JPS6216184B2 - - Google Patents

Info

Publication number
JPS6216184B2
JPS6216184B2 JP56140518A JP14051881A JPS6216184B2 JP S6216184 B2 JPS6216184 B2 JP S6216184B2 JP 56140518 A JP56140518 A JP 56140518A JP 14051881 A JP14051881 A JP 14051881A JP S6216184 B2 JPS6216184 B2 JP S6216184B2
Authority
JP
Japan
Prior art keywords
metal
ceramic
composite structure
sintered
relative density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56140518A
Other languages
Japanese (ja)
Other versions
JPS5841778A (en
Inventor
Jiro Ichikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP14051881A priority Critical patent/JPS5841778A/en
Publication of JPS5841778A publication Critical patent/JPS5841778A/en
Publication of JPS6216184B2 publication Critical patent/JPS6216184B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

発明の目的 〔産業上の利用分野〕 本発明は、セラミツクスと金属との複合構造体
に関する。 〔従来の技術〕 セラミツクスは、その耐熱性、高剛性、耐摩耗
性あるいは耐食性などの点で、在来の金属材料を
超えたすぐれた特性を有するため、構造用材料と
しての使用が広い分野で試みられるようになつて
きた。 実際にセラミツクスを構造用材料として使用す
るに当つては、ある構造全体をセラミツクスでつ
くることは少なく、金属と複合することが多い。 このようなセラミツクス部材と金属部材との複
合構造体における最大の問題は、温度の変化に伴
つて両部材の熱膨脹係数の差により生じる応力
や、内外部から機械的に加えられた応力でセラミ
ツクス部材が破損することである。金属部材は弾
性変形をして応力集中が避けられるのに対し、セ
ラミツクスは高剛性のため応力が集中して破損し
やすい。 セラミツクスの破損を防ぐ対策としては、セラ
ミツクス部材に加わる力を金属部材で十分に分散
できるような設計をするか、またはセラミツクス
部材と金属部材との間に緩衝層を設けることが考
えられる。 この観点からのセラミツクス―金属複合構造体
の構成についての具体的提案としては、つぎのよ
うな技術が挙げられる。すなわち、セラミツクス
製タービンブレードと金属製デイスクの組み合わ
せに当つて植込部に被覆層を設けること(特開昭
49―37009号)、金属板上に密度の低い金属パツド
を接合した上に黒鉛などの犠牲材と不活性セラミ
ツクス材との混合物をプラズマ噴霧し、犠牲材を
除去するという手法(特開昭54―108816号公
報)、あるいは、金属基質上に金属ワイヤからな
る多孔性パツドを接合し、MCr Al Y型の材料
をプラズマスプレー法により含浸した上にセラミ
ツクス表面被覆材を付着させるという手法(特開
昭55―154587号公報)である。 これら既知の技術は、プラズマの使用を必要と
したり、特定の材質でなければ適用できなかつた
りして、普遍性に乏しい。複合構造体の形状も、
当然に制約がある。 〔発明が解決しようとする問題点〕 本発明の目的は、上記した技術の現状を打開し
て、任意のセラミツクスと任意の金属とを複合
し、任意の形状をもつた構造体を提供することに
ある。 発明の構成 〔問題点を解決するための手段〕 本発明のセラミツクス―金属複合構造体の基本
的なタイプは、セラミツクス部材と金属部材とを
機械的に接合することにより構成した複合構造体
であつて、金属部材が金属粉末を焼結して相対密
度94%以下の焼結材としたものであることを特徴
とする。 金属部材は、セラミツクス部材と接している部
分が上記相対密度をもつ焼結金属であればよく、
全体がこの焼結金属である必要はない。 従つて本発明のセラミツクス―金属複合構造体
の第二のタイプは、セラミツクス部材と金属部材
とを機械的に接合することにより構成した複合構
造体であつて、金属部材が相対密度94%以下の焼
結材と相対密度94%超過の焼結材および(また
は)溶製材とからなり、相対密度94%以下の焼結
材の部分においてセラミツクス部材と接触してい
ることを特徴とする。 上記いずれのタイプにおいても、セラミツクス
部材と金属部材との間の機械的接合は、多くの手
法が採用できる。代表的なものは、ボルト締め、
圧入、焼きばめなどである。金属部材が2種以上
のものからなる場合、それら2種を接合する手法
は任意であつて、上記した機械的接合法すなわち
ボルト締め、圧入、焼きばめのほか、接着、溶
接、圧接、拡散接合など、既知の方法から選択す
ればよい。 本発明の複合構造体において、相対密度94%以
下の焼結材の厚さは、セラミツクス部材の厚さの
ほぼ1/2以上あることが好ましい。 〔作用〕 一般に焼結金属は、同じ組成の溶製金属にくら
べてヤング率が低く、小さな応力でも大きな変形
を起すことが知られている。これを利用すれば、
セラミツクス部材への応力の集中を避けることが
できる、という着想が、本発明の基礎である。 焼結金属のこの特徴は、その相対密度が高くな
り、機械的特性が溶製金属に近くなるにつれて失
なわれてゆく。種々の相対密度の焼結金属をセラ
ミツクスと組み合わせて試験したところ、上記の
効果は相対密度94%付近で顕著な臨界性を有し、
これ以下の相対密度の焼結金属部材はセラミツク
ス部材を破損させること少なく、一方、この限界
を超える相対密度の焼結金属部材を用いたときに
は、セラミツクスへの応力集中が、しばしばそれ
を破損する程度に至ることが見出された。 さらにこの相対密度の限界は、金属の種類にか
かわらずほぼ同じ、上記94%付近にあることも判
明した。これは、焼結金属としての特徴は主とし
てその気孔率によつて支配され、金属の物性その
ものによつて決定されるわけではないからと考え
られる。 このように、相対密度94%以下の焼結金属部材
が複合構造体における緩衝層としての役割を果
し、セラミツクスと金属との特性をあわせもつ構
造体が得られる。 従つて、相対密度94%以下の焼結材の厚さは、
セラミツクス部材の厚さに対して十分なものとな
るよう、選ぶべきである。必要な厚さは、複合構
造体の形状や大きさ、とくにセラミツクス部材の
それら、焼結金属の相対密度および発生する応力
の程度などで異なるが、多くの場合、前記したよ
うにセラミツクス部材の厚さの少なくとも1/2あ
ればよいことが、実験の結果明らかになつた。 〔実施例 1〕 内径10mm×外径30mm×高さ10mmのSi3N4普通焼
結体リングを、厚さ10mm×内径30mm×外径50mmの
SUS410焼結体(相対密度90%)リングに圧入し
て、第1図に示す構成の二重リングを製作した。 これを、大気中500℃の炉に15分間保持し直ち
に水中(約25℃)に投入して2分間おき、再び炉
内に戻すという加熱―冷却サイクル試験に供し
た。 比較のため、SUS410の上記と同じ形状である
が本発明に従わない材料からなるリングを用いた
二重リングをもつくり、同じ熱サイクル試験を行
なつた。 その結果は次のとおりである。
