JPS62165375A - Amorphous semiconductor solar cell - Google Patents

Amorphous semiconductor solar cell

Info

Publication number
JPS62165375A
JPS62165375A JP61007631A JP763186A JPS62165375A JP S62165375 A JPS62165375 A JP S62165375A JP 61007631 A JP61007631 A JP 61007631A JP 763186 A JP763186 A JP 763186A JP S62165375 A JPS62165375 A JP S62165375A
Authority
JP
Japan
Prior art keywords
layer
type layer
solar cell
type
amorphous semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61007631A
Other languages
Japanese (ja)
Inventor
Yukio Nakajima
行雄 中嶋
Hisao Haku
白玖 久雄
Kaneo Watanabe
渡邉 金雄
Tsugufumi Matsuoka
松岡 継文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP61007631A priority Critical patent/JPS62165375A/en
Publication of JPS62165375A publication Critical patent/JPS62165375A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Abstract

PURPOSE:To obtain a solar battery which has excellent photoelectric conversion characteristics, hardly creates defects and shows little light deterioration by a method wherein, among a P-type layer, an N-type layer and an intermediate layer, at least the intermediate layer is composed of a super-lattice structure and the part of an electron distribution and the part of a positive-hole distribution are spatially separated. CONSTITUTION:A transparent conductive film TCO made of SnO2, ITO or the like is formed on a glass substrate 1 and electric power generated by a solar cell is taken out through the transparent conductive film TCO and a backside electrode 5. A P-type layer 2 is, for instance, composed of a semiconductor layer made of P-type amorphous SiC and an N-type layer 3 is composed of a semiconductor layer made of N-type amorphous Si and an intermediate layer 4 is composed of a doped super-lattice composed of a structure of (P<->-I-N<->-P-I-P<->-...). More concretely, 20-30 cycles of the cycle unit composed of a P<->type layer, an I-type layer, an N<->type layer and an I-type layer whose thicknesses are approximately 50Angstrom each are laminated to form the super-lattice structure. The thickness of each layer can be varied in the range from several angstroms to several hundreds of angstroms and, by controlling those thicknesses and changing the cycle, spatial distance between the distributions of electrons and positive holes can be increased or decreased and the two distributions can be separated.

Description

【発明の詳細な説明】 r a −h to−不!則−分野 本発明は、1)層とN層との間に中間層を介在して光電
効果を生じるように構成した非晶質半導体太陽電池に関
する。
[Detailed Description of the Invention] ra-h to-fu! 1. Field of the Invention The present invention relates to an amorphous semiconductor solar cell constructed to produce a photoelectric effect by interposing an intermediate layer between 1) a layer and an N layer.

従迷9−肢(4i 非晶質半導体太陽電池において、PiとNi0間に存す
る中間層は光が当たると電子、正孔対を発生するもので
、発電動作上非常に重要な機能を果たしている。この中
間層として従来の非晶質半導体寿陽電池は特開昭57−
126175号公報等にみられるように単層構造の夏型
半導体を用いている。
4i In an amorphous semiconductor solar cell, the intermediate layer between Pi and Ni0 generates electron and hole pairs when exposed to light, and plays a very important function in power generation. .The conventional amorphous semiconductor life cell as this intermediate layer was disclosed in Japanese Patent Application Laid-open No. 1983-
As seen in Japanese Patent Application No. 126175, etc., a summer type semiconductor with a single layer structure is used.

発明が”° しようとする間B?= ところで、中間層に夏型半導体を用いると次のような問
題点がある。即ち、夏型半導体のバンドプロファイル図
は第5図に示すように導電帯も価電子帯もフラットであ
るため、光照射によって生成される電子e・・・と正孔
h・・・に空間的な隔たりがなく、再結合しやすいもの
である。電子・正孔対が再結合しやすいと光電変換特性
は低くなるし、更に再結合により1型半導体内に新たに
欠陥が発生し、光劣化を生じるし、また長期にわたって
安定して発電することもできなくなり、信頬性が低いと
いった問題がある。
By the way, when a summer-type semiconductor is used in the intermediate layer, there are the following problems. Namely, the band profile diagram of a summer-type semiconductor shows a conductive band as shown in FIG. Since both the valence band and the valence band are flat, there is no spatial separation between the electrons e... and the holes h... generated by light irradiation, and they are easily recombined. If recombination occurs easily, the photoelectric conversion characteristics will deteriorate, and furthermore, recombination will generate new defects in the type 1 semiconductor, causing photodeterioration, and it will not be possible to generate electricity stably over a long period of time. There is a problem of low gender.

