JPH0133655B2 - - Google Patents

Info

Publication number
JPH0133655B2
JPH0133655B2 JP58098103A JP9810383A JPH0133655B2 JP H0133655 B2 JPH0133655 B2 JP H0133655B2 JP 58098103 A JP58098103 A JP 58098103A JP 9810383 A JP9810383 A JP 9810383A JP H0133655 B2 JPH0133655 B2 JP H0133655B2
Authority
JP
Japan
Prior art keywords
copper
piston
molded body
ceramic molded
cast iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58098103A
Other languages
Japanese (ja)
Other versions
JPS59224445A (en
Inventor
Masaya Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP9810383A priority Critical patent/JPS59224445A/en
Publication of JPS59224445A publication Critical patent/JPS59224445A/en
Publication of JPH0133655B2 publication Critical patent/JPH0133655B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/10Pistons  having surface coverings
    • F02F3/12Pistons  having surface coverings on piston heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F7/00Casings, e.g. crankcases or frames
    • F02F7/0085Materials for constructing engines or their parts
    • F02F7/0087Ceramic materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Ceramic Products (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明はセラミツク−金属耇合ピストンに関す
るものである。 内燃機関の䞻芁郚品であるピストンは高枩電圧
に曝され、耐熱性の芁求は厳しいが、小型゚ンゞ
ンの堎合には軜量化を図るために、通垞の鋳鉄に
代えおアルミニりム合金を甚いたピストンが生み
出されたものの耐熱性や、断熱性等の熱的性質が
劣るので問題が残぀おいた。 ずころで近時はセラミツク材を甚いたピストン
も考えられおいるが、セラミツク材料の䜎い熱䌝
導性に基づく熱遮蔜䜜甚を利甚し、内燃機関の䜜
動䞭における熱損倱の枛少、出力の向䞊、炭化氎
玠濃床の枛少、燃費の䜎枛など奜たしい諞性胜を
具備するピストンが期埅できるものの、珟圚たで
考えられおいるセラミツクの焌ばめ鋳蟌み方匏で
䜜られたピストンでは加熱冷华サむクルで長時間
䜿甚した堎合に金属の倉圢やぞたりを生ずるおそ
れがあり、実甚的なものはいただ実珟しおいな
い。 本発明はこのような状況に鑑みおなされたもの
で、䞊蚘のように鋳蟌みや焌ばめ等の物理的接觊
でセラミツクず金属を結合するのではなく、セラ
ミツクず金属ずを化孊反応を利甚しお接合するこ
ずにより極めお匷固な接合構造をも぀た内燃機関
のピストンを提䟛するものである。 次に本発明のピストンを図面を参照し぀ゝ説明
する。 第図はピストンのクラりン郚に嵌入されるリ
ング状のメタラむズされたセラミツク成圢䜓
である。 メタラむズは埌述のピストンに斌おセラミツク
の衚面のろう接される郚分を圢成するもので、こ
こでは䞋面にメタラむズ郚−を有する。第
図は第図に瀺したメタラむズされたセラミツク
成圢䜓を鋳鉄ピストン本䜓のクラりン郚
の䞊面に、嵌装するが、その際、銅、銅−モリ
ブデン−銅クラツド材又は銅−むンバ−銅クラツ
ド材、鉄ニツケル42アロむ、又はコバヌル板を
緩衝局ずしお前蚘セラミツク成圢䜓の䞋面
におかれおセラミツク成圢䜓ず鋳鉄ピストン
本䜓ずの間を銀−銅共晶ろうによ぀おろう接
し䞀䜓化しおなるピストンである。なおセラミツ
ク成圢䜓のろう接面はメタラむズされた面で
あるが第図に斌おは省略しお瀺しおある。 第図は第図の円盀状のメタラむズされたセ
ラミツク成圢䜓を代えお䞊郚䞭倮に空所のあ
るメタラむズされた異圢セラミツク成圢䜓を
瀺しおおり、その倖偎の仮想線で瀺した範囲にピ
ストンに嵌装したずきのろう接郚分に察応しおメ
タラむズ−を蚭けるものである。 第図、第図、第図、第図、第図及び
第図は第図に瀺した劂きメタラむズされた異
圢セラミツク成圢䜓をピストン本䜓のクラり
ン郚の䞊面に嵌装したピストンの䟋を瀺しおい
る。䜆し、メタラむズ郚分はすべお明瀺するこず
なく省略しおあるがろう接されおいるずころなの
で容易に理解されるであろう。 第図は偎面にメタラむズされた異圢セラミツ
ク成圢䜓の倖偎の円筒状偎面に、前蚘異圢セ
ラミツク成圢䜓を嵌装するピストンのクラり
ン郚の深さに等しい長さの円筒状銅板等緩衝局
を蚭け、その内倖に存圚する異圢セラミツク成圢
䜓のメタラむズ衚面及び、ピストンの鋳鉄本
䜓ずの間は銀−銅共晶ろう剀によりろう接
しお䞀䜓化しおある。 第図は倖偎の衚面党郚がメタラむズされた異
圢セラミツク成圢䜓を甚い、その倖偎にこれ
ず圢状の合臎する銅板等の緩衝局を蚭けおピス
トンのクラりン郚䞊面に嵌装し、緩衝局を前蚘
異圢セラミツク成圢䜓のメタラむズ衚面及び
鋳鉄本䜓ずの間を銀−銅共晶ろう剀によりろ
う接しお䞀䜓化しおある。 第図は円筒状の偎面をメタラむズした異圢セ
ラミツク成圢䜓の円筒状の倖偎面に、銅板等
の緩衝局を蚭け、この内郚は異圢セラミツク成
圢䜓のメタラむズ衚面ず、その倖郚に曎に蚭
けられる鋳鉄リングずの間を銀・銅共晶ろう剀
によりろう接し、曎に前蚘鋳鉄リングの衚面を
アルフむン凊理しお埌、これらをピストン本䜓
を構成するアルミニりム合金で鋳ぐるんで䞀
䜓ずなしたもので、ろう剀及びアルフむン凊理に
より各局間が化孊的に接合䞀䜓化されおいるもの
である。 第図は偎面及び底面をメタラむズされた異圢
セラミツク成圢䜓のメタラむズ郚分に隣接
し、銅−モリブデン−銅クラツド板の劂き緩衝局
を蚭け、その倖偎に字型の鋳鉄即ち鋳鉄キダ
ツプを蚭け各局間を銀−銅共晶ろうでろう接
しお䞀䜓化しおある。次に前蚘鋳鉄キダツプの
倖衚面はアルフむン凊理し、その倖偎にピスト
ン本䜓を構成するアルミニりム合金が鋳ぐる
たれお䞡者の間は化孊的に匷固に接合されたアル
ミニりムピストンを瀺すものである。 第図は偎面をメタラむズされた異圢セラミツ
ク成圢䜓の円筒状偎面に、同セラミツク成圢
䜓を嵌装するクラりン郚の溝の深さに等しい銅又
はコバヌル板等の緩衝局を蚭け、その内偎は前
蚘セラミツク成圢䜓のメタラむズ衚面ず又そ
の倖偎は鋳鉄補ピストン本䜓ず銀−銅共晶ろ
うによりろう接しお䞀䜓化しおある。 第図は前蚘第図ずほずんど同様だが、第
図では異圢セラミツクの円筒状偎面ず底面の䞡方
に銅板等の緩衝局を蚭けその䞡偎を銀−銅共晶
ろうによりろう接しお䞀䜓化したものである。
又、その他第図ず同䞀郚分には同䞀笊号が瀺さ
れおいる。 以䞊の劂く本発明はピストンのクラりン郚䞊面
にセラミツク成圢䜓を嵌装䞀䜓化するに぀いお、
セラミツク衚面に匷固に生成しおいる金属膜メ
タラむズを利甚しおろう接によりその倖偎ず䞀
䜓化され、か぀必芁に応じ銅或は銅合金、銅系ク
ラツド材、鉄ニツケル42アロむ、又はコバヌル
板等のろう接容易な緩衝局を蚭けおこれを介しお
ろう接により䞀䜓結合を実珟したピストンを提䟛
し、曎には、アルミニりム合金ピストンに斌おは
鋳鉄リング又は鋳鉄キダツプをセラミツク成圢䜓
の倖偎に蚭け、この内郚は銀−銅共晶ろうにより
ろう接し、その倖偎はアルフむン凊理した䞊でア
ルミニりム合金をピストン本䜓ずしお鋳ぐる
んで鋳鉄ずアルミニりム合金をアルフむン凊理の
化孊剀で接合しお各局間が匷固に接合されたアル
ミニりムピストンを提䟛するものである。 そしお、これらピストンを、実際の゚ンゞンに
取り぀け、そのセラミツクずピストン本䜓の必芁
匷床をみるず、セラミツクに働く力が䞻にピスト
ンの䞊䞋運動の慣性力ずするず、その必芁匷床
は、400℃で100Kgcm2以䞊であれば、良いこずも
䟋の詊料で確認した。 次に本発明で最も重芁な点はメタラむズされた
セラミツク成圢䜓を䜿甚するこずにあるが、ここ
に甚いられるセラミツクずしおは窒化珪玠
Si3N4、炭化硅玠SiC、むツトリア安定化ゞルコ
ニア等の耐熱性がよく匷床の匷い材料が奜たし
い。その衚面に金属局を蚭ける手段ずしおは蒞着
法又は掻性化金属法が奜たしいものであり、以䞋
これらに぀いお詳述する。 蒞着法 䟋  セラミツク成圢䜓の蒞着を芁する衚面に、物理
蒞着法により、呚期衚の族Ti、Zr、Hf
から遞ばれた皮又は皮以䞊からなる第金属
局を蚭け、その䞊に物理蒞着法又は化孊メツキ法
により、呚期衚の族Cu、Ag、Auから遞
ばれた皮又は皮以䞊からなる第金属局を蚭
けお金属膜を圢成し、メタラむズされたセラミツ
ク成圢䜓を埗る。 䟋  セラミツク成圢䜓の衚面に物理蒞着法により圢
成された呚期衚の族Ti、Zr、Hf又は
