JPS62158112A - Partially hydrophilized silica gel and its production - Google Patents

Partially hydrophilized silica gel and its production

Info

Publication number
JPS62158112A
JPS62158112A JP29916085A JP29916085A JPS62158112A JP S62158112 A JPS62158112 A JP S62158112A JP 29916085 A JP29916085 A JP 29916085A JP 29916085 A JP29916085 A JP 29916085A JP S62158112 A JPS62158112 A JP S62158112A
Authority
JP
Japan
Prior art keywords
silica gel
groups
pores
hydrophobic
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29916085A
Other languages
Japanese (ja)
Other versions
JPH0461809B2 (en
Inventor
Yasuyo Takahata
靖世 高畑
Ryuji Miyagawa
龍次 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKUHIN KENSA KYOKAI
Original Assignee
KAGAKUHIN KENSA KYOKAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKUHIN KENSA KYOKAI filed Critical KAGAKUHIN KENSA KYOKAI
Priority to JP29916085A priority Critical patent/JPS62158112A/en
Priority to US06/946,078 priority patent/US4694092A/en
Priority to EP86118093A priority patent/EP0228090B1/en
Priority to DE8686118093T priority patent/DE3682886D1/en
Publication of JPS62158112A publication Critical patent/JPS62158112A/en
Publication of JPH0461809B2 publication Critical patent/JPH0461809B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To enable the production of partially hydrophilized silica gel having fine pores which are made hydrophobic in the inside of the pores and having silanol groups on the external surface by treating silica gel having introduced hydrophobic groups on the whole surface with low temp. plasma. CONSTITUTION:Silica gel (a) having many fine pores (b) on the surface and hydrophobic groups (e) such as alkyl group (propyl, octyl, etc.,) on the inside surface (C) of the pores is subjected to low temp. plasma treatment under about 0.5Torr, 10-150W output, for 10-120min using sealing gas such as O2, argon, He, etc. Thus, the silica gel has hydrophobic groups (e) such as octadecyl silyl group, etc., on the inside surface of the pores and silanol groups (f) on the external surface (d). Accordingly, the partially hydrophilized silica gel has excellent characteristics in the field of application for adsorbent, catalyst, analytical carrier, etc., due to coexistence of hydrophobic groups and active silanol group. Further, a useful starting material for prepg. a filler to be used for the reverse chromatographic analysis of components coexisting with proteins is obtd.

Description

【発明の詳細な説明】 産業上の利用分』 本発明はシリカゲルの細孔内面部が疎水化されていると
共に、外表面部にシラノール基を有する部分親水化シリ
カゲル及びその製造方法に関するものである。
[Detailed Description of the Invention] Industrial Applications The present invention relates to a partially hydrophilized silica gel in which the inner surface of the pores of the silica gel is made hydrophobic and has silanol groups on the outer surface, and a method for producing the same. .

従来の 術及び発lが解決しようとする間1点従来より
、シリカゲルは多孔性、表面における活性なシラノール
基の存在等の特性を利用して吸着剤、乾燥剤、触媒担体
など、各種用途に使用されており、分析の分野では液体
クロマトグラフィーにおける担体或いは充填剤としての
用途が知られている。
Until now, silica gel has been used in various applications such as adsorbents, desiccants, catalyst supports, etc. by utilizing its characteristics such as porosity and the presence of active silanol groups on the surface. In the analytical field, it is known for its use as a carrier or filler in liquid chromatography.

この液体クロマトグラフィーにおいては、シリカゲルは
主に順相クロマトグラフィーの担体として広く使用され
て“いるが、シリカゲルは上述したように表面にシラノ
ール基が存在しているため。
In this liquid chromatography, silica gel is widely used mainly as a carrier for normal phase chromatography, but as mentioned above, silica gel has silanol groups on its surface.

水、その他の極性溶媒、或いはアミノ酸等のイオン性化
合物を強く吸着し、従ってこのような極性溶媒を使用し
たり、強いイオン性を有する化合物を分離対象とする場
合はシラノール基の保護が必要となる。このために従来
、シリカゲルのシラノ−ル基にアルキル基、特にオクタ
デシルシリル基を導入することが行なわれており、この
種のアルキル基を導入したシリカゲルが極性溶媒を用い
る逆相クロマトグラフィーに多く使用されている。
It strongly adsorbs water, other polar solvents, or ionic compounds such as amino acids, and therefore, protection of the silanol group is required when using such polar solvents or when separating compounds with strong ionicity. Become. For this purpose, alkyl groups, especially octadecylsilyl groups, have traditionally been introduced into the silanol groups of silica gel, and silica gels with this type of alkyl group introduced are often used in reversed-phase chromatography using polar solvents. has been done.