OBJECT OF THE INVENTION [Field of Industrial Application] The present invention relates to a composite structure of ceramics and metal. [Prior Art] Ceramics have excellent properties that exceed those of conventional metal materials in terms of heat resistance, high rigidity, wear resistance, and corrosion resistance, so they are used as structural materials in a wide range of fields. It is starting to be tried. When ceramics are actually used as a structural material, the entire structure is rarely made of ceramics, and is often composited with metal. The biggest problem with such composite structures of ceramic members and metal members is stress caused by the difference in coefficient of thermal expansion between the two members due to changes in temperature, and stress that is mechanically applied from the inside and outside of the ceramic member. is damaged. Metal members can be elastically deformed to avoid stress concentration, whereas ceramics have high rigidity and are easily damaged by stress concentration. As a measure to prevent damage to ceramics, it is possible to design the ceramic member so that the force applied to the ceramic member can be sufficiently dispersed by the metal member, or to provide a buffer layer between the ceramic member and the metal member. Specific proposals for the configuration of ceramic-metal composite structures from this point of view include the following techniques. In other words, when combining a ceramic turbine blade and a metal disk, a coating layer must be provided on the implanted part (as disclosed in Japanese Patent Application Laid-Open No.
49-37009), a method in which a mixture of a sacrificial material such as graphite and an inert ceramic material is plasma-sprayed onto a metal plate with low density, and then the sacrificial material is removed (Japanese Patent Laid-Open No. 54 108816), or a method in which a porous pad made of metal wire is bonded onto a metal substrate, impregnated with MCr Al Y type material by plasma spraying, and then a ceramic surface coating material is attached (Japanese Patent Application Laid-open No. 108816). Publication No. 154587). These known techniques require the use of plasma or can only be applied to specific materials, so they are not universally applicable. The shape of the composite structure also
Of course there are restrictions. [Problems to be Solved by the Invention] The purpose of the present invention is to overcome the current state of the technology described above and provide a structure having an arbitrary shape by combining arbitrary ceramics and arbitrary metals. It is in. Structure of the Invention [Means for Solving Problems] The basic type of the ceramic-metal composite structure of the present invention is a composite structure constructed by mechanically joining a ceramic member and a metal member. The metal member is characterized in that the metal member is made of a sintered material having a relative density of 94% or less by sintering metal powder. The metal member may be a sintered metal whose portion in contact with the ceramic member has the above-mentioned relative density;
It is not necessary that the whole be made of this sintered metal. Therefore, the second type of ceramic-metal composite structure of the present invention is a composite structure constructed by mechanically joining a ceramic member and a metal member, in which the metal member has a relative density of 94% or less. It is characterized in that it consists of a sintered material and a sintered material and/or ingot material having a relative density of more than 94%, and that a portion of the sintered material having a relative density of 94% or less is in contact with a ceramic member. In any of the above types, many methods can be employed for mechanically joining the ceramic member and the metal member. Typical examples are bolt tightening,