族Cr、Mo、から遞ばれた皮又は皮
以䞊からなる第金属局を蚭け、その䞊に物理蒞
着法又は化孊メツキ法により圢成された族
Cu、Ag、Auから遞ばれた皮又は皮以䞊
からなる第金属局を蚭けお金属膜を圢成し、メ
タラむズされたセラミツク成圢䜓を埗る。 䟋  セラミツク成圢䜓の衚面に物理蒞着法により圢
成された呚期衚の族Cr、Mo、又は
族Cu、Ag、Auから遞ばれた皮又は皮
以䞊からなる金属膜を圢成しおメタラむズされた
セラミツク成圢䜓を埗る。 本発明に斌お奜たしいセラミツク材料に぀いお
は既に蚀及し、耐熱性、耐熱衝撃性の優れたもの
を挙げたが、これらの他にアルミナ磁噚、ムラむ
ト磁噚、ゞルコン磁噚等のピストンのヘツドずし
お䜿甚に耐えるならばすべおのセラミツクが適甚
するこずができる。 次に本発明の実斜䟋ず比范䟋の詊料を䜜成し比
范詊隓をした結果を瀺す。 実斜䟋  気孔率、窒化珪玠含有率90の垞圧焌結窒
化珪玠を第図のように加工しおセラミツク成圢
䜓ずし、その䞋面には真空蒞着法にお10-6torrの
真空䞭で、Zr500Å、Cu5Όを順次蒞着した埌、厚
さmm、盎埄50mmのCu板又はCu0.3−Mo0.4
−Cu0.3のクラツド材を䞭間局ずしお介圚させ
鋳鉄ピストン本䜓のクラりン郚に嵌入、接合は
銀、銅共晶ろうを甚いお氎玠炉䞭で900℃におろ
う付し、第図の劂きピストンを埗た。 実斜䟋  気孔率、炭化珪玠含有率0.5の垞圧焌結
炭化珪玠を甚い、実斜䟋ず同様にしお第図の
劂きピストンを埗た。 接合䜓の匷床を枬るため、鋳鉄ピストンを加工
しお匕匵匷床を枬定した。 又、耐熱性及び耐久性を調べるために垂販のブ
ンれンバヌナヌにおピストンのセラミツク郚分を
盎接あぶり加熱−冷华のサむクルテストを500サ
むクル、1000サむクル行な぀たこの時の接合郚の
枩床はどちらも最高400℃、最䜎300℃であ぀た。 比范䟋はセラミツクをメタラむズするこずな
く、焌嵌め代0.1mm取り、鋳鉄ピストンのクラり
ン郚に装着しお500℃で焌嵌めし前蚘同様なバヌ
ナ−テスト及び匕匵匷床を枬定した。 これらの結果は衚に瀺すずおりである。
The present invention relates to a ceramic-metal composite piston. Pistons, which are the main components of internal combustion engines, are exposed to high-temperature voltages and have strict requirements for heat resistance, but in order to reduce weight in small engines, pistons made of aluminum alloy instead of regular cast iron have been created. However, problems remained because the heat resistance and thermal properties such as heat insulation were inferior. Incidentally, recently pistons made of ceramic materials have been considered, and by utilizing the heat shielding effect based on the low thermal conductivity of ceramic materials, it is possible to reduce heat loss during operation of internal combustion engines, improve output, and improve the performance of hydrocarbons. Although pistons can be expected to have favorable performance such as reduced concentration and reduced fuel consumption, pistons made using the ceramic shrink-fit casting method that has been considered up to now suffer from metal damage when used for long periods of time in heating and cooling cycles. There is a risk that this may cause deformation or sagging, and a practical product has not yet been realized. The present invention was made in view of this situation, and instead of bonding ceramic and metal through physical contact such as casting or shrink fitting as described above, it combines ceramic and metal using a chemical reaction. The present invention provides a piston for an internal combustion engine that has an extremely strong joint structure by joining together. Next, the piston of the present invention will be explained with reference to the drawings. Figure 1 shows a ring-shaped metallized ceramic molded body 1a that is fitted into the crown of the piston.
It is. The metallization forms the part of the ceramic surface to be soldered in a piston, which will be described later, and here the metallization part 1-m is provided on the lower surface. Second
The figure shows that the metallized ceramic molded body 1a shown in FIG. 1 is fitted onto the upper surface of the crown portion 3 of the cast iron piston body 2a. A copper clad material, iron/nickel 42 alloy, or Kovar plate is placed on the lower surface of the ceramic molded body 1a as a buffer layer 4, and a silver-copper eutectic solder is used to connect the ceramic molded body 1a and the cast iron piston body 2a. It is a piston that is integrated with a soldered joint. The soldered surface of the ceramic molded body 1a is a metallized surface, but is omitted from illustration in FIG. FIG. 3 shows a metalized irregular-shaped ceramic molded body 1b with a space in the upper center in place of the disk-shaped metallized ceramic molded body 1a in FIG. 1, and the area shown by the imaginary line on the outside A metallized layer 1-m is provided corresponding to the brazed portion when the piston is fitted into the piston. Figures 4, 5, 6, 7, 8, and 9 show a metalized irregularly shaped ceramic molded body 1b as shown in Figure 3, which is fitted onto the top surface of the crown portion of the piston body. The figure shows an example of a piston. However, all metallized parts are omitted without being explicitly shown, but since they are soldered, they will be easily understood. Fig. 4 shows a buffer layer such as a cylindrical copper plate having a length equal to the depth of the crown portion of the piston into which the irregularly shaped ceramic molded body 1b is fitted, on the outer cylindrical side surface of the irregularly shaped ceramic molded body 1b whose side surface is metallized. 4
