JPS62167924A - Silicon carbide sliding member - Google Patents

Silicon carbide sliding member

Info

Publication number
JPS62167924A
JPS62167924A JP733886A JP733886A JPS62167924A JP S62167924 A JPS62167924 A JP S62167924A JP 733886 A JP733886 A JP 733886A JP 733886 A JP733886 A JP 733886A JP S62167924 A JPS62167924 A JP S62167924A
Authority
JP
Japan
Prior art keywords
sic
sliding member
friction
stainless steel
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP733886A
Other languages
Japanese (ja)
Inventor
Toshikazu Moriguchi
敏和 森口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP733886A priority Critical patent/JPS62167924A/en
Publication of JPS62167924A publication Critical patent/JPS62167924A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Mechanical Sealing (AREA)

Abstract

PURPOSE:To obtain a sliding member which is excellent in heat-resistance, corrosion-resistance and wear-resistance and has a good thermal conductivity by combining to use a sintered body, the principal component of which is SiC and stainless steel. CONSTITUTION:alpha-SiC, beta-SiC or a mixture of these is used as SiC, and C, B or Al powder is added thereto to raise the density. Further, phenol resin dissolved in polyvinyl alcohol or organic solvent is added and mixed with the above, which is molded by pressing. Subsequently, the molded body is sintered at 1,800-2,000 deg.C while being pressed by a hot press of the like, or while being not pressed if the molded body is of a complicated shape. Stainless steel combined with the sintered body has a C component content of about 0.1% or less to attain a low coefficient of friction. The thus obtained sliding member can have a low coefficient of friction without using a lubricant.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、炭化けい素(St C)を主成分とする焼結
体とステンレス鋼とを組合わせた摩擦係数の低い囲動部
材に関し、特に、耐食性が強く要求され、かつ油潤滑が
適用しにくい条件下で使用する機械的要素に好適なSi
C摺動部材に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a surrounding member with a low coefficient of friction that combines a sintered body mainly composed of silicon carbide (St C) and stainless steel. In particular, Si is suitable for mechanical elements used under conditions where corrosion resistance is strongly required and oil lubrication is difficult to apply.
Regarding C sliding members.

〔従来の技術〕[Conventional technology]

一般にセラミックスは耐摩耗性、耐食性、耐熱性が良好
なことから摺動部材としての用途が考えられる。特にS
iCを主成分とする焼結体は、上記性質を有するのみな
らず熱伝導性が高く、囲動面で発生する熱の放散がよく
なるため、摺動部材として好適な材料であることが予想
され、耐食性や耐摩耗性を強く要求されるメカニカルシ
ールや腐蝕性液に用いる流体ポンプの軸受或いは各種流
量計の軸受などに優れた特性を発揮することが期待され
る。
In general, ceramics have good wear resistance, corrosion resistance, and heat resistance, so they can be used as sliding members. Especially S
A sintered body containing iC as a main component not only has the above properties but also has high thermal conductivity, which improves the dissipation of heat generated on the surrounding surface, so it is expected to be a suitable material for sliding members. It is expected that it will exhibit excellent properties in mechanical seals that require strong corrosion resistance and wear resistance, bearings in fluid pumps used for corrosive liquids, and bearings in various flow meters.

一般に軸受けにはn滑油が使用されるが、耐食性が強く
要求されるメカニカルシールや耐食性ポンプの軸受には
油r8iflが適用できないことが多く、無潤滑或いは
腐蝕性液体中で摩擦係数の低いことが要求される。
In general, lubricating oil is used for bearings, but oil r8ifl is often not applicable to mechanical seals that require strong corrosion resistance or bearings for corrosion-resistant pumps, and it is difficult to use lubricating oil because it has a low coefficient of friction in the absence of lubrication or in corrosive liquids. is required.