本発明は、このような問題点を解消する有用な非晶質半
導体太陽電池を提供することを目的といしてる。
An object of the present invention is to provide a useful amorphous semiconductor solar cell that solves these problems.

刑1げ1)【夾↓擾す31λ1段 上記目的は、P層、N層、中間層のうち少なくとも中間
層を超格子構造に構成して電子と正孔の分布する場所を
空間的に分離することにより達成される。
The purpose of the above is to spatially separate the locations where electrons and holes are distributed by configuring at least the intermediate layer among the P layer, N layer, and intermediate layer into a superlattice structure. This is achieved by

作  用 超格子構造とは、厚さ数人〜数百人の薄膜を多数積層し
た人工的な周期構造をいい、現在、大別すると組成超格
子とドーピング超格子とがある。
The functional superlattice structure refers to an artificial periodic structure in which a large number of thin films with a thickness of several to hundreds of layers are laminated, and currently, it can be broadly classified into compositional superlattice and doped superlattice.

第4図にドーピング超格子のバンドプロファイル図を示
す。この図において横軸は空間的な距離、縦軸はエネル
ギーを示している。
FIG. 4 shows a band profile diagram of the doped superlattice. In this figure, the horizontal axis represents spatial distance, and the vertical axis represents energy.

ドーピング超格子はこの図に示すように導電帯、価電子
帯が超格子の周期に従って振動的に変化している。この
ドーピング超格子内では電子e・・・と正孔h・・・は
各々エネルギーの低い場所に多く分布するようになる。
As shown in this figure, the conduction band and valence band of the doped superlattice change vibrationally according to the period of the superlattice. In this doped superlattice, electrons e... and holes h... each come to be distributed in large numbers at locations with low energy.

つまり、図に示すように電子e・・・は導電帯のくぼみ
に、正孔h・・・は価電子帯の上の部分に多く分布する
。このため、電子e・・・と正孔h・・・が空間的に分
離されることとなる。電子と正孔の空間的な距Wig 
(平均的な距離)は超格子の周期に依存し、z周期に相
当する距離となる而して、上記のような超格子構造を中
間層において用いると光照射によって生成した電子・正
孔対が空間的に分離されることとなり、電子と正孔の再
結合の確率が減少するので、光電変換効率の向上、光劣
化の原因となる欠陥の発生の減少等、従来の非晶質半導
体太陽電池においてみられた問題点を悉く解消すること
ができる。
That is, as shown in the figure, electrons e... are mostly distributed in the depressions of the conductive band, and holes h... are mostly distributed in the upper part of the valence band. For this reason, electrons e... and holes h... are spatially separated. Spatial distance between electron and hole Wig
(average distance) depends on the period of the superlattice, and is the distance equivalent to the z period.If the above superlattice structure is used in the intermediate layer, the electron-hole pairs generated by light irradiation are spatially separated, reducing the probability of recombination of electrons and holes, which improves photoelectric conversion efficiency and reduces the occurrence of defects that cause photodegradation, compared to conventional amorphous semiconductor solar cells. All problems found in batteries can be solved.

但し、超格子構造は、中間層だけでなく、P層及び/又
はN層にも用いることもできる。P層。
However, the superlattice structure can be used not only for the intermediate layer but also for the P layer and/or the N layer. P layer.

N層においても、光の照射により電子、正孔対が若干体
じるので全ての層を超格子構造とすれば、」−達した作
用が最大限に発揮されることとなる。
Even in the N layer, some pairs of electrons and holes occur due to light irradiation, so if all layers have a superlattice structure, the effect achieved will be maximized.