The metallized surface of the irregularly shaped ceramic molded body 1b existing inside and outside of the molded body 1b and the cast iron body 2a of the piston are soldered using a silver-copper eutectic brazing agent 5.
It has been integrated. Fig. 5 shows a modified ceramic molded body 1b whose entire outer surface is metallized, and a buffer layer 4 made of a copper plate or the like that matches the shape is provided on the outer side and is fitted onto the top surface of the crown portion of the piston. 4 is integrated by soldering 5 between the metallized surface of the irregularly shaped ceramic molded body 1b and the cast iron body 2a using a silver-copper eutectic brazing agent. Fig. 6 shows that a buffer layer 4 such as a copper plate is provided on the cylindrical outer surface of an irregularly shaped ceramic molded body 1b whose cylindrical side surface is metallized, and the inside of this layer covers the metallized surface of the irregularly shaped ceramic molded body 1b, and the outer surface thereof is further covered with a buffer layer 4. The cast iron ring 6 to be provided is soldered using a silver-copper eutectic brazing agent, and after the surface of the cast iron ring 6 is subjected to Alfin treatment 7, they are integrally cast together with the aluminum alloy 2b that constitutes the piston body. The layers are chemically bonded and integrated using a waxing agent and Alfin treatment. FIG. 7 shows a shaped ceramic molded body 1b whose side and bottom surfaces are metallized, with a buffer layer 4 such as a copper-molybdenum-copper clad plate adjacent to the metallized part, and a U-shaped cast iron cap 6 on the outside thereof. 5 and solder each layer with silver-copper eutectic solder.
It has been integrated. Next, the outer surface of the cast iron cap 6 is subjected to Alfin treatment 7, and an aluminum alloy constituting the piston body 2b is cast around the outside of the cast iron cap 6, and the aluminum piston is chemically and firmly bonded between the two. . Fig. 8 shows that a buffer layer 4 of copper or Kovar plate or the like is provided on the cylindrical side surface of an irregularly shaped ceramic molded body 1b whose side surface is metallized, the depth of which is equal to the depth of the groove in the crown portion into which the ceramic molded body is fitted. The inside is integrated with the metallized surface of the ceramic molded body 1b, and the outside with the cast iron piston body 2a by soldering 5 using a silver-copper eutectic solder. Figure 9 is almost the same as Figure 8 above, but
In the figure, a buffer layer 4 such as a copper plate is provided on both the cylindrical side and bottom surfaces of the deformed ceramic, and both sides are soldered 5 using a silver-copper eutectic solder to be integrated.
Further, other parts that are the same as those in FIG. 8 are designated by the same reference numerals. As described above, the present invention involves fitting and integrating a ceramic molded body onto the top surface of the crown portion of a piston.
Utilizing the metal film (metallization) strongly formed on the ceramic surface, it is integrated with the outside by soldering, and if necessary, it can be made of copper or copper alloy, copper-based cladding material, iron/nickel 42 alloy, or We provide a piston that achieves integral connection by soldering through a buffer layer such as a Kovar plate that is easy to solder.Furthermore, in the case of aluminum alloy pistons, we provide a cast iron ring or a cast iron cap with a ceramic molded body. The inside is soldered using a silver-copper eutectic solder, and the outside is treated with Alfin, and then an aluminum alloy is cast as the piston body 2b, and the cast iron and aluminum alloy are joined with a chemical agent for Alfin treatment. The present invention provides an aluminum piston in which layers are firmly bonded. When we install these pistons in an actual engine and look at the required strength of the ceramic and piston body, we find that if the force acting on the ceramic is mainly the inertial force of the vertical movement of the piston, the required strength is 100 kg at 400°C. It was also confirmed in the sample of Example 1 that it is good if it is 2 cm2 or more. Next, the most important point of the present invention is the use of a metalized ceramic molded body, and the ceramic used here is silicon nitride.