ところで、セラミックスは摺動部材として優れた性質を
有するが、SiC焼結体を含めて、セラミックス同志を
無潤滑油状態で摺動させた場合、その摩擦係数は0.1
以上と高く、特に流は計のような高精度でかつ敏感な応
答が要求される機械要素には使用出来ない欠点があった
By the way, ceramics have excellent properties as sliding members, but when ceramics, including SiC sintered bodies, are slid together without lubricating oil, the coefficient of friction is 0.1.
In particular, the high flow rate has the disadvantage that it cannot be used in mechanical elements such as flowmeters that require highly accurate and sensitive response.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明者等は上記の事情に鑑み、油潤滑剤を用いないで
水或いは腐蝕性の液中で使用出来、しかも摩擦係数の小
さい潜動部材を得るべく、種々なセラミックス同志或い
はセラミックスと金属とを組合わせた摺動部材について
鋭意研究を行なった結果、SiC焼結体と耐食性金属と
の組合わせたものが、摩擦抵抗の小さいことを発見した
In view of the above-mentioned circumstances, the inventors of the present invention have developed various ceramics or ceramics and metals in order to obtain a sliding member that can be used in water or corrosive liquids without using an oil lubricant and has a small coefficient of friction. As a result of intensive research on sliding members that combine SiC sintered bodies and corrosion-resistant metals, it was discovered that the combination of SiC sintered bodies and corrosion-resistant metals has low frictional resistance.

本発明は上記の発見に基づいて行なわれたもので、耐食
性に優れしかもIL!擦係数の低い摺動部材を提供する
ことを目的とする。
The present invention was made based on the above discovery, and has excellent corrosion resistance and IL! An object of the present invention is to provide a sliding member with a low coefficient of friction.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記の目的を達成するためになされたもので、
その要旨は、SiCを主成分とする焼結体とステンレス
鋼との組合わせからなるSiC摺動部材にある。
The present invention has been made to achieve the above objects,
The gist of this is a SiC sliding member made of a combination of a sintered body mainly composed of SiC and stainless steel.

〔発明の具体的構成および作用〕 以下本発明の詳細な説明する。[Specific structure and operation of the invention] The present invention will be explained in detail below.

本発明に用いるSiCは、α−3i C,β−8iC或
いはこれらの混合物でもよい。
The SiC used in the present invention may be α-3iC, β-8iC, or a mixture thereof.

またSiC焼結体は、その密度を高めるため公知の次の
方法によってつくられる。すなわち、(1)SiC粉末
に、C粉末:0.5〜5wt%。
Further, the SiC sintered body is produced by the following known method in order to increase its density. That is, (1) SiC powder and C powder: 0.5 to 5 wt%.

B粉末=0.1〜2wt%を添加し、成形した後、これ
を焼結する方法。
A method in which 0.1 to 2 wt% of B powder is added, molded, and then sintered.

(2)Si C粉末に、C粉末二0.5〜5wt%。(2) 0.5 to 5 wt% of C powder to SiC powder.

A1粉末:0,1〜3.Qwt%を添加し、成形した後
、これを焼結する方法。
A1 powder: 0.1-3. A method in which Qwt% is added, molded, and then sintered.

(3)SiC粉末に、C粉末二〇、5〜5wt%。(3) 20.5 to 5 wt% of C powder to SiC powder.

B粉末:0.1〜1.0wt%、AI粉末二0.1〜2
.Qwt%を添加し、成形した後、これを焼結する方法
B powder: 0.1-1.0 wt%, AI powder 2 0.1-2
.. A method in which Qwt% is added, molded, and then sintered.

(4)SiC粉末とC粉末および/または炭化可能な有
機物との組合わせからなる成形物を加熱下(Siの融点
以上)で液状の3i或はSi 02の蒸気と接融させて
反応焼結させる方法。
(4) Reactive sintering by melting a molded product made of a combination of SiC powder, C powder, and/or carbonizable organic matter with liquid 3i or Si02 vapor under heating (above the melting point of Si). How to do it.