These include press-fitting and shrink-fitting. When a metal member is composed of two or more types, the method for joining these two types is arbitrary, and in addition to the mechanical joining methods described above, such as bolting, press fitting, and shrink fitting, adhesion, welding, pressure welding, and diffusion. It may be selected from known methods such as bonding. In the composite structure of the present invention, the thickness of the sintered material having a relative density of 94% or less is preferably approximately 1/2 or more of the thickness of the ceramic member. [Operation] Generally, sintered metals have a lower Young's modulus than molten metals of the same composition, and are known to cause large deformations even under small stress. If you use this,
The idea that stress concentrations on ceramic components can be avoided is the basis of the invention. This characteristic of sintered metals is lost as their relative density increases and their mechanical properties approach those of molten metals. When sintered metals with various relative densities were tested in combination with ceramics, the above effect had a significant criticality at a relative density of around 94%.
Sintered metal parts with relative densities below this limit are unlikely to damage ceramic parts; on the other hand, when sintered metal parts with relative densities above this limit are used, the stress concentration on the ceramics often causes damage to the ceramic parts. It was found that. Furthermore, it was found that the limit of this relative density is approximately the same regardless of the type of metal, and is around 94%. This is thought to be because the characteristics of a sintered metal are mainly controlled by its porosity and are not determined by the physical properties of the metal itself. In this way, the sintered metal member with a relative density of 94% or less serves as a buffer layer in the composite structure, resulting in a structure that has both the properties of ceramics and metals. Therefore, the thickness of the sintered material with a relative density of 94% or less is
It should be selected to be sufficient for the thickness of the ceramic member. The required thickness varies depending on the shape and size of the composite structure, especially those of the ceramic member, the relative density of the sintered metal, the degree of stress generated, etc., but in most cases, the thickness of the ceramic member as described above. Experiments have revealed that at least 1/2 of that is sufficient. [Example 1] A Si 3 N 4 ordinary sintered ring with an inner diameter of 10 mm x an outer diameter of 30 mm x a height of 10 mm was transformed into a ring with a thickness of 10 mm x an inner diameter of 30 mm x an outer diameter of 50 mm.
A double ring with the configuration shown in Figure 1 was manufactured by press-fitting a SUS410 sintered body (relative density 90%) into a ring. This was subjected to a heating-cooling cycle test in which it was kept in a furnace at 500°C in the atmosphere for 15 minutes, immediately put into water (approximately 25°C), left for 2 minutes, and then returned to the furnace. For comparison, a double ring of SUS410 having the same shape as above but made of a material not according to the present invention was also made and subjected to the same thermal cycle test. The results are as follows.