Materials with good heat resistance and strength, such as Si 3 N 4 , silicon carbide (SiC), and yttria-stabilized zirconia, are preferable. As a means for providing a metal layer on the surface, a vapor deposition method or an activated metal method is preferable, and these methods will be described in detail below. Example of A vapor deposition method 1 Group A of the periodic table (Ti, Zr, Hf) is applied to the surface of the ceramic molded body requiring vapor deposition by physical vapor deposition.
A first metal layer consisting of one or more selected from the following is provided, and one or more selected from Group B of the periodic table (Cu, Ag, Au) is formed on the first metal layer by physical vapor deposition or chemical plating. A second metal layer consisting of two or more types is provided to form a metal film, and a metallized ceramic molded body is obtained. Example 2 A ceramic material made of one or more members selected from Group A (Ti, Zr, Hf) or Group A (Cr, Mo, W) of the periodic table formed by physical vapor deposition on the surface of a ceramic molded body. A metal film is formed by providing one metal layer, and providing a second metal layer made of one or more metals selected from group B (Cu, Ag, Au) by physical vapor deposition or chemical plating. to obtain a metalized ceramic molded body. Example 3 Metal consisting of one or more selected from Group A (Cr, Mo, W) or Group B (Cu, Ag, Au) of the periodic table, formed by physical vapor deposition on the surface of a ceramic molded body. A film is formed to obtain a metallized ceramic molded body. Preferable ceramic materials for the present invention have already been mentioned, including those with excellent heat resistance and thermal shock resistance, but in addition to these materials, there are also alumina porcelain, mullite porcelain, zircon porcelain, etc., which can withstand use as a piston head. In that case, all ceramics can be applied. Next, the results of comparative tests made by preparing samples of Examples of the present invention and Comparative Examples will be shown. Example 1 Pressure-sintered silicon nitride with a porosity of 1% and a silicon nitride content of 90% was processed to form a ceramic molded body as shown in Figure 1, and the bottom surface was coated with 10 -6 torr by vacuum evaporation. After sequentially depositing Zr500Šand Cu5Ό in vacuum, a Cu plate with a thickness of 1mm and a diameter of 50mm or a Cu(0.3)-Mo(0.4)
-Cu (0.3) clad material is interposed as an intermediate layer and fitted into the crown of the cast iron piston body, and the joint is brazed at 900℃ in a hydrogen furnace using silver and copper eutectic solder, as shown in Figure 2. I got a piston like this. Example 2 A piston as shown in FIG. 2 was obtained in the same manner as in Example using pressureless sintered silicon carbide having a porosity of 1% and a silicon carbide content of 0.5%. In order to measure the strength of the joint, a cast iron piston was machined and its tensile strength was measured. In addition, in order to investigate heat resistance and durability, we conducted a heating-cooling cycle test of 500 and 1000 cycles by directly roasting the ceramic part of the piston using a commercially available Bunsen burner, and the temperature of the joint at both times was the highest. The temperature was 400℃, the lowest was 300℃. In the comparative example, the ceramic was not metallized, a shrink-fitting allowance of 0.1 mm was taken, and the ceramic was attached to the crown of a cast iron piston and shrink-fitted at 500°C, and the burner test and tensile strength were measured in the same manner as described above. These results are shown in Table 1.

