JPS6216513B2 - - Google Patents

Info

Publication number
JPS6216513B2
JPS6216513B2 JP55003513A JP351380A JPS6216513B2 JP S6216513 B2 JPS6216513 B2 JP S6216513B2 JP 55003513 A JP55003513 A JP 55003513A JP 351380 A JP351380 A JP 351380A JP S6216513 B2 JPS6216513 B2 JP S6216513B2
Authority
JP
Japan
Prior art keywords
electrolyte
potassium titanate
electrolyte body
fuel cell
carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55003513A
Other languages
Japanese (ja)
Other versions
JPS56102083A (en
Inventor
Masahito Takeuchi
Shinpei Matsuda
Hideo Okada
Fumito Nakajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP351380A priority Critical patent/JPS56102083A/en
Publication of JPS56102083A publication Critical patent/JPS56102083A/en
Publication of JPS6216513B2 publication Critical patent/JPS6216513B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • H01M8/0295Matrices for immobilising electrolyte melts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 本発明はイオン電導性の溶融炭酸塩を電解質と
して含む燃料電池に係り、特にアルカリ炭酸塩電
解質を保持してなる構造体(以下、電解質体と言
う)に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fuel cell containing an ionically conductive molten carbonate as an electrolyte, and particularly to a structure (hereinafter referred to as an electrolyte body) containing an alkali carbonate electrolyte.

燃料電池はアノード、カソード及びその両電極
間に置かれる電解質よりなり、燃料及び酸化剤を
それぞれアノード側及びカソード側に供給するこ
とにより、両電極対における酸化、還元反応によ
つて生じた化学エネルギーが直接電気エネルギー
に変換される効率のよい発電装置である。
A fuel cell consists of an anode, a cathode, and an electrolyte placed between the two electrodes, and by supplying fuel and an oxidant to the anode and cathode sides, respectively, the chemical energy generated by the oxidation and reduction reactions at both electrode pairs is released. It is an efficient power generation device that directly converts energy into electrical energy.

燃料電池における電気化学的反応は電極と電解
質と反応ガスとより形成される三相界面において
進行するため、電気化学的反応や容易に進行でき
る良好な三相界面の状態を形成し、維持できるよ
うに電解質板や電極を改善する努力が払われてき
た。本発明は電解質板の改善に関する。
Since electrochemical reactions in fuel cells proceed at the three-phase interface formed by the electrode, electrolyte, and reactant gas, it is necessary to form and maintain a good three-phase interface condition that allows the electrochemical reaction to proceed easily. Efforts have been made to improve electrolyte plates and electrodes. The present invention relates to improvements in electrolyte plates.

リチウム、ナトリウム、カリウムのごときアル
カリ金属の炭酸塩は高温に加熱すると溶融してイ
オン電導性が高くなるので、高温型(500〜800
℃)溶融炭酸塩燃料電池が注目されてその開発が
進められている。その電気化学的反応は次式のご
とく進行し、イオン電導は炭酸イオンによつて行
われる。
When carbonates of alkali metals such as lithium, sodium, and potassium are heated to high temperatures, they melt and become highly ionic conductive.
℃) Molten carbonate fuel cells are attracting attention and their development is progressing. The electrochemical reaction proceeds as shown in the following equation, and ionic conduction is performed by carbonate ions.

アノード:H2+CO3 2-→H2O+CO2+2e- カソード:1/2O2+CO2+2e-→CO3 2- 電解質は一般にマトリツクス型あるいはペース
ト型の電解質体に成形され、該電解質体の両側に
アノード及びカソード電極を設置して電池を構成
し、高温状態で燃料及び酸化剤を供給して燃料電
池を作動させる。ここで、マトリツクス型電解質
体とは多孔質セラミツク焼結体に電解質を含浸さ
せたものであり、ペースト型電解質体とはアルカ
リ炭酸塩と微粉状耐火性物質との混合物を成形し
た構造体である。
Anode: H 2 +CO 3 2- →H 2 O+CO 2 + 2e -Cathode: 1/2O 2 +CO 2 +2e - →CO 3 2- The electrolyte is generally formed into a matrix-type or paste-type electrolyte body, and the electrolyte body is formed on both sides of the electrolyte body. Anode and cathode electrodes are installed in the fuel cell to form a cell, and fuel and oxidizer are supplied at high temperature to operate the fuel cell. Here, the matrix type electrolyte body is a porous ceramic sintered body impregnated with an electrolyte, and the paste type electrolyte body is a structure formed by molding a mixture of an alkali carbonate and a finely powdered refractory material. .