があり、特に耐食性を要求される場合には、通常の焼結
体1反応焼結体いずれにおいても(1)の配合のものが
好ましい。
In particular, when corrosion resistance is required, the formulation (1) is preferable for any ordinary sintered body and 1-reaction sintered body.

これらの方法において、成形を行なうにはSiC粉末に
、上記粉末を添加し、さらにポリビニールアルコール或
いは有機溶剤に溶解したフェノール樹脂等を加えて混合
し、これを加圧して成形体とする。
In these methods, for molding, the above-mentioned powder is added to SiC powder, a phenol resin dissolved in polyvinyl alcohol or an organic solvent, etc. is added and mixed, and the mixture is pressed to form a molded body.

また、焼結は、上記成形体を無加圧状態、或いはホット
プレス等によって加圧した状態で、1800〜2000
℃に焼成して行なわれる。しかし、形状が複離なものは
、通常無加圧で焼結される。
In addition, sintering is carried out at a temperature of 1,800 to 2,000 with the above-mentioned molded body under no pressure or under pressure using a hot press or the like.
This is done by firing at ℃. However, those with complex shapes are usually sintered without pressure.

上記反応焼結においては、SlとCとが反応してSiC
となり、SiC粉末を焼結させるが、通常Siの一部は
未反応で残留する。その残留量は、耐食性の点から8w
t%以下であることが望ましい。
In the above reaction sintering, Sl and C react to form SiC
As a result, the SiC powder is sintered, but normally some Si remains unreacted. The residual amount is 8w from the viewpoint of corrosion resistance.
It is desirable that it is t% or less.

得られたSiC焼結体は、SiCの含有mがg□wt%
以上で、残部は上記添加成分と不可避不純成分であり、
反応焼結体においては、上記残部に残fBs;が加わる
。また強度上、焼結体の密度は、SiC理論密度の90
%以上で、有する気孔の径は10μ厄以下であることが
望ましい。
The obtained SiC sintered body has a SiC content m of g□wt%
With the above, the remainder is the above added ingredients and unavoidable impurity ingredients,
In the reaction sintered body, the remainder fBs is added to the above remainder. In addition, for strength reasons, the density of the sintered body is 90% of the theoretical density of SiC.
% or more, and the diameter of the pores is preferably 10 μm or less.

また、SiC焼結体と組合わされるステンレス鋼は、J
ISによって規定されているものがいずれも使用出来る
が、ステンレス鋼中のC成分含有量がQ、1wt%以下
、特に0.06wt%以下のものが、低い摩擦係数を示
すので好ましい。
Furthermore, the stainless steel used in combination with the SiC sintered body is J
Any of those specified by IS can be used, but stainless steel with a C component content of Q of 1 wt% or less, particularly 0.06 wt% or less is preferable because it exhibits a low coefficient of friction.

上記SiC焼結体とステンレス鋼とを組合わせた摺動部
材は、油潤滑材を用いることなく低い摩擦係数が得られ
る。特に水潤滑において摩擦係数は極めて低くなり、さ
らにステンレス鋼のC含有量の低いものを選ぶことによ
って、容易にriJ擦係数0.05以下とすることが出
来、僅かの力によって摺動するl!!!初部材が得られ
る。また、SiC焼結体、ステンレス鋼は、共に耐食性
に優れているので、水の代りに腐蝕性液を用いることが
出来る。したがって、腐蝕性液体のポンプの軸受や高性
能で、かつ敏感な応答を要求される各種流量計等の摺動
部材として好適である。
A sliding member made by combining the SiC sintered body and stainless steel can obtain a low coefficient of friction without using an oil lubricant. Particularly in water lubrication, the coefficient of friction becomes extremely low, and by choosing a stainless steel with a low C content, it is easy to reduce the coefficient of friction to less than 0.05. ! ! The first part is obtained. Furthermore, since both the SiC sintered body and stainless steel have excellent corrosion resistance, a corrosive liquid can be used instead of water. Therefore, it is suitable as a bearing for a corrosive liquid pump or a sliding member in various flowmeters that require high performance and sensitive response.