【衚】 実斜䟋  気孔率、窒化珪玠含有率90の垞圧焌結窒
化珪玠を甚いお第図に瀺した劂き異圢セラミツ
ク成圢䜓を䜜り、その垂盎な倖偎面をメタラむズ
した。 メタラむズの条件は実斜䟋ず同様な方法で
Ti1000Å、Cr1000Å、Cu5Όを順次に蒞着し、メ
タラむズした異圢セラミツクを補造した。このメ
タラむズした異圢セラミツクを鋳鉄ピストンのク
ラりン郚に嵌装し、厚さ0.5mmのCu板を緩衝局ず
しお介圚させ、銀−銅共晶ろうを甚いお氎玠炉䞭
で900℃でろう付けし第図に瀺したような鋳鉄
ピストンを埗た。 又同様にしお偎面及び底面に蒞着しおメタラむ
ズした異圢セラミツクを甚い、銀−銅共晶ろうを
甚いお氎玠炉䞭で900℃でろう付けし、第図に
瀺したような鋳鉄ピストンを埗た。 曎に又、偎面及び底面に蒞着したメタラむズし
た異圢セラミツクを甚い、鋳鉄リングをコバヌル
板を介圚させお銀−銅共晶ろうを甚いお氎玠炉䞭
で900℃でろう付けし、次に鋳鉄リングの衚面を
アルフむツト凊理した埌アルミニりム合金
AC8Aで鋳ぐるんで第図に劂きアルミニり
ムピストンを埗た。 実斜䟋  気孔率、ゞルコニア含有率90のむツトリ
ア安定化ゞルコニアを甚い、実斜䟋ず同様な方
法によ぀お、第図、第図及び第図に瀺した
ようなピストンを補造した。これら実斜䟋、
に瀺したものに぀いお実斜䟋ず同様なバヌナヌ
テストを行な぀た埌、ピストンを加工しお接合匷
床を枬定した。 比范䟋はSi3N4からなるセラミツク成圢䜓をア
ルミニりム合金AC8Aでぐるんでバヌナヌテ
ストを行な぀お埌、接合匷床を枬定した。 これらの結果は衚に瀺すずおりである。
[Table] Example 3 A deformed ceramic molded body as shown in FIG. 3 was made using pressureless sintered silicon nitride having a porosity of 1% and a silicon nitride content of 90%, and its vertical outer surface was metallized. The conditions for metallization were the same as in Example 1.
A metalized irregular shaped ceramic was manufactured by sequentially depositing Ti1000Å, Cr1000Å, and Cu5ÎŒ. This metallized irregular shaped ceramic was fitted into the crown of a cast iron piston, a 0.5 mm thick Cu plate was interposed as a buffer layer, and the metallized ceramic was brazed at 900°C in a hydrogen furnace using a silver-copper eutectic solder. A cast iron piston as shown in Figure 4 was obtained. Similarly, a cast iron piston as shown in Fig. 5 was obtained by using deformed ceramics deposited and metallized on the side and bottom surfaces and brazing them at 900°C in a hydrogen furnace using silver-copper eutectic solder. Ta. Furthermore, using metallized irregular ceramics deposited on the side and bottom surfaces, a cast iron ring was brazed at 900°C in a hydrogen furnace using a silver-copper eutectic solder with a Kovar plate interposed. After the surface was subjected to alphite treatment, it was cast with aluminum alloy (AC8A) to obtain an aluminum piston as shown in Fig. 6. Example 4 Using ittria-stabilized zirconia with a porosity of 1% and a zirconia content of 90%, a piston as shown in FIGS. 4, 5, and 6 was produced in the same manner as in Example 3. Manufactured. These Examples 3 and 4
After conducting the same burner test as in Example 1 for the piston shown in 1, the piston was processed and the joint strength was measured. In a comparative example, a ceramic molded body made of Si 3 N 4 was wrapped in an aluminum alloy (AC8A) and a burner test was conducted, and then the bonding strength was measured. These results are shown in Table 2.