マトリツクス型電解質体としては1200〜1400℃
で予備焼成したマグネシアを粉砕したのち、多孔
度20〜55%程度の焼結体を作り、これにアルカリ
炭酸塩電解質を溶融状態で含浸するものが一般的
によく知られている。
1200-1400℃ for matrix type electrolyte body
It is generally well known to pulverize pre-fired magnesia, create a sintered body with a porosity of about 20 to 55%, and impregnate this with an alkali carbonate electrolyte in a molten state.

また、ペースト型電解質体としてはアルカリ炭
酸塩とマグネシア、アルミナ、ジルコニアなどの
耐火性物質を混合、熱処理した後、ミクロンオー
ダに微粉砕し、これを加圧成形したものがよく知
られている。
Furthermore, as a paste-type electrolyte body, it is well known that an alkali carbonate and a refractory substance such as magnesia, alumina, or zirconia are mixed, heat treated, then finely pulverized to the micron order, and then pressure molded.

上述のごとき電解質体を用いて電池を構成した
場合、マトリツクス型電解質体ではマトリツクス
の焼結過程において起こる焼結体のそり、うねり
を完全に抑えたものを製作することがなかなか難
かしいために、該電解質体と電極との密着性は必
ずしも良好でなく、好ましい三相界面を形成し難
い。また、該電解質体はアノード及びカソード両
電極によりはさんで電池を構成する段階で応々に
して破損してしまう。仮に、電池を構成すること
ができたとしても、燃料電池の運転、停止に伴う
熱サイクルによつて該電解質体にクラツクが生
じ、燃料と酸化剤が直接接触(クロスオーバ)し
てしまい、電池出力の低下もしくは爆発の危険性
を生じるという問題点がある。
When constructing a battery using the electrolyte body as described above, it is difficult to manufacture a matrix type electrolyte body that completely suppresses the warpage and waviness of the sintered body that occurs during the sintering process of the matrix. The adhesion between the electrolyte body and the electrode is not necessarily good, and it is difficult to form a preferable three-phase interface. Further, the electrolyte body is often damaged during the stage of constructing a battery by being sandwiched between the anode and cathode electrodes. Even if a battery could be constructed, cracks would occur in the electrolyte body due to the thermal cycles associated with the operation and shutdown of the fuel cell, resulting in direct contact (crossover) between the fuel and the oxidizer, and the battery would fail. There is a problem that the output may be reduced or there may be a risk of explosion.

一方、ペースト型電解質体ではマトリツクス型
にくらべて電極との密着性は改善されるが、機械
的強度の点では完全なものと言えず、長時間の運
転により溶融炭酸塩で耐火性物質が侵蝕されて電
解質の保持能力が低下する場合が多く、また熱サ
イクルによるクラツクの発生を皆無にすることが
できない。
On the other hand, although paste-type electrolytes have improved adhesion with electrodes compared to matrix-type electrolytes, they cannot be said to be perfect in terms of mechanical strength, and molten carbonates corrode refractory materials during long-term operation. This often results in a decrease in electrolyte retention ability, and it is impossible to completely eliminate cracks caused by thermal cycling.

高い電池出力を得るためには電解質体の内部抵
抗を極力小さくする必要があり、そのためには電
解質の保持能力が高く、かつ薄板状電解質体を形
成しても十分なる機械的強度を有する電解質体が
望まれる。
In order to obtain high battery output, it is necessary to minimize the internal resistance of the electrolyte body, and for this purpose, the electrolyte body must have a high electrolyte retention capacity and sufficient mechanical strength even when formed into a thin plate-like electrolyte body. is desired.

本発明の目的は優れた電解質保持能力を有し、
かつ機械的強度の大なる溶融炭酸塩型燃料電池用
電解質体を提供するにある。
The purpose of the present invention is to have excellent electrolyte retention ability,
Another object of the present invention is to provide an electrolyte body for a molten carbonate fuel cell that has high mechanical strength.