次に実浦例を示して本発明を説明する。Next, the present invention will be explained with reference to a Saneura example.

(実施例1) ステンレス鋼として5tJS  304Lを用い、各種
材料と組合わせて摩擦係数を測定した。11■係数の測
定はリングオンリング法を用い、無潤滑で、荷重:2K
yf、!F?動面の相対速度:0.2m/ Secの条
件で行なった。また、用いたSiC焼結体は、Si C
:97.7wt%、C:1.5wt%。
(Example 1) Using 5tJS 304L as stainless steel, the coefficient of friction was measured in combination with various materials. 11 ■ The coefficient was measured using the ring-on-ring method, without lubrication, and with a load of 2K.
yf,! F? The test was carried out under conditions of relative velocity of moving surface: 0.2 m/Sec. Moreover, the SiC sintered body used was SiC
:97.7wt%, C:1.5wt%.

8:0.3wt%、密度:3.16!?/cm’で、常
圧焼結したものである。測定結果を第1表に示す。
8: 0.3wt%, density: 3.16! ? /cm' and was sintered under normal pressure. The measurement results are shown in Table 1.

第    1    表 第1表より明かなように、SiC焼結体とステンレス鋼
との組合わせの摩擦係数が最も低いことがわかる。
Table 1 As is clear from Table 1, it can be seen that the combination of SiC sintered body and stainless steel has the lowest coefficient of friction.

(実施例2) 炭素成分の含有量が異なる各種ステンレス鋼とSiC焼
結体とをそれぞれ組合わせて摩擦係数を測定した。用い
たSiC焼結体は通常の焼結法(1)の配合で常圧焼結
したSiC分971%の焼結体(以下N5SCという)
、および反応焼結された添加物の配合が上記(1)と同
じで、含有3iが5wt%の反応焼結体(以下RBSC
という)である。摩擦係数の測定は、リングオンリング
法を用い、水潤滑、荷重:5Kgf、)!!!動面の相
対速度:0.2m/secの条件で行なった。結果を第
2表に示す。
(Example 2) The coefficient of friction was measured for each combination of various stainless steels with different carbon component contents and SiC sintered bodies. The SiC sintered body used was a sintered body with a SiC content of 971% (hereinafter referred to as N5SC), which was sintered under normal pressure using the usual sintering method (1).
, and the reaction-sintered additive composition is the same as in (1) above, and the content of 3i is 5 wt% (hereinafter referred to as RBSC).
). The friction coefficient was measured using the ring-on-ring method, water lubrication, load: 5Kgf, )! ! ! The test was conducted under the condition that the relative velocity of the moving surface was 0.2 m/sec. The results are shown in Table 2.

第    2    表 第2表より明らかなように、SiC焼結体とステンレス
鋼とを組合わせた摺動部材を水潤滑した場合のa!擦係
数は小さく、また、ステンレス中のCの含有量が小さい
程、111?ff係数が低下することがわかる。
Table 2 As is clear from Table 2, the a! The coefficient of friction is smaller, and the lower the C content in stainless steel, the lower the coefficient of friction (111?). It can be seen that the ff coefficient decreases.

〔効果〕〔effect〕

以上述べたように、本発明の囲動部材は耐熱性耐食性、
耐摩耗性でしかも熱伝導性の良好なSiC焼結体とステ
ンレス鋼とを組合わせたもので、油潤滑材を用いること
なく低いrM擦係数を示し、特に水潤滑におけるf!A
m係数が極めて低いので、腐蝕性液ポンプの軸受、或い
は各種流m計等に使用される高性能で敏感な応答を必要
とする摺動部材として極めて優れたものである。
As described above, the surrounding member of the present invention has heat resistance, corrosion resistance,
It is a combination of SiC sintered body, which is wear resistant and has good thermal conductivity, and stainless steel, and shows a low rM friction coefficient without using oil lubricant, especially f! in water lubrication. A
Since the m coefficient is extremely low, it is extremely excellent as a sliding member that requires high performance and sensitive response, such as bearings for corrosive liquid pumps or various flowmeters.