実施料 第1図は本発明の一実施例としての非晶質太陽電池を模
式的にあられした図であり、1はガラス基板、2はP層
、3はN層、4は中間層、5は裏面電極である。
Figure 1 is a schematic diagram of an amorphous solar cell as an example of the present invention, where 1 is a glass substrate, 2 is a P layer, 3 is an N layer, 4 is an intermediate layer, and 5 is a glass substrate. is the back electrode.

前記ガラス基板1上にはS n 02.  T To等
からなる透明導電膜TCOが形成され、太陽電池にて発
生した電力はこの透明導電膜TCOと裏面電極5を通じ
て取り出される。
On the glass substrate 1, S n 02. A transparent conductive film TCO made of T 2 To or the like is formed, and the power generated in the solar cell is extracted through this transparent conductive film TCO and the back electrode 5 .

1層2は例えばP型のa−8iCからなる半導体層で構
成され、N層3は例えばN型のa−8Iからなる半導体
層で構成されている。
The first layer 2 is composed of a P-type a-8iC semiconductor layer, for example, and the N-layer 3 is composed of an N-type a-8I semiconductor layer, for example.

中間層4は、この実施例では(p”’ i n−p i
 n−・・・)の構造をもったドーピング超格子によっ
て構成されている。具体的には50人程度の層厚を有す
る1層、1層、n一層、1層をもって一周期とし、中間
層全体の厚みが4000〜6000人程度となるよう程
度〜30周期はど繰り返し積層した構造となっている。
In this embodiment, the intermediate layer 4 is (p"' i n-p i
It is composed of a doped superlattice with a structure of n-...). Specifically, 1st layer, 1st layer, n 1st layer, and 1st layer having a layer thickness of about 50 people are considered to be one cycle, and the layers are repeatedly stacked for about 30 cycles so that the thickness of the entire middle layer is about 4000 to 6000 people. It has a similar structure.

各層の厚みは数人から数100人の範囲で可変であり、
この厚みを調節して周期を変えることによって、後述の
ように、電子と正孔の分布する空間的距離を増減するこ
とができる。
The thickness of each layer is variable, ranging from a few people to several hundred people.
By adjusting this thickness and changing the period, the spatial distance over which electrons and holes are distributed can be increased or decreased, as will be described later.

裏面電極5は前記N層3の裏面にjl、Ag。The back electrode 5 is made of jl, Ag on the back surface of the N layer 3.

Ti等の金属を蒸着することによって形成されている。It is formed by vapor depositing a metal such as Ti.

この構造の非晶質半導体太陽電池のバンドプロファイル
図を第2図に示す。図には、中間層4がドーピング超格
子構造をしており、光照射によっ°ζ生成された電子・
正孔対のうち電子e・・・が導電帯のくぼみに、正孔h
・・・が価電子帯の」−の部分に分布して平均してz周
期に相当する距離だけ空間的に分離されている状態があ
られされている。従って、p一層、1層、に層が上記の
ように50人程度の厚みで一周期が200人程程度され
ている部分は、平均100人程程度間的に分離されるこ
とになり、各層の厚みを増して周期を長くすれば空間的
距離が大きくなり、逆に層の厚みを減少させて周期を短
くすれば空間的距離が小さくなることになる。尚、図中
、Fはフェルミレベルである。
A band profile diagram of an amorphous semiconductor solar cell having this structure is shown in FIG. In the figure, the intermediate layer 4 has a doped superlattice structure, and electrons and
Among the hole pairs, the electron e... is placed in the hollow of the conductive band, and the hole h
... are distributed in the ``-'' part of the valence band and are spatially separated by a distance corresponding to the z period on average. Therefore, in the part where the layers are about 50 people thick and about 200 people per cycle as mentioned above, there will be an average of about 100 people separated, and each layer will have about 100 people on average. Increasing the thickness of the layer and lengthening the period will increase the spatial distance, and conversely, decreasing the thickness of the layer and shortening the period will decrease the spatial distance. In addition, in the figure, F is the Fermi level.