〔実施例 3〕[Example 3]

実施例1と同じ材料を用い、寸法も同じである
が、構成はこれと逆にとり、第3図に示すように
Si3N4を外側に、SUS410を内側にした二重リング
を製作して、同様な熱サイクル試験を行なつた。 その結果を下に示す。
The same materials and dimensions as in Example 1 were used, but the configuration was reversed, as shown in Figure 3.
A double ring with Si 3 N 4 on the outside and SUS410 on the inside was fabricated and a similar thermal cycle test was conducted. The results are shown below.

【表】 分にワレ発生
[Table] Cracks occur in minutes

〔実施例 4〕[Example 4]

下記3種のリングを組み合わせて、第4図に示
す構造の三重リングを製作した。 〇 内径10mm×外径30mm×高さ10mmのSi3N4普通
焼結体リング、 〇 内径30mm×外径42mm×高さ10mmのSUS304焼
結体(相対密度90%)リング、および 〇 内径42mm×外径62mm×高さ10mmのSUS304圧
延材リング。 これに対して実施例1と同様な熱サイクル試験
を行なつたところ、100回に至つても変化はなか
つた。 〔実施例 5〕 実施例4よりSUS304焼結体リング肉厚をやや
小さくして、下記の3種の組み合わせで、第5図
に示す構成の三重リングを製作した。 〇 内径10mm×外径30mm×高さ10mmのSi3N4普通
焼結体リング、 〇 内径30mm×外径38mm×高さ10mmのSUS304焼
結体(相対密度90%)リング、および 〇 内径38mm×外径58mm×高さ10mmのSUS304圧
延材リング。 この三重リングのサンプル20個について熱サイ
クル試験を行なつたところ、100回まで変化しな
いものもある一方、80回程度でワレの生じたもの
もあり、実施例4にくらべて若干低い成績であつ
た。この結果から、焼結金属の厚みはセラミツク
ス部材の厚みの1/2以上が望ましいことが判る。 〔実施例 6〕 焼結A2O3と、焼結S35C鋼との組み合わせで、
第6図に示す構造の銅伸線機用のキヤプスタンを
製作した。この複合体はすぐれた耐摩耗性を示し
た。 〔実施例 7〕 渦流燃焼式ジーゼルエンジンのホツトチヤンバ
ー(燃焼室)を、 〇 第7図に示すように、Si3N4反応焼結体噴孔
部をSUH661焼結体で全体をつくつたチヤンバ
ーに圧入することにより、および 〇 第8図に示すように、セラミツクス製噴孔部
の周囲をSUH661焼結体で囲んだものを、鋳造
SCH1製チヤンバー中に鋳ぐるみにより設ける
ことにより、 それぞれ製作した。 このホツトチヤンバーは、従来の耐熱Ni基合
金の製品にまさるとも劣らない耐ヒートクラツク
性を有し、且つ耐熱Ni基合金で問題となる噴孔
部の溶損に関しては、セラミツクスの利点である
高温耐食性を発揮することができ、溶損は全く認
められなかつた。 〔発明の効果〕 本発明のセラミツクス―金属複合構造体は、両
部材間の接合が良好であるから、セラミツクスの
もつ耐熱性、耐摩耗性および耐食性を、金属部材
のもつすぐれた機械的特性により活用することが
できる。従つて本発明は、熱機関の耐熱部品、バ
ルブやカムの耐摩耗部品、あるいは化学装置の耐
食部品などを中心とする、きわめて広範囲の分野
に適用することができる。
A triple ring having the structure shown in FIG. 4 was manufactured by combining the following three types of rings. 〇 Si 3 N 4 ordinary sintered body ring with inner diameter 10mm x outer diameter 30mm x height 10mm, 〇 SUS304 sintered body (90% relative density) ring with inner diameter 30mm x outer diameter 42mm x height 10mm, and 〇 inner diameter 42mm. × SUS304 rolled material ring with outer diameter 62mm × height 10mm. When this was subjected to a heat cycle test similar to that in Example 1, there was no change even after 100 cycles. [Example 5] The wall thickness of the SUS304 sintered ring was made slightly smaller than in Example 4, and a triple ring having the configuration shown in FIG. 5 was manufactured using the following three combinations. 〇 Si 3 N 4 ordinary sintered body ring with inner diameter 10mm x outer diameter 30mm x height 10mm, 〇 SUS304 sintered body (relative density 90%) ring with inner diameter 30mm x outer diameter 38mm x height 10mm, and 〇 inner diameter 38mm. × SUS304 rolled material ring with outer diameter of 58 mm and height of 10 mm. When we conducted a heat cycle test on 20 samples of these triple rings, some of them remained unchanged even after 100 cycles, while others cracked after about 80 cycles, which was a slightly lower result than in Example 4. Ta. This result shows that the thickness of the sintered metal is preferably 1/2 or more of the thickness of the ceramic member. [Example 6] A combination of sintered A 2 O 3 and sintered S35C steel,