しかし、この疎水性のアルキル基を導入したシリカゲル
は、細孔内面部を含む全表面がアルキル基の導入で疎水
化されているもので、シリカゲルの全表面の一部にのみ
疎水基が導入されたもの或いは一部に疎水基、残りの部
分に親水性有機基が導入されたものはない。
However, in silica gel into which hydrophobic alkyl groups have been introduced, the entire surface, including the inner surface of the pores, has been made hydrophobic by introducing the alkyl groups, and the hydrophobic groups have been introduced into only a portion of the entire surface of the silica gel. There are no products in which a hydrophobic group is introduced into a part or a hydrophilic organic group is introduced into the remaining part.

ところで、最近において、医学、薬学等の分野で蛋白質
と共存する微量成分を分析することが多くなっているが
、このような蛋白質と共存する成分を逆相クロマトグラ
フィーで分析する場合、上述したオクタデシルシリル基
導入シリカゲルを用い、これに蛋白質を含む試料を直接
接触させると、シリカゲルの表面に蛋白質がゲル化する
ため、湾口質を含む試料は最初に塩化アンモニウム等を
添加してPH調整することにより蛋白質を沈殿させ。
By the way, in recent years, it has become common to analyze trace components that coexist with proteins in fields such as medicine and pharmacy. When using silyl group-introduced silica gel and directly contacting it with a sample containing protein, the protein gels on the surface of the silica gel. Therefore, when preparing a sample containing bayous substances, first add ammonium chloride etc. to adjust the pH. Precipitate proteins.

これを遠心分離により除去するという前処理を行なう必
要がある。しかしながら、このような蛋白質の沈殿、遠
心分離による除去はその操作が面倒である上、時間もか
かり、しかも分析すべき成分の共沈のおそれもあり、従
って蛋白質と共存する成分のより簡単な分析法が望まれ
ていた。
It is necessary to perform pretreatment to remove this by centrifugation. However, such precipitation and removal of proteins by centrifugation is complicated and time-consuming, and there is a risk of co-precipitation of the components to be analyzed. Law was desired.

本発明の目的は、細孔内面部にオクタデシルシリル基等
の疎水基が導入され、かつ表面部にシラノール基を有し
、このため疎水基と活性なシラノール基とが共存してい
るので、それ自体吸着剤、触媒や分析用の担体など、各
種の用途を有し、また蛋白質と共存する成分を逆相クロ
マトグラフィーで分析する場合の充填剤を製造するのに
有効に使用される部分親水化シリカゲル及びその製造方
法を提供するものである。
The object of the present invention is to introduce a hydrophobic group such as an octadecylsilyl group into the inner surface of the pore and a silanol group on the surface, so that the hydrophobic group and the active silanol group coexist. Partial hydrophilization has various uses such as adsorbents, catalysts, and carriers for analysis, and is also effectively used to produce packing materials for analyzing components that coexist with proteins by reversed-phase chromatography. The present invention provides a silica gel and a method for producing the same.

