を実現するものであ
るが、一方においてロータ回転数が極めて高いが故に、
そのローターシャフトを軸支する軸受の耐久性が問題と
なる。このため、ローターシャフトの軸受にポールベア
リングのような接触形のものを使用する場合には、軸受
に絶えずオイルを供給して強制潤滑を行ない、併せてそ
のオイル循環により軸受等の過熱防止を図る必要がある
[Prior art] A turbomolecular pump uses a rotor χ that constitutes a row of turbine blades.
The relatively high-speed rotation between the rotor and the stator blades mechanically creates a flow of gas molecules and achieves a high vacuum, but on the other hand, because the rotor rotation speed is extremely high,
The durability of the bearing that supports the rotor shaft becomes a problem. For this reason, when using a contact-type bearing such as a pole bearing for the rotor shaft, it is necessary to constantly supply oil to the bearing for forced lubrication, and also to prevent overheating of the bearing etc. by circulating the oil. There is a need.

第4図は、このような従来タイプのターボ分子ポンプの
要部構造の一例を示すもので、図中1が軸心まわりに超
高速回転するローターシャフトであって、上方のポンプ
室Pでロータ2を支持している一方、下方のモータハウ
ジングH内に形成した機械室Mで内設モータ3により回
転駆動されるとともに、上下一対の軸受4.4により軸
支されている。そして、このポンプでは、ポンプ本体の
底部をなすベース5にオイルタンク6を付設し、このタ
ング6内のオイル7に前記ローターシャフトlの下端に
設けたノズルlaを浸漬して、同シャフトl内に設けた
オイル通路(図示せず)から各軸受4.4に吸い上げオ
イルを注入して、軸受4.4の強制潤滑を行なうと同時
に、軸受4、4から流出したオイルを機械室M内からオ
イル戻り通路8を通してオイルタンク6に還流させ、こ
の還流オイルで軸受4,4および機械室M内を冷却する
ようにし、さらにオイルタンク6の下部に付設した冷却
ファン9の空冷作用(図示矢印)でオイルタンク6内の
オイル7の昇温を防止するようにしている。
Figure 4 shows an example of the structure of the main parts of such a conventional type turbomolecular pump. In the figure, 1 is a rotor shaft that rotates at an extremely high speed around its axis, and the rotor shaft is rotated in the upper pump chamber P. 2, is rotationally driven by an internal motor 3 in a machine room M formed in a lower motor housing H, and is pivotally supported by a pair of upper and lower bearings 4.4. In this pump, an oil tank 6 is attached to the base 5 forming the bottom of the pump body, and the nozzle la provided at the lower end of the rotor shaft l is immersed in the oil 7 in the tongue 6. At the same time, the oil flowing out from the bearings 4, 4 is removed from the machine room M by injecting suction oil into each bearing 4.4 from an oil passage (not shown) provided in the The oil is returned to the oil tank 6 through the oil return passage 8, and this returned oil cools the bearings 4, 4 and the inside of the machine room M. Furthermore, the air cooling action of the cooling fan 9 attached to the lower part of the oil tank 6 (arrow shown) This prevents the oil 7 in the oil tank 6 from rising in temperature.

[発明が解決しようとする問題点] しかし、上記従来タイプの空冷式ターボ分子ポンプであ
ると、発熱して昇温する機械室M内の高温部からの抜熱
が、機械室M内に還流されるオイル7を貯留するオイル
タンク6と高温部から直接熱伝導されるベース5とに対
する冷却ファン9の空冷作用に限られるため、オイルタ
ンク6にフィン6aを付けるなどしても必ずしも機械室
M内の軸受4.4に対する十分な冷却効果が得られず。
[Problems to be Solved by the Invention] However, in the conventional air-cooled turbomolecular pump described above, the heat removed from the high temperature section in the machine room M that generates heat and rises in temperature is refluxed into the machine room M. Since the air-cooling effect of the cooling fan 9 is limited to the oil tank 6 that stores the oil 7 to be stored and the base 5 to which heat is directly transferred from the high temperature part, even if the oil tank 6 is provided with fins 6a, it does not necessarily prevent the machine room M. Sufficient cooling effect for the inner bearing 4.4 could not be obtained.