Claims (2)

【特許請求の範囲】[Claims] (1)炭化けい素を主成分とする焼結体とステンレス鋼
との組合わせからなることを特徴とする炭化けい素摺動
部材。
(1) A silicon carbide sliding member characterized by being made of a combination of a sintered body containing silicon carbide as a main component and stainless steel.
(2)ステンレス鋼が、炭素成分含有量0.1重量%以
下のステンレス鋼である特許請求の範囲第1項記載の炭
化けい素摺動部材。
(2) The silicon carbide sliding member according to claim 1, wherein the stainless steel has a carbon content of 0.1% by weight or less.
JP733886A 1986-01-17 1986-01-17 Silicon carbide sliding member Pending JPS62167924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP733886A JPS62167924A (en) 1986-01-17 1986-01-17 Silicon carbide sliding member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP733886A JPS62167924A (en) 1986-01-17 1986-01-17 Silicon carbide sliding member

Publications (1)

Publication Number Publication Date
JPS62167924A true JPS62167924A (en) 1987-07-24

Family

ID=11663155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP733886A Pending JPS62167924A (en) 1986-01-17 1986-01-17 Silicon carbide sliding member

Country Status (1)

Country Link
JP (1) JPS62167924A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6073123A (en) * 1983-09-30 1985-04-25 Ebara Corp Combined sliding member

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6073123A (en) * 1983-09-30 1985-04-25 Ebara Corp Combined sliding member

Similar Documents

Publication Publication Date Title
Tjong et al. Abrasive wear behavior of TiB2 particle-reinforced copper matrix composites
JPS58204873A (en) Substantially pore-free polycrystal sintered body comprising alpha-silicon carbide, boron carbide and free carbon and manufacture
Wu et al. Tribological behavior of Ti2SnC particulate reinforced copper matrix composites
US4978645A (en) Silicon nitride sintered body
JPH05221728A (en) Silicon nitride ceramics
Niu et al. Effect of h‐BN addition on friction and wear properties of C/C‐SiC composites fabricated by LSI
JPS62167924A (en) Silicon carbide sliding member
US4720349A (en) Sliding member of graphite-metal borides
Wang et al. Preparation, structural evolution, and performance of heat-resistant organosilicon polymer adhesives for joining SiC ceramics
EP0158473B1 (en) Method for production of sintered article of silicon nitride
JPH0238365A (en) Complex sliding member of high-temperature-reisistant and high-strength graphite base
CN105177386B (en) Oil-free lubricating bearing material and preparation method thereof
JPS6089543A (en) Erosion resistant metal-ceramics composite material
JPH0797256A (en) Sintered body of aluminum oxide base and its production
JPS5826076A (en) Ceramic sintered body and manufacture
Evtushok et al. Tribological properties of composite materials based on refractory titanium compounds
JP2997994B2 (en) Surface hardened coating containing free carbon
SE431639B (en) EXTREMELY HARD COMPOSITION MATERIALS CONTAINING CUBIC BORN NITRID AND A BINDING AGENT
JP2555465B2 (en) Self-lubricating hard material
JP3490978B2 (en) Cluster diamond composite material and manufacturing method thereof
JPS6268835A (en) Ultrahigh-molecular weight polyethylene composition
CN109336615B (en) High-toughness, wear-resistant and friction-reducing sialon-tin composite material
SU380614A1 (en) REFRACTORY MATERIAL
JPH03174362A (en) Silicon carbide-based sliding material
JPS62105956A (en) Silicon carbide base sliding member