間を占を ゛するための手  び 本発明者らは、シリカゲル、特にオクタデシルシリル基
等の疎水基が導入されたシリカゲルの特性を改善するこ
とについて鋭意研究を行なっているうち、オクタデシル
シリル基等の疎水基を導入したシリカゲルにプラズマ処
理を施した場合、意外にもシリカゲルからオクタデシル
シリル基等の疎水基が脱離し、シリカゲル表面のシラノ
ール基が顕出することを見い出すと共に、このような疎
水基の脱離はプラズマ処理された部分にのみ生じ、疎水
基導入シリカゲルのプラズマ処理によりその細孔内面部
の疎水基は脱離せずにそのまま残って外表面部のみがシ
ラノール化されることを知見した。そして、このように
全表面疎水基導入シリカゲルをプラズマ処理することに
より得られた細孔内面部に疎水基を有すると共に、外表
面部にシラノール基を有するシリカゲルは、細孔内が疎
水化しており、かつ外表面部に活性なシラノール基を有
するので、従来の全表面にシラノール基を有するシリカ
ゲル或いは細孔内面部を含む全表面にオクタデシルシリ
ル基等の疎水基が導入されたシリカゲルに比べて親水性
と疎水性の両者の性質を兼ね備えた特異な性状を有し、
吸着剤、触媒や分析用等の担体などとして有用であるこ
とを知得すると共に、この部分親水化シリカゲルの外表
面部のシラノール基には親水性有機基を簡単に導入する
ことができること、そしてこのように細孔内面部に疎水
基を有し、かつ外表面部に親水性有機基が導入されたシ
リカゲルは、意外なことには蛋白質を吸着もゲル化もさ
せず、従って蛋白質と共存する成分の分析にこの部分疎
水化・親水性有機基導入シリカゲルを充填剤としてカラ
ムに充填して用いると、分析対象成分がこのシリカゲル
の□疎水基に吸着し、蛋白質はこのシリカゲルに吸着さ
れたりゲル化されることなくそのままカラムから流出す
るので蛋白質が確実に分離除去され、このため分析対象
成分を効果的に分析に供することができることを知見し
て、本発明を完成するに至ったものである。
The present inventors have been conducting intensive research on improving the properties of silica gel, particularly silica gel into which hydrophobic groups such as octadecylsilyl groups have been introduced. It was discovered that when plasma treatment is applied to silica gel into which hydrophobic groups have been introduced, hydrophobic groups such as octadecylsilyl groups are unexpectedly removed from the silica gel, and silanol groups on the silica gel surface are exposed. It was discovered that the desorption of silica gel occurred only in the plasma-treated area, and that when plasma-treated hydrophobic group-introduced silica gel, the hydrophobic groups on the inner surface of the pores remained intact without being desorbed, and only the outer surface was silanolized. . Silica gel that has hydrophobic groups on the inner surface of the pores and silanol groups on the outer surface obtained by plasma treating silica gel with hydrophobic groups introduced on its entire surface has hydrophobicized inside of the pores. , and has active silanol groups on the outer surface, so it is more hydrophilic than conventional silica gels that have silanol groups on the entire surface or silica gels that have hydrophobic groups such as octadecylsilyl groups introduced on the entire surface including the inner surface of the pores. It has unique properties that combine both hydrophobic and hydrophobic properties.
In addition to learning that this partially hydrophilized silica gel is useful as an adsorbent, a catalyst, and a carrier for analysis, we also learned that hydrophilic organic groups can be easily introduced into the silanol groups on the outer surface of this partially hydrophilized silica gel. Silica gel, which has hydrophobic groups on the inner surface of the pores and hydrophilic organic groups on the outer surface, surprisingly does not adsorb or gel proteins, and therefore is a component that coexists with proteins. When this partially hydrophobicized, hydrophilic organic group-introduced silica gel is used as a packing material in a column for the analysis of The present invention was completed based on the finding that proteins can be reliably separated and removed because they flow out of the column as they are without being absorbed, and that the components to be analyzed can therefore be effectively used for analysis.

従って1本発明はシリカゲルの細孔内面部に疎水基が導
入されていると共に、外表面部にシラノール基を有する
ことを特徴とする部分親水化シリカゲル及びこのような
部分親水化シリカゲルを得る方法として、細孔内面部を
含む全表面に疎水基が導入されたシリカゲルにプラズマ
処理を施して。
Therefore, the present invention provides a partially hydrophilized silica gel characterized by having hydrophobic groups introduced into the inner surface of the pores of the silica gel and silanol groups on the outer surface thereof, and a method for obtaining such partially hydrophilized silica gel. , plasma treatment was applied to silica gel in which hydrophobic groups were introduced on the entire surface including the inner surface of the pores.

外表面部の疎水基を脱離し、シラノール基を顕出させる
ことを特徴とする部分親水化シリカゲルの製造方法を提
供するものである。
The present invention provides a method for producing partially hydrophilized silica gel, which is characterized by removing hydrophobic groups on the outer surface and exposing silanol groups.

以下1本発明につき更に詳しく説明する。The present invention will be explained in more detail below.