本発明は繊維状チタン酸カリウムを電解質保持
材として用いることにより、腐食性アルカリ炭酸
塩との長時間の接触においても高強度の均質な電
解質体を得ることを可能にしたものであり、頻繁
な熱サイクルを経験してもクラツクを発生するこ
となく長期間安定に使用し得る電解質体を提供す
る。
By using fibrous potassium titanate as an electrolyte holding material, the present invention makes it possible to obtain a homogeneous electrolyte body with high strength even in long-term contact with corrosive alkali carbonates. To provide an electrolyte body that can be stably used for a long period of time without causing cracks even when subjected to heat cycles.

更に本発明の電解質体は電解質の保持能力が優
れており電解質含有量を高めることができ、また
繊維状チタン酸カリウムに起因して曲げ強度も優
れているため、電池を構成する際の電極との密着
性を改善することができ、良好な三相界面を形成
して高い電池出力を達成することができる。
Furthermore, the electrolyte body of the present invention has excellent electrolyte retention ability and can increase the electrolyte content, and also has excellent bending strength due to the fibrous potassium titanate, so it is suitable for use as an electrode when constructing a battery. It is possible to improve the adhesion of the cells, form a good three-phase interface, and achieve high battery output.

チタン酸カリウム(K2O・nTiO2)はK2CO3
はKOHとTiO2を反応させて作ることができる
が、出発原料のK2O/TiO2混合比、反応温度あ
るいはその製造法などによりnの異なる種々のチ
タン酸カリウムが得られる。通常、チタン酸カリ
ウム(K2TiO3)あるいは2チタン酸カリウム
(K2Ti2O5)がよく知られているが、近年繊維状チ
タン酸カリウム合成法が進歩して繊維長が数ミリ
のものも得られるようになつてきた。本発明者ら
はこの繊維状チタン酸カリウムに着目して検討し
た結果、本発明の電解質体を提供するに至つた。
Potassium titanate (K 2 O・nTiO 2 ) can be made by reacting K 2 CO 3 or KOH with TiO 2 , but the starting material K 2 O/TiO 2 mixing ratio, reaction temperature, manufacturing method, etc. Various potassium titanates with different n can be obtained. Usually, potassium titanate (K 2 TiO 3 ) or potassium dititanate (K 2 Ti 2 O 5 ) is well known, but in recent years advances in fibrous potassium titanate synthesis methods have made it possible to produce fibers with a length of several millimeters. I've started getting things. The present inventors focused their studies on this fibrous potassium titanate, and as a result, they were able to provide the electrolyte body of the present invention.

繊維状チタン酸カリウムはn≧4で得られ、代
表的なものは4チタン酸カリウムおよび6チタン
酸カリウムであり、耐熱性、耐薬品性に優れてい
る。
Fibrous potassium titanate can be obtained when n≧4, and typical potassium titanates are potassium tetratitanate and potassium hexatitanate, which have excellent heat resistance and chemical resistance.

繊維状チタン酸カリウムを用いてアルカリ炭酸
塩電解質体を製造するには種々の方法が用いられ
てよいが、その代表的な一例を下記に示す。
Various methods may be used to produce an alkali carbonate electrolyte body using fibrous potassium titanate, and a typical example thereof is shown below.

リチウム、ナトリウム、カリウムなどアルカリ
金属の炭酸塩と繊維状チタン酸カリウムの所定量
をライカイ機もしくは混練機などにより十分に混
練したのち、その混合物を所定の厚さ及び密度を
与えるようにホツトプレス法により成形する。
After thoroughly kneading a carbonate of an alkali metal such as lithium, sodium, or potassium and a predetermined amount of fibrous potassium titanate using a laikai machine or a kneader, the mixture is heated to a predetermined thickness and density using a hot pressing method. Shape.