【衚】 定した。
次に窒化珪玠を甚い実斜䟋ず同様にメタラむ
ズしたセラミツク成圢䜓を埗、厚さmmのCu板
を䞭間緩衝局ずしお甚い、銀−銅共晶ろうにお接
合し第図の劂き鋳鉄ピストンを埗、その熱間匷
床を100℃、300℃、500℃で枬定した。 䞊蚘の劂き各実斜䟋ず比范䟋の詊隓結果より本
発明の各実斜䟋のピストンは300℃たでは熱的に
安定であり、埓来の焌嵌め、鋳ぐるみ方匏による
ピストンよりも、数段性胜が優れおいるこずが刀
぀た。 䞊蚘各䟋に斌お、呚期衚の族Ti、Zr、
Hf、族Cr、Mo、の金属を第局或
は第局に遞んだ理由はセラミツク成圢䜓ずの反
応性が良く、密着性に富み、接合匷床が倧きく
又、接合埌の耐熱性が良奜なためである。 又、最倖局に族Cu、Ag、Auを遞んだ
のは各皮ろう剀ずの濡れ性が良奜であり、良奜な
ろう接が埗られるためである。勿論族を第
局にしお金属膜を構成しおもセラミツクずの密着
性は䞀応さし぀かえないものず認められる。 なお本発明で物理蒞着法ずしおはむオンビヌム
法、スパツタリング法、抵抗加熱法等を指称し、
蒞着膜厚は蒞着蚭備によ぀お限定されるものでは
あるが、奜たしくは族では数千Åその他は数
癟Å皋床あればよい。  掻性化金属法 掻性化金属法は蒞着法に代る有力な方法で次
のような手法で達成される。 (1) セラミツク成圢䜓の衚面にTi又はZrず
Ag、Cuのうち少なくずも䞀皮以䞊ず箔ずを
茉せお、非酞化性雰囲気䞭にお800℃〜1200
℃に加熱する方法。 (2) セラミツク成圢䜓の衚面にTi箔又はZr箔
ずAg、Cuのうち少なくずも䞀皮以䞊のろう
箔を茉せお、非酞化性雰囲気䞭にお800℃〜
1200℃にお加熱接合する方法。 このような手法でセラミツク成圢䜓の所定の衚
面にメタラむズ局を圢成した堎合、Ti又はZrが
セラミツク䞭に拡散しおセラミツク䞭の酞玠原
子、窒玠原子ず化孊的に結合しお高床に䞀䜓性を
保持するこずができる。 実斜䟋  気孔率、窒化珪玠含有率90の垞圧焌結窒
化珪玠を第図の劂く加工し、セラミツクの偎面
に重量でTi5、Ag69、Cu26の厚さ0.05
mmの箔を蚭眮した埌、Cu板厚さ0.5mmを蚭眮
し、぀いでAg−Cu共晶ろうをCu板を鋳鉄ピスト
ンの間に蚭眮し、10-4Torrの真空䞭で1000℃、
30分間加熱接合しお第図の劂き鋳鉄ピストンを
埗た。 実斜䟋  同様なセラミツクの偎面及び底面に実斜䟋ず
党く同様な方法でTi−Ag−Cu箔、Cu板、Ag−
Cu共晶ろうを蚭け同様な真空加熱接合を斜した
鋳鉄ピストンを埗た。 これらに぀いお実斜䟋の堎合ず同様なバヌナ
ヌテストを行な぀た埌、ピストンを加工し、その
接合匷床を枬定した。 結果は衚に瀺すずおりである。
[Table] Established.
Next, a ceramic molded body was obtained by metallizing silicon nitride in the same manner as in Example 1, using a 1 mm thick Cu plate as an intermediate buffer layer, and bonding it with silver-copper eutectic solder to form a cast iron piston as shown in Figure 2. was obtained, and its hot strength was measured at 100°C, 300°C, and 500°C. The test results of the above examples and comparative examples show that the pistons of each example of the present invention are thermally stable up to 300°C, and have several orders of magnitude higher performance than pistons using conventional shrink-fitting or casting methods. It turned out to be excellent. In each of the above examples, group A of the periodic table (Ti, Zr,
Hf), A group metals (Cr, Mo, W) were selected for the first or second layer because they have good reactivity with the ceramic molded body, excellent adhesion, high bonding strength, and This is because the subsequent heat resistance is good. Moreover, the reason why Group B (Cu, Ag, Au) was selected for the outermost layer is that it has good wettability with various brazing agents, and good soldering can be obtained. Of course, group B comes first.
Even if a metal film is formed as a layer, it is recognized that the adhesion with ceramic is acceptable. In the present invention, the physical vapor deposition method refers to an ion beam method, a sputtering method, a resistance heating method, etc.
Although the thickness of the deposited film is limited by the vapor deposition equipment, it is preferably several thousand angstroms for the B group, and several hundred angstroms for the others. B. Activated metal method The activated metal method is an effective alternative to the vapor deposition method, and is achieved by the following method. (1) Ti or Zr on the surface of the ceramic molded body
At least one of Ag and Cu and foil are placed and heated at 800℃ to 1200℃ in a non-oxidizing atmosphere.
How to heat to ℃. (2) Place Ti foil or Zr foil and at least one type of solder foil among Ag and Cu on the surface of the ceramic molded body and heat it at 800℃ in a non-oxidizing atmosphere.
A method of heating and bonding at 1200℃. When a metallized layer is formed on a predetermined surface of a ceramic molded body using such a method, Ti or Zr diffuses into the ceramic and chemically combines with the oxygen and nitrogen atoms in the ceramic, resulting in a high degree of integrity. can be retained. Example 5 Pressure-sintered silicon nitride with a porosity of 1% and a silicon nitride content of 90% was processed as shown in Fig. 3, and a thickness of 0.05% of Ti 5%, Ag 69%, and Cu 26% by weight was formed on the side of the ceramic.
After installing the foil with a thickness of 10 mm, a Cu plate (0.5 mm thick) was installed, and then an Ag-Cu eutectic solder was placed between the cast iron pistons, and heated at 1000℃ in a vacuum of 10 -4 Torr.
After heating and bonding for 30 minutes, a cast iron piston as shown in FIG. 8 was obtained. Example 6 Ti-Ag-Cu foil, Cu plate, Ag-
A cast iron piston with a Cu eutectic solder and similar vacuum heat welding was obtained. After conducting the same burner test as in Example 1 for these, pistons were processed and their joint strength was measured. The results are shown in Table 3.