このため軸受4.4(特に上方側のもの)が過熱して軸
受寿命が短くなる問題を残している。
This leaves the problem that the bearings 4.4 (especially the upper ones) overheat and shorten the life of the bearings.

[問題点を解決するための手段] 本発明は、このような問題点を解決するため、ターボ分
子ポンプの機械室内から外部への放熱を有効に促進して
軸受等の過熱を防止できる冷却手段を備えたものを新た
に提案するものであって、ターボ分子ポンプの内外に、
その蒸発端部をポンプ内の高温部に配置しその凝縮端部
をポンプ外の低温部に配置して、ヒートパイプを配管し
たことを特徴としている。
[Means for Solving the Problems] In order to solve these problems, the present invention provides a cooling means that can effectively promote heat dissipation from the machine chamber of a turbomolecular pump to the outside and prevent overheating of bearings, etc. This is a new proposal that is equipped with
The heat pipe is characterized in that the evaporating end is placed in a high temperature section inside the pump, and the condensing end is placed in a low temperature section outside the pump.

[作用] すなわち、このヒートパイプ冷却式のターボ分子ポンプ
であれば、そのポンプ内外に配管されたヒートパイプが
、ポンプ内の高温部からポンプ外に熱伝導して低温部に
放熱し、軸受等の冷却に寄与するものとなる。そして、
このヒートパイプの熱輸送量はオイルによる熱伝達やベ
ースプレートでの熱伝導に比して遥かに大きく、しかも
非常な早さの熱応答性を発揮する。したがって、このヒ
ートパイプを従来の空冷機構と併用して、あるいはそれ
と代替して採用すれば、ター゛ポ分子ポンプの高温部を
直接又は間接的に冷却して、その軸受に対し十分大きな
冷却効果を午えることができるものとなる。
[Function] In other words, in this heat pipe cooling type turbo molecular pump, the heat pipes piped inside and outside the pump conduct heat from the high temperature part inside the pump to the outside of the pump and radiate the heat to the low temperature part, and the heat pipe is This contributes to the cooling of the air. and,
The amount of heat transported by this heat pipe is far greater than that by oil or heat conduction through the base plate, and it also exhibits extremely quick thermal response. Therefore, if this heat pipe is used in conjunction with or in place of a conventional air cooling mechanism, the high-temperature part of the turbomolecular pump can be directly or indirectly cooled, and a sufficiently large cooling effect can be achieved on the bearings. It becomes something that you can enjoy.

[実施例] 以ド、本発明の実施例を図面を参照して説明する。[Example] Hereinafter, embodiments of the present invention will be described with reference to the drawings.

まず、第1図と第2図はその一実施例を示し、この場合
ポンプ本体およびこれに付設される空冷機構等は、第4
図の従来構造のものと共通しており、したがって図中同
一部材、要素は同一の符合をもって示される。
First, FIG. 1 and FIG. 2 show one embodiment, and in this case, the pump body and the air cooling mechanism attached thereto are
This structure is common to that of the conventional structure shown in the figures, and therefore identical members and elements are designated with the same reference numerals in the figures.

しかして、この本発明に係るターボ分子ポンプでは1発
熱昇温する機械室M内の高温部、即ち軸受4,4の冷却
を促進するためポンプ内外にヒートパイプ10を配管し
ている。このヒートパイプ10は、その内部で作動液が
蒸発し外部から蒸発潜熱を奪う蒸発端部10aをモータ
ハウジングHの外周に捲着して配置している一方、その
内部で作動液が凝縮し外部に蒸発潜熱を放出する凝縮端
部tobをオイルタンク6のフィン6a外周に捲回して
配置し、かつこれら両端部をつなぐ中途の断熱?!&L
 OCをポンプベース5に設けた縦孔5aを通してポン
プ内外に貫通させるようにし配管したものである。そし
て、オイルタンク6のまわりに配とされる凝縮端部10
bには、第2図に示すように、冷却ファン9からの空冷
作用(図示矢印)を高め放熱を促進するためにフィン1
1を設けている。
Therefore, in the turbo-molecular pump according to the present invention, heat pipes 10 are installed inside and outside the pump in order to promote cooling of the high-temperature part in the machine room M, that is, the bearings 4, 4 whose temperature increases by one heat generation. The heat pipe 10 has an evaporator end 10a wrapped around the outer periphery of the motor housing H, in which the working fluid evaporates and removes latent heat of vaporization from the outside. The condensing end tob, which releases latent heat of vaporization, is wound around the outer periphery of the fins 6a of the oil tank 6, and there is an intermediate insulation connecting these two ends. ! &L
The OC is piped so as to pass through a vertical hole 5a provided in the pump base 5 into the inside and outside of the pump. and a condensing end 10 disposed around the oil tank 6.
As shown in FIG.
1 is provided.