A capstan for a copper wire drawing machine with the structure shown in Figure 6 was manufactured. This composite exhibited excellent wear resistance. [Example 7] The hot chamber (combustion chamber) of a vortex combustion type diesel engine was constructed by replacing the nozzle hole of the Si 3 N 4 reaction sintered body with a chamber made entirely of SUH661 sintered body, as shown in Figure 7. By press-fitting, and as shown in Figure 8, the ceramic nozzle hole is surrounded by SUH661 sintered body and cast.
Each was manufactured by installing it in a SCH1 chamber by casting. This hot chamber has heat crack resistance comparable to that of conventional heat-resistant Ni-based alloy products, and also has the high-temperature corrosion resistance that is an advantage of ceramics in terms of melting loss at the nozzle hole, which is a problem with heat-resistant Ni-based alloys. It was possible to achieve the desired performance, and no melting damage was observed. [Effects of the Invention] Since the ceramic-metal composite structure of the present invention has good bonding between both members, the heat resistance, abrasion resistance, and corrosion resistance of ceramics can be combined with the excellent mechanical properties of the metal member. It can be utilized. Therefore, the present invention can be applied to a very wide range of fields, including heat-resistant parts for heat engines, wear-resistant parts for valves and cams, and corrosion-resistant parts for chemical equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例1で製作したセラミ
ツクス―焼結金属複合構造体を示すものであつ
て、Aは半分あらわした平面図、Bは軸に沿う断
面図である。第2図は、セラミツクス―焼結金属
複合構造体における焼結金属の相対密度のもつ臨
界性を示すグラフである。第3図は、本発明の実
施例3で製作したセラミツクス―焼結金属複合構
造体を示す第1図と同様な図であつて、Aは半分
あらわした平面図、Bは軸に沿う断面図である。
第4図は、本発明の実施例4で製作したセラミツ
クス―焼結金属複合構造体を示す図であつて、A
は半分あらわした平面図、Bは軸に沿う断面図で
ある。第5図は、本発明の実施例5で製作したセ
ラミツクス―焼結金属複合構造体を示す図であつ
て、Aは半分あらわした平面図、Bは軸に沿う断
面図である。第6図は、本発明の実施例6の銅伸
線機用キヤブスタンを示す、半ばは断面図、半ば
は平面図である。第7図および第8図はともに、
セラミツクス―焼結金属の複合により製作した、
渦流燃焼式ジーゼルエンジンのホツトチヤンバー
を示す縦断面図である。
FIG. 1 shows a ceramic-sintered metal composite structure manufactured in Example 1 of the present invention, in which A is a half plan view and B is a cross-sectional view taken along the axis. FIG. 2 is a graph showing the criticality of the relative density of sintered metal in a ceramic-sintered metal composite structure. FIG. 3 is a diagram similar to FIG. 1 showing a ceramic-sintered metal composite structure manufactured in Example 3 of the present invention, in which A is a plan view showing half of the structure, and B is a cross-sectional view taken along the axis. It is.
FIG. 4 is a diagram showing a ceramic-sintered metal composite structure manufactured in Example 4 of the present invention,
B is a half plan view, and B is a cross-sectional view taken along the axis. FIG. 5 is a diagram showing a ceramic-sintered metal composite structure manufactured in Example 5 of the present invention, in which A is a half plan view and B is a cross-sectional view taken along the axis. FIG. 6 shows a cab stan for a copper wire drawing machine according to a sixth embodiment of the present invention, with the middle half being a sectional view and the half being a plan view. Both Figures 7 and 8 are
Manufactured from a composite of ceramics and sintered metal,
FIG. 2 is a longitudinal sectional view showing a hot chamber of a vortex combustion type diesel engine.