アルカリ炭酸塩は単独もしくは混合物として電
解質に供し得るが、混合炭酸塩の場合にはその融
点が約400℃まで下がるケースもあり、作動温度
を低くできる点で2種もしくは3種の混合アルカ
リ炭酸塩を用いるのが望ましい。
Alkaline carbonates can be used alone or as a mixture in the electrolyte, but in the case of mixed carbonates, the melting point can be as low as about 400°C, so two or three types of mixed alkali carbonates are recommended in order to lower the operating temperature. It is preferable to use

繊維状チタン酸カリウムの添加量はなるべく少
ない方が電解質体の内部抵抗を低く維持する点か
ら好ましいが、電解質体の機械的強度を保つため
に繊維状チタン酸カリウムは30〜60重量%、アル
カリ炭酸塩電解質は70〜40重量%で存在するのが
好ましい。成形は通常0.2〜2ton/cm2の圧力範囲
で実施する。ホツトプレス法の場合の加熱温度は
アルカリ炭酸塩電解質の融点によつても異なる
が、通常300〜650℃の範囲で実施される。好まし
い加熱温度はアルカリ炭酸塩の軟化する温度付近
である。
It is preferable that the amount of fibrous potassium titanate added be as small as possible in order to maintain the internal resistance of the electrolyte body at a low level. Preferably, the carbonate electrolyte is present at 70-40% by weight. Molding is usually carried out in a pressure range of 0.2 to 2 ton/cm 2 . The heating temperature in the hot press method varies depending on the melting point of the alkali carbonate electrolyte, but is usually carried out in the range of 300 to 650°C. A preferred heating temperature is around the temperature at which the alkali carbonate softens.

繊維状チタン酸カリウムを電解質保持材として
単独に用いる以外に、粉末状のチタニアおよび/
又はチタン酸カリウムあるいはマグネシア、アル
ミナ、ジルコニアなどの耐火性物質と混合して用
いる場合にもよい結果を得る。これらの耐火性物
質が多すぎると熱サイクルによつてクラツクを発
生しやすくなるが、繊維状チタン酸カリウムの50
重量%までが上記耐火性物質によつて置きかえら
れる場合には電解質の保持能力はより優れたもの
になる。
In addition to using fibrous potassium titanate alone as an electrolyte holding material, powdered titania and/or
Alternatively, good results can be obtained when used in combination with potassium titanate or a refractory material such as magnesia, alumina, or zirconia. Too much of these refractory substances can easily cause cracks due to heat cycles, but fibrous potassium titanate with 50%
The electrolyte retention capacity becomes better if up to % by weight is replaced by the refractory material mentioned above.

本発明になるアルカリ炭酸塩電解質体を製造す
る方法の他の一例を下記に示す。
Another example of the method for producing the alkali carbonate electrolyte body according to the present invention is shown below.

アルカリ金属炭酸塩と繊維状チタン酸カリウム
(n=4〜6)および粉末状チタン酸カリウム
(n<4、通常1又は2)の所定量をライカイ機
もしくは混練機などにより十分に湿式混練したの
ち、押出成形法により薄板状(厚さ1〜2mm)に
成形し、乾燥、焼成工程を経て板状電解質体を得
る。
After sufficiently wet kneading a predetermined amount of alkali metal carbonate, fibrous potassium titanate (n = 4 to 6), and powdered potassium titanate (n < 4, usually 1 or 2) using a Laikai machine or a kneader, etc. The electrolyte body is formed into a thin plate (1 to 2 mm thick) by an extrusion method, and then subjected to drying and firing steps to obtain a plate-shaped electrolyte body.

原料配合、混練、押出成形、切断、乾燥、焼成
の各工程を連続化してアルカリ炭酸塩電解質体を
量産化することも可能である。
It is also possible to mass-produce an alkali carbonate electrolyte body by serializing the steps of raw material blending, kneading, extrusion molding, cutting, drying, and firing.

以下、実施例を挙げて本発明の内容を更に具体
的に説明する。
Hereinafter, the content of the present invention will be explained in more detail with reference to Examples.