【衚】 これらの結果から刀るように掻性化金属法によ
぀おも蒞着法同様に匷固なメタラむズ局を蚭けた
セラミツク成圢䜓が埗られるので、これを甚いた
ピストンの各皮効果は蒞着法ず党く倉るずころが
ない。
[Table] As can be seen from these results, a ceramic molded body with a strong metallized layer can be obtained by the activated metal method as well as by the vapor deposition method, so the various effects of the piston using this method are completely different from those by the vapor deposition method. There is nothing that will change.

【図面の簡単な説明】[Brief explanation of drawings]

第図は本発明で甚いられるメタラむズされた
セラミツク成圢䜓の䞀䟋を瀺す瞊断面図、第図
はこれを甚いた本発明のピストンの構造䟋を瀺す
䞀郚瞊断面図、第図は本発明で甚いられるメタ
ラむズされたセラミツク成圢䜓の他の䟋を瀺す瞊
断面図、第図〜第図はこれを甚いた本発明の
ピストンの各構造䟋を瀺す䞀郚瞊断面図である。 メタラむズされたリング状セラミツク成
圢䜓、メタラむズされた異圢セラミツク成
圢䜓、−メタラむズ郚、鋳鉄ピスト
ン本䜓、アルミニりム合金ピストン本䜓、
クラりン郚、緩衝局、ろう接、
鋳鉄リング、鋳鉄キダツプ、アルフむン凊
理。
FIG. 1 is a vertical cross-sectional view showing an example of a metalized ceramic molded body used in the present invention, FIG. 2 is a partial vertical cross-sectional view showing an example of the structure of a piston of the present invention using this, and FIG. FIGS. 4 to 9 are vertical cross-sectional views showing other examples of the metallized ceramic molded body used in the present invention, and FIGS. 4 to 9 are partial vertical cross-sectional views showing structural examples of the piston of the present invention using the same. . 1a: Metallized ring-shaped ceramic molded body, 1b: Metallized irregular shaped ceramic molded body, 1-m: Metallized part, 2a: Cast iron piston body, 2b: Aluminum alloy piston body,
3: Crown part, 4: Buffer layer, 5: Brazing, 6:
Cast iron ring, cast iron cap, 7: Alfin treatment.