Claims (1)

【特許請求の範囲】 1 セラミツクス部材と金属部材とを機械的に接
合することにより構成したセラミツクス―金属複
合構造体であつて、金属部材が金属粉末を焼結し
て相対密度94%以下の焼結材としたものであるこ
とを特徴とする複合構造体。 2 セラミツクス部材と金属部材とを機械的に接
合することにより構成したセラミツクス―金属複
合構造体であつて、金属部材が金属粉末を焼結し
て相対密度94%以下とした焼結材と相対密度94%
超過の焼結材および(または)溶製材とからな
り、相対密度94%以下の焼結材の部分においてセ
ラミツクス部材と接触していることを特徴とする
複合構造体。 3 機械的結合の手段として、ボルト締め、圧入
または焼きばめをえらんだ特許請求の範囲第1項
または第2項の複合構造体。 4 相対密度94%以下の焼結材の厚さがセラミツ
クス部材の厚さのほぼ1/2以上である特許請求の
範囲第2項の複合構造体。
[Scope of Claims] 1. A ceramic-metal composite structure constructed by mechanically joining a ceramic member and a metal member, wherein the metal member is made by sintering metal powder to a relative density of 94% or less. A composite structure characterized by being made of a binder. 2 A ceramic-metal composite structure constructed by mechanically joining a ceramic member and a metal member, where the metal member has a relative density of sintered material and a relative density of 94% or less by sintering metal powder. 94%
Composite structure consisting of an excess of sintered material and/or ingot material, characterized in that the sintered material has a relative density of 94% or less and is in contact with a ceramic component. 3. The composite structure according to claim 1 or 2, wherein bolting, press-fitting, or shrink-fitting is selected as a means of mechanical connection. 4. The composite structure according to claim 2, wherein the thickness of the sintered material having a relative density of 94% or less is approximately 1/2 or more of the thickness of the ceramic member.
JP14051881A 1981-09-07 1981-09-07 Ceramic-metal composite structure Granted JPS5841778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14051881A JPS5841778A (en) 1981-09-07 1981-09-07 Ceramic-metal composite structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14051881A JPS5841778A (en) 1981-09-07 1981-09-07 Ceramic-metal composite structure

Publications (2)

Publication Number Publication Date
JPS5841778A JPS5841778A (en) 1983-03-11
JPS6216184B2 true JPS6216184B2 (en) 1987-04-10

Family

ID=15270515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14051881A Granted JPS5841778A (en) 1981-09-07 1981-09-07 Ceramic-metal composite structure

Country Status (1)

Country Link
JP (1) JPS5841778A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3241926A1 (en) * 1982-11-12 1984-05-17 MTU Motoren- und Turbinen-Union München GmbH, 8000 München CONNECTION OF A CERAMIC ROTATION COMPONENT TO A METAL ROTATION COMPONENT FOR FLOW MACHINES, IN PARTICULAR GAS TURBINE ENGINES
JPH0729859B2 (en) * 1985-09-05 1995-04-05 株式会社東芝 Ceramics-Metal bonding material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54108816A (en) * 1976-04-15 1979-08-25 Brunswick Corp Porous ceramic seal and preparation thereof
JPS55154587A (en) * 1979-05-11 1980-12-02 United Technologies Corp Structure having ceramic surface coating thereon and method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54108816A (en) * 1976-04-15 1979-08-25 Brunswick Corp Porous ceramic seal and preparation thereof
JPS55154587A (en) * 1979-05-11 1980-12-02 United Technologies Corp Structure having ceramic surface coating thereon and method

Also Published As

Publication number Publication date
JPS5841778A (en) 1983-03-11

Similar Documents

Publication Publication Date Title
EP0211557B1 (en) Metal-ceramics jointed articles
US4538562A (en) Engine part
JPS5852451A (en) Heat-resistant and heat-insulating light alloy member and its manufacture
EP0224345B1 (en) Valve seat insert and cylinder head with the valve seat insert
US5028162A (en) Metal-ceramic joined composite bodies
US4648308A (en) Internal combustion engine piston and a method of producing the same
JPH0333428B2 (en)
US5043305A (en) High thermal expansion coefficient ceramic sinter and a composite body of the same and metal
US4580714A (en) Hard solder alloy for bonding oxide ceramics to one another or to metals
JPH0527706B2 (en)
US5144885A (en) Ceramic-metal friction welding member and ceramic cast-in bonded piston made thereof
GB2130244A (en) Forming coatings by hot isostatic compaction
JPS6216184B2 (en)
JP2920004B2 (en) Cast-in composite of ceramics and metal
US5922479A (en) Brazing alloy and composite assembly joined by using the same
JPH028894B2 (en)
US20060254553A1 (en) Multipart composite valve for an internal combustion engine
JPH07830B2 (en) Surface coating method for metallic materials
JPH02115555A (en) Friction welded body of ceramics-metal and ceramics-inserted piston made thereof
JPH02128833A (en) Honeycomb core
JPH0133655B2 (en)
JPH0660065B2 (en) Engine parts
JPH0333429B2 (en)
JPS6254543A (en) Production of casting mold
JPS60166156A (en) Production of ceramic-metal composite material