上記構成の非晶質半導体太陽電池は例えば次の如くして
製造できる。先ず、透明導電膜の形成されたガラス基板
1をグロー放電用電極を備えた低真空の反応室内に置き
、CH午(10〜50%)、82H,(1%)、5iH
4(残量)を導入して電極間でグロー放電を行う。この
ときのガラス基板1の温度は200℃、電極への高周波
印加パワーは10〜50W1全ガス流量は10〜50 
cc/min、反応圧力は0.3Torrとする。上記
グロー放電を所定時間続けることによりガラス基板1の
透明導電膜TCO上にP型(7)a−3iC(高ドープ
prτ)からなる半導体層2が100〜200人程度形
成さ程度。
The amorphous semiconductor solar cell having the above structure can be manufactured, for example, as follows. First, a glass substrate 1 on which a transparent conductive film was formed was placed in a low-vacuum reaction chamber equipped with a glow discharge electrode, and CH (10 to 50%), 82H, (1%), 5iH
4 (residual amount) is introduced to cause glow discharge between the electrodes. At this time, the temperature of the glass substrate 1 was 200°C, the high frequency power applied to the electrode was 10 to 50 W, and the total gas flow rate was 10 to 50 W.
cc/min, reaction pressure is 0.3 Torr. By continuing the above glow discharge for a predetermined period of time, about 100 to 200 semiconductor layers 2 made of P type (7) a-3iC (highly doped prτ) are formed on the transparent conductive film TCO of the glass substrate 1.

次に、反応室内のガスをB、Hパ’10=0.1ppm
)とSiH,、(残量)に入れ換えた後、上記と同様の
反応条件でp一層を50人程度形成する。続いて、反応
室内をS iH+ (100%)に入れ換えてi層を5
0人程度形成し、更に反応室内をP H3(10〜O,
ippm)とS t H4(残N)に入れ換えてn一層
を50人程度形成する。以下、これをpin−ip−i
 n−i・・・の順に繰り返し、全膜厚が4000〜6
000人になるまで行う。
Next, the gas in the reaction chamber was adjusted to B, Hp'10=0.1ppm.
) and SiH, , (remaining amount), a p layer of about 50 layers is formed under the same reaction conditions as above. Next, the inside of the reaction chamber was replaced with SiH+ (100%) and the i-layer was
Approximately 0 people were formed, and the inside of the reaction chamber was heated to PH3 (10~O,
ippm) and S t H4 (remaining N) to form a single layer of about 50 people. Below, this is pin-ip-i
Repeat in the order of n-i... until the total film thickness is 4000 to 6.
Do this until there are 000 people.

最後に、P H,ガス(1〜5%)と5iH4(残量)
とを反応室内に導入し、n+“のN型半導体層3を30
0〜400人形成し、その裏面にA#、 Ag、Ti等
を蒸着して裏面電極を形成する。
Finally, PH, gas (1-5%) and 5iH4 (remaining amount)
was introduced into the reaction chamber, and the n+" N-type semiconductor layer 3 was
0 to 400 people are formed, and A#, Ag, Ti, etc. are vapor-deposited on the back surface to form a back electrode.

上記の如くして製作された非晶質太陽電池の劣化特性を
第3図に実線で示す。図中、破線で示す劣化特性は従来
の非晶質太陽電池のものである。
The deterioration characteristics of the amorphous solar cell manufactured as described above are shown by the solid line in FIG. In the figure, the deterioration characteristics indicated by the broken line are those of a conventional amorphous solar cell.

尚、上記製造例ではグロー放電法により各層2.3.4
を形成しているが、同様の構造をもつ太陽電池は光CV
D法によって形成できることはいうまでもない。
In the above manufacturing example, each layer 2.3.4 was formed using the glow discharge method.
However, solar cells with a similar structure have a photoCV
Needless to say, it can be formed by the D method.

次に、本発明は中間層4だけでなく、中間層4と2層2
及び/又はN層3を超格子構造とすることもできる。2
層2を超格子構造とする場合の好ましい例は、ガラス基
板の透明導電膜TCO上にpoのa−SiCとp+のa
−3iCを各々25人ずつ3回繰り返し積層した構造で
ある。poのa−3iCは、反応室内にCH,(10〜
50%)。
Next, the present invention applies not only to the intermediate layer 4 but also to the intermediate layer 4 and the second layer 2.
And/or the N layer 3 can also have a superlattice structure. 2
A preferable example of layer 2 having a superlattice structure is to deposit po a-SiC and p+ a-SiC on a transparent conductive film TCO of a glass substrate.
-3iC was repeatedly stacked three times by 25 people each. a-3iC of po has CH, (10~
50%).