Claims (1)

【特蚱請求の範囲】  蒞着法によりメタラむズされたセラミツク成
圢䜓が、銅、銅合金、銅Mo銅クラツド材、
銅むンバヌ銅クラツド材、鉄42Ni合金
又はコバヌルより遞ばれた緩衝局を介しお鋳鉄ピ
ストン本䜓ずろう付けされおいるこずを特城ずす
る鋳鉄ピストン。  セラミツク成圢䜓をTi及びZrのうち䞀皮以
䞊ずAg及びCuのうち䞀皮以䞊ずの混合掻性ろう
材により、銅、銅合金、銅Mo銅クラツド
材、銅むンバヌ銅クラツド材、鉄42Ni
合金又はコバヌルより遞ばれた緩衝局ずろう付け
され、緩衝局ず鋳鉄ピストン本䜓ずは銀ろうにお
ろう付けされおいるこずを特城ずする鋳鉄ピスト
ン。  セラミツク成圢䜓ず鋳鉄リングずが、銅、銅
合金、銅Mo銅クラツド材、銅むンバヌ
銅クラツド材、鉄42Ni合金又はコバヌルよ
り遞ばれた緩衝局を介しお、蒞着法あるいは掻性
ろう材によりろう付けされ、曎にアルミニりムに
より鋳ぐるたれおいるこずを特城ずするアルミニ
りムピストン。
[Claims] 1. A ceramic molded body metallized by a vapor deposition method can be made of copper, copper alloy, copper/Mo/copper clad material,
A cast iron piston characterized by being brazed to a cast iron piston body through a buffer layer selected from copper/invar/copper clad material, iron/42% Ni alloy, or Kovar. 2 Ceramic molded bodies can be made into copper, copper alloy, copper/Mo/copper clad material, copper/invar/copper clad material, iron by using a mixed activated brazing filler metal of one or more of Ti and Zr and one or more of Ag and Cu. /42%Ni
A cast iron piston characterized in that it is brazed with a buffer layer selected from alloy or Kovar, and the buffer layer and the cast iron piston body are brazed with silver solder. 3 The ceramic molded body and the cast iron ring are made of copper, copper alloy, copper/Mo/copper clad material, copper/invar/
An aluminum piston characterized in that it is brazed by vapor deposition or active brazing material through a buffer layer selected from copper clad material, iron/42% Ni alloy, or Kovar, and is further cast in aluminum.
JP9810383A 1983-06-03 1983-06-03 Piston Granted JPS59224445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9810383A JPS59224445A (en) 1983-06-03 1983-06-03 Piston

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9810383A JPS59224445A (en) 1983-06-03 1983-06-03 Piston

Publications (2)

Publication Number Publication Date
JPS59224445A JPS59224445A (en) 1984-12-17
JPH0133655B2 true JPH0133655B2 (en) 1989-07-14

Family

ID=14210988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9810383A Granted JPS59224445A (en) 1983-06-03 1983-06-03 Piston

Country Status (1)

Country Link
JP (1) JPS59224445A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61142155U (en) * 1985-02-25 1986-09-02
GB8622538D0 (en) * 1986-09-18 1986-10-22 Ae Plc Pistons
JPH1192255A (en) * 1997-09-24 1999-04-06 Toshiba Corp Metallized ceramic part

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59101566A (en) * 1982-12-03 1984-06-12 Ngk Insulators Ltd Engine parts

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59101566A (en) * 1982-12-03 1984-06-12 Ngk Insulators Ltd Engine parts

Also Published As

Publication number Publication date
JPS59224445A (en) 1984-12-17

Similar Documents

Publication Publication Date Title
US4624897A (en) Clad brazing filler for bonding ceramic to metal, glass, or other ceramic and composites using such filler
US4740429A (en) Metal-ceramic joined articles
US4602731A (en) Direct liquid phase bonding of ceramics to metals
EP0111989B1 (en) An engine part having a ceramics member and a metallic member joined together
US4559277A (en) Ceramic and aluminum alloy composite
JPH0516382B2 (en)
US20160228966A1 (en) Method for producing a metal-ceramic soldered connection
JPS60226464A (en) Joint structure of ceramic and metal
JP4136648B2 (en) Dissimilar material joined body and manufacturing method thereof
JPH0216273B2 (en)
JPH0367985B2 (en)
JPH0454825B2 (en)
US6131797A (en) Method for joining ceramic to metal
JPH0133655B2 (en)
JPS6359996B2 (en)
US5922479A (en) Brazing alloy and composite assembly joined by using the same
JPH024553B2 (en)
JPH0472793B2 (en)
JPS63288976A (en) Joined body of sintered metal and ceramics
JPH0660065B2 (en) Engine parts
JP2747865B2 (en) Joint structure between ceramics and metal
JP3153872B2 (en) Metal-nitride ceramic bonding structure
JPH0240631B2 (en)
JPH07157373A (en) Joining method of ceramic material and metallic material and production of airtight vessel
JPH0633725B2 (en) Engine parts and manufacturing method thereof