このようにヒートパイプlOを配管して付加したターボ
分子ポンプであると、機械室Mを構成する高温のモータ
ハウジングHに接触し該ハウジングHから吸熱するその
蒸発端部10aから、ポンプ外の低温部で冷却ファン9
の空冷作用の下に放熱するその凝縮端部10bに、ポン
プベース5を貫くその断熱部10cを通して直接的に熱
伝導されることになる。そして、このヒートパイプ10
によるポンプ内外での熱伝導は熱輸送量が大きく応答性
が早いため、従前の空冷機構による機械室M内の冷却作
用と併用すると、機械室M内の高温部特にハウジングH
に熱伝導する軸受4.4に大きな冷却効果を付与でき、
この軸受4.4と共に機械室4内の高温部全体の過熱を
防止することができる。そして、この軸受温度の低下に
より、その軸受寿命(特に上方側の軸受4)が延長され
If the turbo molecular pump is equipped with a heat pipe 1O in this way, the evaporator end 10a, which contacts the high temperature motor housing H constituting the machine room M and absorbs heat from the housing H, is connected to the low temperature outside the pump. cooling fan 9
The heat is directly conducted to the condensing end 10b which radiates heat under the air cooling effect through the heat insulating part 10c penetrating the pump base 5. And this heat pipe 10
Since the heat conduction inside and outside the pump has a large amount of heat transport and a quick response, when used in conjunction with the cooling effect in the machine room M by the conventional air cooling mechanism, it is possible to
A large cooling effect can be imparted to the bearing 4.4, which conducts heat to
Together with this bearing 4.4, overheating of the entire high temperature section within the machine room 4 can be prevented. This reduction in bearing temperature extends the bearing life (particularly of the upper bearing 4).

これにより軸受交換のメインテナンス周期が延期できる
などの所期の目的効果が達せられる丘に、次のような付
帯効果も同時に発現される。すなわち、機械室M内の高
温部における過熱温度が低下することにより、ターボ分
子ポンプ全体として温度が下り、これに伴ないポンプの
到達圧力をより高真空側にできるというポンプ性能面で
の改善効果を得られることがある。また、オイルタンク
6に貯留されるオイル7の温度も下りオイル交換の回数
が削減される。さらに、オイル温度が低下することによ
りその蒸気圧が低下し、ポンプ室P側でのオイル汚染の
問題も緩和されること、等である。
While this achieves the intended effect of postponing the maintenance cycle for bearing replacement, the following additional effects also occur at the same time. In other words, by lowering the superheating temperature in the high-temperature section in the machine room M, the temperature of the entire turbomolecular pump is lowered, and as a result, the ultimate pressure of the pump can be brought to the higher vacuum side, which is an improvement effect in terms of pump performance. Sometimes you can get. Furthermore, the temperature of the oil 7 stored in the oil tank 6 also decreases, reducing the number of oil changes. Furthermore, as the oil temperature decreases, its vapor pressure decreases, and the problem of oil contamination on the pump chamber P side is also alleviated.

ところで、it図に示したヒートパイプ10の配管状態
によると、その蒸発端部10aが上方に位置し凝縮端部
10bが下方に位置するものとされる。一般に、作動液
を凝縮端部から蒸発端部にFすパイプ内面のウィックに
スクリーンメツシュやグループを用いたヒートパイプで
は、その蒸発端部が凝縮端部よりも水平から高い位置に
配置されると1作動液の循環が、曹〈なって熱伝導性が
劣化すると言われる。しかし、かかる通常とは逆の配管
状態を採る場合にあっても、そのウィックに良好な毛細
管現象が発現できるもの、例えばオイルウィック(燈芯
のようなもの)などを利用するようにすれば、ヒートパ
イプlOに本来の優れた熱伝導特性を発揮させることが
できる。
By the way, according to the piping state of the heat pipe 10 shown in the IT diagram, the evaporating end 10a is located above and the condensing end 10b is located below. In general, in a heat pipe that uses a screen mesh or group for the wick on the inner surface of the pipe that flows the working fluid from the condensing end to the evaporating end, the evaporating end is located at a higher position from the horizontal than the condensing end. It is said that the circulation of the working fluid becomes oxidized and the thermal conductivity deteriorates. However, even if such a piping condition is opposite to the usual one, if the wick is made of a material that can exhibit good capillary action, such as an oil wick (like a lamp wick), heat can be reduced. It is possible to make the pipe IO exhibit its original excellent heat conduction characteristics.