BLHt(1%)、5iH4(残量)のガスを導入しく
全流量10〜50 cc/m1n) 、電極間で高周波
のグロー放電を行うことにより形成する。このときのガ
ラス基板温度は200℃、高周波印加パワーは10〜5
0W1反応圧力は0.3Torrとする。一方、りのa
−3iCは、B、 H,を0.01%、残りをS i 
H4として、他はpのa−3iCを形成する場合と同じ
条件にして形成する。p4−f層を形成した後1層を形
成するまでの間に反応室内のガスを完全に入れ換えるこ
と及びグロー放電を切ること等は中間層4をドーピング
超格子構造に構成する場合と同じである。
It is formed by introducing gases of BLHt (1%) and 5iH4 (remaining amount) at a total flow rate of 10 to 50 cc/ml and performing high-frequency glow discharge between the electrodes. At this time, the glass substrate temperature was 200℃, and the high frequency applied power was 10~5
The 0W1 reaction pressure is 0.3 Torr. On the other hand, Rino a
-3iC is B, H, 0.01%, and the rest is Si
H4 is formed under the same conditions as for forming p a-3iC. After forming the p4-f layer and before forming the first layer, the steps such as completely replacing the gas in the reaction chamber and turning off the glow discharge are the same as when forming the intermediate layer 4 into a doped superlattice structure. .

また、N層3を超格子構造にする場合の好ましい例は、
n+fのa−8iとn+のa−3iを各々25人ずつ5
回繰り返し積層した構造である。n+jのa−3iは、
反応室内にP H,(1%)とS i H4(残量)の
ガスを導入しく全流量10〜50cc/m1n) 、電
極間で高周波グロー放電を行うことにより形成する。こ
のときの基板温度、高周波印加パワー、反応圧力等の条
件は既述したp4−fのa−8ICやp+のa−3iC
を形成する場合と同じである。一方、n勧a−3LはP
 H,を0.01%、残りをS i Ht、とし、他は
n+“のa−3lを形成する場合と同じ条件にして形成
する。n“1のa−3ip4″のa−3iCと〆のa−
3iCを形成する場合と同じである。
In addition, a preferable example of a case where the N layer 3 has a superlattice structure is as follows:
25 people each for n+f a-8i and n+ a-3i
It has a structure that is repeatedly laminated. a-3i of n+j is
It is formed by introducing gases of PH, (1%) and S i H4 (remaining amount) into the reaction chamber at a total flow rate of 10 to 50 cc/ml) and performing high frequency glow discharge between the electrodes. The conditions such as substrate temperature, high-frequency applied power, and reaction pressure at this time are as described above for p4-f a-8IC and p+ a-3iC.
The same is true for forming . On the other hand, n-kan a-3L is P
H, is 0.01% and the rest is S i Ht, and the other conditions are the same as when forming a-3l of n+". A-3iC of a-3ip4 of n"1" and a-
This is the same as when forming 3iC.

実験によれば、中間層4と2層2の両方をドーピング超
格子構造とすれば、太陽電池の初期特性が従来の非晶質
半導体太陽電池に比して5〜6%向上するという好結果
が得られた。
Experiments have shown that if both the intermediate layer 4 and the second layer 2 have a doped superlattice structure, the initial characteristics of the solar cell can be improved by 5 to 6% compared to conventional amorphous semiconductor solar cells. was gotten.

上記実施例において、1層2. N層3.中間層4はa
−3iC又はa−3tで構成しているが、これ以外にa
−3iGe、、a−3iNで構成することができる。こ
れらは少しずつ吸収波長がことなるので、目的用途に応
じて適当なものを選択すればよい。a−3iGeやa−
3iNは反応室内に導入する原料ガスの成分が多少異な
るだけで、a−3iCやa−3iと同様にして形成する
ことができる。
In the above embodiment, 1 layer 2. N layer 3. The middle layer 4 is a
-3iC or a-3t, but in addition to this,
-3iGe, , a-3iN. Since these have slightly different absorption wavelengths, an appropriate one can be selected depending on the intended use. a-3iGe and a-
3iN can be formed in the same manner as a-3iC and a-3i, except that the ingredients of the raw material gas introduced into the reaction chamber are slightly different.