実施例 1 320gの繊維状6チタン酸カリウム無水物
(K2O・6TiO2)、240gの無水炭酸リチウム
(Li2CO3)および240gの無水炭酸カリウム
(K2CO3)を混練機により2時間湿式混練したの
ち、140℃で3時間乾燥した。これを粉砕機で60
メツシユパスに粉砕、整粒したのち、400℃、
1ton/cm2の条件でホツトプレスして厚さ1mm、10
cm径のアルカリ炭酸塩電解質体を得た。
Example 1 320 g of fibrous potassium hexatitanate anhydride (K 2 O.6TiO 2 ), 240 g of anhydrous lithium carbonate (Li 2 CO 3 ), and 240 g of anhydrous potassium carbonate (K 2 CO 3 ) were mixed in a kneader. After wet kneading for an hour, the mixture was dried at 140°C for 3 hours. 60 milliliter of this in a crusher
After pulverizing and grading in mesh pass, 400℃,
Hot pressed at 1 ton/cm 2 to a thickness of 1 mm, 10
An alkali carbonate electrolyte body with a diameter of cm was obtained.

実施例 2 120gの繊維状6チタン酸カリウム無水物
(K2O・6H2O)、120gの粉末状チタン酸カリウム
無水物(K2TiO3)、280gの無水炭酸リチウム
(Li2CO3)および280gの無水炭酸カリウム
(K2CO3)を混練機により2時間湿式混練したの
ち、140℃で3時間乾燥した。これを粉砕機で100
メツシユパスに粉砕、整粒したのち、400℃、
0.5ton/cm2の条件でホツトプレスして厚さ2mm、
10cm径のアルカル炭酸塩電解質体を得た。
Example 2 120 g of fibrous potassium hexatitanate anhydride (K 2 O.6H 2 O), 120 g of powdered potassium titanate anhydride (K 2 TiO 3 ), 280 g of anhydrous lithium carbonate (Li 2 CO 3 ) and 280 g of anhydrous potassium carbonate (K 2 CO 3 ) were wet-kneaded in a kneader for 2 hours, and then dried at 140° C. for 3 hours. Grind this to 100
After pulverizing and grading in mesh pass, 400℃,
Hot pressed at 0.5ton/ cm2 to a thickness of 2mm.
An alkali carbonate electrolyte body with a diameter of 10 cm was obtained.

比較例 1 1300℃で予備焼成したマグネシア(MgO)粉
末240gに280gの無水炭酸リチウムおよび280g
の無水炭酸カリウムを加え、以下実施例2の同様
の方法、条件にて厚さ2mm、10cm径のアルカリ炭
酸塩電解質体を得た。
Comparative Example 1 240g of magnesia (MgO) powder pre-calcined at 1300℃, 280g of anhydrous lithium carbonate and 280g
An alkali carbonate electrolyte body having a thickness of 2 mm and a diameter of 10 cm was obtained using the same method and conditions as in Example 2.

実施例 3 実施例1、実施例2および比較例1で得られた
アルカリ炭酸塩電解質体を電気炉内に設置し、常
温から700℃まで昇温して3時間保ち、次に100℃
まで放冷し、この操作を3度くりかえした。
Example 3 The alkali carbonate electrolyte bodies obtained in Example 1, Example 2, and Comparative Example 1 were placed in an electric furnace, heated from room temperature to 700°C, kept for 3 hours, and then heated to 100°C.
This operation was repeated three times.

実施例1および実施例2の電解質体ではクラツ
クも発生せず、変形も認められなかつたが、比較
例1で得られた電解質体はクラツクが発生し、ま
たアルカリ電解質が溶融して成形体が崩壊する現
象が観察された。
In the electrolyte bodies of Examples 1 and 2, no cracks occurred and no deformation was observed, but in the electrolyte body obtained in Comparative Example 1, cracks occurred and the alkaline electrolyte melted, resulting in a molded body. A phenomenon of collapse was observed.

Claims (1)