次いで、第3図に他の一実施例を挙げて説明する。Next, another embodiment will be described with reference to FIG.

この実施例のものでは、ヒートパイプ10(1)a線端
部10bを同様にオイルタンク6の外周に捲回して配置
するようにしている一方、その蒸発端部LOaをオイル
タンク6を貫通し同タンク6内のオイル7に直接浸漬さ
せるようにしている。しかして、この場合にはヒートパ
イプ10はターボ分子ポンプの高温部としてオイルタン
ク6中のオイル7を効果的に冷却することになる。そし
て、このようにして軸受4,4から機械室Mt−M流す
るオイル温度を低下するようにすれば、このオイル7の
冷却作用を増強することを通じて軸受4.4および機械
室M内の冷却効果が間接的に高められることになり、程
度の差はあれ前記実施例と同様の効果を奏するものとな
る。
In this embodiment, the heat pipe 10(1) a-line end 10b is similarly arranged around the outer periphery of the oil tank 6, while its evaporation end LOa is inserted through the oil tank 6. It is made to be directly immersed in the oil 7 in the same tank 6. In this case, the heat pipe 10 effectively cools the oil 7 in the oil tank 6 as a high temperature part of the turbo molecular pump. If the temperature of the oil flowing from the bearings 4, 4 to the machine room Mt-M is lowered in this way, the cooling effect of the oil 7 is enhanced, thereby cooling the bearings 4.4 and the machine room M. The effect is indirectly enhanced, and the same effect as in the embodiment described above is achieved, although there are differences in degree.

7(発明は、以上に述べた実施例のもののほか、種々の
変形実施例が採用可能である。すなわち、実施例では全
て従前の空冷機構と併用してヒートパイプ冷却を行なう
ようにしたが、第2図に例示したような形態等でその凝
縮端部10bに多数のフィン11を付設すれば、必ずし
も冷却ファン9の送風を要せず、自然空冷で放熱せしめ
るようにしてもよい、また、その凝縮端部lObからの
放熱を促進する手段としては、空冷ファン9の設置に代
え水冷パイプを利用し、これをその凝縮端部10bに接
触させるようにすることなども採用可能である。なお、
ポンプ内の高温部に配置されるヒートパイプ10の蒸発
端部10aの接触態様は1図示の他適宜に調整可能であ
る。
7 (In addition to the embodiments described above, various modified embodiments of the invention can be adopted. In other words, in all the embodiments, heat pipe cooling is performed in combination with the conventional air cooling mechanism. If a large number of fins 11 are attached to the condensing end 10b in the form as illustrated in FIG. As a means for promoting heat dissipation from the condensing end lOb, it is also possible to use a water cooling pipe instead of installing the air cooling fan 9 and bringing it into contact with the condensing end 10b. ,
The contact mode of the evaporation end 10a of the heat pipe 10 disposed in the high temperature part of the pump can be adjusted as appropriate other than as shown in the figure.

[発明の効果] 本発明は、以上の通り、ターボ分子ポンプの高温部をポ
ンプ内外に配管したヒートパイプで冷却すようにしたも
のであるから、ポンプ内の軸受および機械室内の過熱を
有効に防止でき、軸受寿命の延長等に改善効果を奏する
ものである。
[Effects of the Invention] As described above, the present invention cools the high-temperature parts of a turbomolecular pump with heat pipes installed inside and outside the pump, so that overheating of the bearings inside the pump and the inside of the machine room can be effectively prevented. This can be prevented and has an improvement effect on extending the life of the bearing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すターボ分子ポンプの要
部断面図であり、第2図はそのヒートパイプの凝縮端部
を示す斜視図である。第3図は本発明の別の実施例を示
すターボ分子ポンプの要部断面図である。第4図は従来
の空冷式ターボ分子ポンプの構造を示す要部断面図であ
る。 lameローターシャフト 4.4・・e軸受 61・オイルタンク 9111冷却フアン 10・・・ヒートパイプ
FIG. 1 is a sectional view of a main part of a turbo-molecular pump showing an embodiment of the present invention, and FIG. 2 is a perspective view showing a condensing end of a heat pipe thereof. FIG. 3 is a sectional view of a main part of a turbomolecular pump showing another embodiment of the present invention. FIG. 4 is a sectional view of a main part showing the structure of a conventional air-cooled turbomolecular pump. lame rotor shaft 4.4... e bearing 61 oil tank 9111 cooling fan 10... heat pipe