また、上記実施例では電子と正孔を空間的に分離する手
段としてドーピング超格子構造を用いているが、組成超
格子構造においてドーピング量を変化させることによっ
て実現することもできることばいうまでもない。
Furthermore, although the above embodiment uses a doped superlattice structure as a means to spatially separate electrons and holes, it goes without saying that this can also be achieved by changing the doping amount in a compositional superlattice structure. .

介贋p菫来 本発明は以上説明した如く構成したので、光照射によっ
て生成された電子、正孔対の再結合する確率が減少する
結果、優れた光電変換特性をもち、また、欠陥が発生し
にくくて光劣化の少ない信頼性の高い頗る有用な非晶質
半導体太陽電池を提供することができる。
Since the present invention is constructed as described above, the probability of recombination of electron and hole pairs generated by light irradiation is reduced, and as a result, it has excellent photoelectric conversion characteristics and is free from defects. It is possible to provide a highly reliable and useful amorphous semiconductor solar cell that is difficult to clean, has little photodeterioration, and is highly reliable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例としての非晶質半導体太陽電
池を示す模式図、第2図は前記太陽電池のバンドプロフ
ァイル図、第3図は前記太陽電池と従来の非晶質半導体
太陽電池との光劣化特性を示す図、第4図はドーピング
超格子構造のバンドプロファイル図、第5図はI型半導
体のバンドプロファイル図である。 2・・・P層、3・・・N層、4・・・中間層特許出願
人  三洋電機株式会社 第2図 第3図 照射晴間(1時間) 第4図
FIG. 1 is a schematic diagram showing an amorphous semiconductor solar cell as an embodiment of the present invention, FIG. 2 is a band profile diagram of the solar cell, and FIG. 3 is a diagram showing the solar cell and a conventional amorphous semiconductor solar cell. FIG. 4 is a band profile diagram of a doped superlattice structure, and FIG. 5 is a band profile diagram of an I-type semiconductor. 2...P layer, 3...N layer, 4...middle layer Patent applicant SANYO Electric Co., Ltd. Figure 2 Figure 3 Irradiation space (1 hour) Figure 4

Claims (6)

【特許請求の範囲】[Claims] (1)P層とN層との間に中間層をはさんだ構造の非晶
質半導体太陽電池において、 前記P層、N層、中間層のうち少なくとも中間層が超格
子構造に構成され、電子と正孔の分布する場所が空間的
に分離されていることを特徴とする非晶質半導体太陽電
池。
(1) In an amorphous semiconductor solar cell having a structure in which an intermediate layer is sandwiched between a P layer and an N layer, at least the intermediate layer among the P layer, N layer, and intermediate layer has a superlattice structure, and An amorphous semiconductor solar cell characterized in that the locations where the and holes are distributed are spatially separated.
(2)超格子構造がドーピング超格子構造であることを
特徴とする特許請求の範囲第(1)項に記載の非晶質半
導体太陽電池。
(2) The amorphous semiconductor solar cell according to claim (1), wherein the superlattice structure is a doped superlattice structure.
(3)ドーピング超格子構造は積層方向に超格子構造に
なっていることを特徴とする特許請求の範囲第(2)項
に記載の非晶質半導体太陽電池。
(3) The amorphous semiconductor solar cell according to claim (2), wherein the doped superlattice structure has a superlattice structure in the stacking direction.
(4)P層、N層、中間層はa−Si、a−SiGe、
a−SiN、a−SiCのいずれかより成るアモルファ
ス半導体であることを特徴とする特許請求の範囲第(1
)項乃至第(3)項のいずれかに記載の非晶質半導体太
陽電池。
(4) P layer, N layer, and intermediate layer are a-Si, a-SiGe,
Claim No. 1, characterized in that it is an amorphous semiconductor made of either a-SiN or a-SiC.
) to (3).
(5)中間層が(p^−in^−ip^−in^−…)
の構造を持ったドーピング超格子で構成されていること
を特徴とする特許請求の範囲第(2)項乃至第(4)項
のいずれかに記載の非晶質半導体太陽電池。
(5) The middle layer is (p^-in^-ip^-in^-…)
The amorphous semiconductor solar cell according to any one of claims (2) to (4), characterized in that it is composed of a doped superlattice having a structure of:
(6)P層及び/又はN層が(p^+^+p^+p^+
^+p^+…)、(n^+^+n^+n^+^+n^+
…)の構造をもつドーピング超格子で構成されているこ
とを特徴とする特許請求の範囲第(1)項乃至第(5)
項のいずれかに記載の非晶質半導体太陽電池。
(6) P layer and/or N layer is (p^+^+p^+p^+
^+p^+…), (n^+^+n^+n^+^+n^+
Claims (1) to (5) characterized in that the device is composed of a doped superlattice having the structure of
2. The amorphous semiconductor solar cell according to any one of the items.
JP61007631A 1986-01-16 1986-01-16 Amorphous semiconductor solar cell Pending JPS62165375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61007631A JPS62165375A (en) 1986-01-16 1986-01-16 Amorphous semiconductor solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61007631A JPS62165375A (en) 1986-01-16 1986-01-16 Amorphous semiconductor solar cell