【特許請求の範囲】 1 アルカリ炭酸塩を電解質とする燃料電池にお
いて、該電解質が繊維状チタン酸カリウムを保持
材として保持されていることを特徴とする溶融炭
酸塩型燃料電池。 2 特許請求の範囲第1項記載の燃料電池におい
て、繊維状チタン酸カリウムが30〜60重量%で、
アルカリ炭酸塩が70〜40重量%で存在する電解質
保持構造体を用いることを特徴とする溶融炭酸塩
型燃料電池。 3 特許請求の範囲第1項または第2項記載の燃
料電池において、電解質保持材が繊維状チタン酸
カリウムと粉末状チタン酸カリウムの混合物であ
り、その50重量%以上が繊維状チタン酸カリウム
であることを特徴とする溶融炭酸塩型燃料電池。 4 特許請求の範囲第1項または第2項記載の燃
料電池において、繊維状チタン酸カリウムが4な
いし6チタン酸カリウムであることを特徴とする
溶融炭酸塩型燃料電池。 5 特許請求の範囲第1項または第2項記載の燃
料電池において、繊維状チタン酸カリウムが6チ
タン酸カリウムであることを特徴とする溶融炭酸
塩型燃料電池。
[Scope of Claims] 1. A molten carbonate fuel cell using an alkali carbonate as an electrolyte, characterized in that the electrolyte is held using fibrous potassium titanate as a holding material. 2. In the fuel cell according to claim 1, the fibrous potassium titanate is 30 to 60% by weight,
A molten carbonate fuel cell characterized in that it uses an electrolyte holding structure in which an alkali carbonate is present in an amount of 70 to 40% by weight. 3. In the fuel cell according to claim 1 or 2, the electrolyte holding material is a mixture of fibrous potassium titanate and powdered potassium titanate, of which 50% by weight or more is fibrous potassium titanate. A molten carbonate fuel cell characterized by: 4. The molten carbonate fuel cell according to claim 1 or 2, wherein the fibrous potassium titanate is potassium 4- to 6-titanate. 5. The molten carbonate fuel cell according to claim 1 or 2, wherein the fibrous potassium titanate is potassium hexatitanate.
JP351380A 1980-01-18 1980-01-18 Molten-carbonate fuel cell Granted JPS56102083A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP351380A JPS56102083A (en) 1980-01-18 1980-01-18 Molten-carbonate fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP351380A JPS56102083A (en) 1980-01-18 1980-01-18 Molten-carbonate fuel cell

Publications (2)

Publication Number Publication Date
JPS56102083A JPS56102083A (en) 1981-08-15
JPS6216513B2 true JPS6216513B2 (en) 1987-04-13

Family

ID=11559435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP351380A Granted JPS56102083A (en) 1980-01-18 1980-01-18 Molten-carbonate fuel cell

Country Status (1)

Country Link
JP (1) JPS56102083A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59203371A (en) * 1983-05-04 1984-11-17 Matsushita Electric Ind Co Ltd Molten salt fuel cell
JPS60101876A (en) * 1983-11-08 1985-06-05 Agency Of Ind Science & Technol Manufacture method of fused carbonate salts type fuel cell

Also Published As

Publication number Publication date
JPS56102083A (en) 1981-08-15

Similar Documents

Publication Publication Date Title
US6254844B1 (en) Method for production of sintered lithium titaniumphosphate and sintered pellets obtained by the method
US3120456A (en) Fuel cell electrolyte
JPS6322023B2 (en)
CA1187135A (en) Fuel cell
JPH0746610B2 (en) Molten carbonate fuel cell positive electrode and method for producing the same
JPS60101876A (en) Manufacture method of fused carbonate salts type fuel cell
US4656735A (en) Process for producing an electrolyte retaining matrix of electrical insulating long fibers
JPS6216513B2 (en)
US3350230A (en) Fuel cell having solid stabilized zirconium oxide electrolyte
US3565691A (en) High energy density silver oxide-hydrogen battery
JPH0261095B2 (en)
JP2001043892A (en) Lithium battery
JPS58119161A (en) Manufacture of electrode for fused salt fuel battery
JPH04192261A (en) Fuel electrode and its manufacture for solid electrolyte type fuel cell
JPH0412591B2 (en)
JPS6343266A (en) Manufacture of electrolyte plate for molten carbonate fuel cell
WO2023079892A1 (en) Oxide ion–conducting solid electrolyte
WO2023079910A1 (en) Oxide ion–conducting solid electrolyte
JP2011222131A (en) Method of manufacturing lithium-ion secondary battery, lithium-ion secondary battery and lithium-ion secondary battery precursor
JP3311872B2 (en) Conductive ceramics
JPH07326364A (en) Fuel electrode for fuel cell using solid electrolyte
JPS6035468A (en) Electrolyte matrix for fuel cell
JPH0520866B2 (en)
JPH06290792A (en) Manufacture of electrode for molten carbonate fuel cell
JPH0350387B2 (en)