Claims (1)

【特許請求の範囲】[Claims] ターボ分子ポンプの内外に、その蒸発端部をポンプ内の
高温部に配置しその凝縮端部をポンプ外の低温部に配置
して、ヒートパイプを配管したことを特徴とするヒート
パイプ冷却式ターボ分子ポンプ。
A heat pipe cooling type turbo, characterized in that a heat pipe is installed inside and outside a turbo molecular pump, with its evaporating end placed in a high temperature part inside the pump and its condensing end placed in a low temperature part outside the pump. molecular pump.
JP60267982A 1985-11-27 1985-11-27 Heat pipe cooling type turbo molecular pump Pending JPS62168993A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60267982A JPS62168993A (en) 1985-11-27 1985-11-27 Heat pipe cooling type turbo molecular pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60267982A JPS62168993A (en) 1985-11-27 1985-11-27 Heat pipe cooling type turbo molecular pump

Publications (1)

Publication Number Publication Date
JPS62168993A true JPS62168993A (en) 1987-07-25

Family

ID=17452266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60267982A Pending JPS62168993A (en) 1985-11-27 1985-11-27 Heat pipe cooling type turbo molecular pump

Country Status (1)

Country Link
JP (1) JPS62168993A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03253795A (en) * 1990-02-28 1991-11-12 Shimadzu Corp Turbo-molecular pump
JPH11324967A (en) * 1998-05-13 1999-11-26 Torishima Pump Mfg Co Ltd Vertical shaft pump
EP3049676B1 (en) 2013-09-24 2019-07-10 Leybold GmbH Vacuum pump

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03253795A (en) * 1990-02-28 1991-11-12 Shimadzu Corp Turbo-molecular pump
JPH11324967A (en) * 1998-05-13 1999-11-26 Torishima Pump Mfg Co Ltd Vertical shaft pump
EP3049676B1 (en) 2013-09-24 2019-07-10 Leybold GmbH Vacuum pump

Similar Documents

Publication Publication Date Title
KR20020056405A (en) Thermoelectric cooler
JP2001342849A (en) Gas turbine engine
JP2008534844A (en) Fuel carrying member with heat pipe
CN108512360B (en) Double cooling device for turbine motor
WO2020195816A1 (en) Turbo refrigerator
JPS62168993A (en) Heat pipe cooling type turbo molecular pump
CN205178774U (en) High speed motor evaporation cooling structure
WO2023098019A1 (en) Heat dissipation method for sliding bearing of electric motor
JP2007092653A (en) Thermal power generation system
US6494691B2 (en) Turbo molecular pump
CN100398941C (en) Rotary absorption heat pump
JP2018068021A (en) Turbomachine and refrigeration cycle device using the same
JPH0974716A (en) Rotor cooling structure of motor
JPH06159279A (en) Vacuum pump
KR102603139B1 (en) Mechanical Vapor Recompression System with heat pipe combined cooling module
JPH0786356B2 (en) Canned motor pump for absorption refrigerator
TWI838174B (en) Composite two-phase fluid cooling motor and composite two-phase fluid cooling device thereof
JPH09280758A (en) Heat pipe type heat-exchanger
JPH1162880A (en) Turbo-molecular pump
CN220039155U (en) Steam preheating type energy-saving condenser
JP7308773B2 (en) Rotating device and vacuum pump
JP3021860B2 (en) Heat exchanger
CN211854526U (en) Compressor assembly and air conditioner
JPH07218021A (en) Multiple effect absorption type refrigerator
JPS5920046B2 (en) bearing device