Publications (1)

Publication Number Publication Date
JPS62165375A true JPS62165375A (en) 1987-07-21

Family

ID=11671176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61007631A Pending JPS62165375A (en) 1986-01-16 1986-01-16 Amorphous semiconductor solar cell

Country Status (1)

Country Link
JP (1) JPS62165375A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60100424A (en) * 1983-10-06 1985-06-04 エクソン リサ−チ アンド エンジニアリング カンパニ− Doping method and its application
JPS60100485A (en) * 1983-10-06 1985-06-04 エクソン リサ−チ アンド エンジニアリング カンパニ− Semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60100424A (en) * 1983-10-06 1985-06-04 エクソン リサ−チ アンド エンジニアリング カンパニ− Doping method and its application
JPS60100485A (en) * 1983-10-06 1985-06-04 エクソン リサ−チ アンド エンジニアリング カンパニ− Semiconductor device

Similar Documents

Publication Publication Date Title
US5913986A (en) Photovoltaic element having a specific doped layer
US7671271B2 (en) Thin film solar cell and its fabrication process
US8648251B2 (en) Tandem thin-film silicon solar cell and method for manufacturing the same
JP4208281B2 (en) Multilayer photovoltaic device
EP0523919B1 (en) Multijunction photovoltaic device and fabrication method
JP2999280B2 (en) Photovoltaic element
JP2006080557A (en) Improved stabilizing properties of amorphous silicon series element manufactured by high hydrogen dilution low temperature plasma vapor deposition
US4398054A (en) Compensated amorphous silicon solar cell incorporating an insulating layer
US5419783A (en) Photovoltaic device and manufacturing method therefor
US5104455A (en) Amorphous semiconductor solar cell
US4799968A (en) Photovoltaic device
JPH05299677A (en) Solar battery and its manufacture
US7122736B2 (en) Method and apparatus for fabricating a thin-film solar cell utilizing a hot wire chemical vapor deposition technique
JPS6225275B2 (en)
JP5770294B2 (en) Photoelectric conversion device and manufacturing method thereof
JPS62165375A (en) Amorphous semiconductor solar cell
TWI483405B (en) Photovoltaic cell and method of manufacturing a photovoltaic cell
JPH0823114A (en) Solar cell
JP2009076742A (en) Photovoltaic element, and manufacturing method thereof
JP2632740B2 (en) Amorphous semiconductor solar cell
JPS62256481A (en) Semiconductor device
JP2918815B2 (en) Photovoltaic element and method for manufacturing the same
JP3659511B2 (en) Photovoltaic element
TWI511309B (en) Tandem type thin film silicon solar cell with double layer cell structure
JP2757896B2 (en) Photovoltaic device