本発明に係る部分親水化シリカゲルは、上述したように
シリカゲルの細孔内面部に疎水基を、外表面部にシラノ
ール基を有するものである。第1図はこれを模型的に示
したもので、aがシリカゲル、bが細孔、Cがその内面
部、dが外表面部であり、内面部Cに疎水基eが導入さ
れていると共に、外表面部dにはシリカゲルaに由来す
るシラノール基fが存在している。
As described above, the partially hydrophilized silica gel according to the present invention has hydrophobic groups on the inner surface of the pores of the silica gel and silanol groups on the outer surface. Figure 1 schematically shows this, where a is silica gel, b is a pore, C is its inner surface, d is its outer surface, and a hydrophobic group e is introduced into the inner surface C. , silanol groups f derived from silica gel a are present on the outer surface portion d.

ここで、疎水基としては、本発明シリカゲルの使用目的
等に応じて適宜選択される。例えば、液体カラムクロマ
イトグラフィー用の充填剤等として用いる場合は、プロ
ピル、オクチル、オクタデシル基等のアルキル基、シア
ノプロピル基等のシアノアルキル基、アミノプロピル基
等のアミノアルキル基などが挙げられる。
Here, the hydrophobic group is appropriately selected depending on the intended use of the silica gel of the present invention. For example, when used as a packing material for liquid column chromatography, examples thereof include alkyl groups such as propyl, octyl, and octadecyl groups, cyanoalkyl groups such as cyanopropyl groups, and aminoalkyl groups such as aminopropyl groups.

なお、本発明シリカゲルの粒子形状に制限はなく1球状
、破砕状等、適宜な形状のものが用いられ、また粒径、
細孔の大きさ、表面積なども本発明シリカゲルの使用目
的等に応じて選定される。
The shape of the particles of the silica gel of the present invention is not limited, and any suitable shape such as spherical or crushed shape may be used, and the particle size,
The pore size, surface area, etc. are also selected depending on the intended use of the silica gel of the present invention.

本発明の上述した細孔内面部に疎水基が導入され、外表
面部にシラノール基を有する部分親水化シリカゲルは、
細孔内面部を含む全表面に疎水基が導入されたシリカゲ
ルにプラズマ処理を施すことにより効率よく得ることが
できるもので、このプラズマ処理により外表面部の疎水
基が脱離され、シリカゲルに由来する表面シラノール基
が顕われるものである。
The partially hydrophilized silica gel of the present invention in which hydrophobic groups are introduced into the inner surface of the pores and has silanol groups on the outer surface,
It can be efficiently obtained by plasma treatment of silica gel in which hydrophobic groups have been introduced on the entire surface including the inner surface of the pores.This plasma treatment removes the hydrophobic groups on the outer surface and removes the hydrophobic groups from the silica gel. The surface silanol groups appear.

この場合、プラズマ処理としては低温プラズマ処理が好
適に採用され、これにより全表面に疎水基が導入された
シリカゲルに対する熱作用を殆んど与えず、しかも外表
面部のみを処理することができる。プラズマ処理条件と
しては、圧力0.1〜2Torr、特に0 、5 To
rr前後、出力10〜150W、特ニ80 W前後、処
理時間10〜120分、特に60分前後の条件を採用す
ることができ、また封入ガスとしては酸素、水蒸気、空
気、アルゴン、ヘリウム、炭酸ガス等の無機ガスが使用
され、特に酸素ガスが好適に用いられる。
In this case, low-temperature plasma treatment is suitably employed as the plasma treatment, whereby only the outer surface can be treated with almost no thermal effect on the silica gel into which hydrophobic groups have been introduced over the entire surface. The plasma processing conditions include a pressure of 0.1 to 2 Torr, especially 0.5 Torr.
Conditions such as around rr, output of 10 to 150 W, especially around 80 W, and processing time of 10 to 120 minutes, especially around 60 minutes can be adopted, and the sealed gas can be oxygen, water vapor, air, argon, helium, carbonate. Inorganic gases such as gases are used, and oxygen gas is particularly preferably used.

なお、全表面に疎水基が導入されたシリカゲルは従来公
知の方法で製造でき、各種市販品を用いることもできる
Note that silica gel having hydrophobic groups introduced onto its entire surface can be produced by a conventionally known method, and various commercially available products can also be used.

本発明の部分親水化シリカゲルは、細孔内が疎水化され
、外表面部に活性なシラノール基を有するため、それ自
体吸着剤、触媒担体、分析用担体などとして有効に使用
できるほか、シラノール基に親水性有機基を導入した新
規シリカゲルの製造にも使用される。
The partially hydrophilic silica gel of the present invention has pores made hydrophobic and has active silanol groups on the outer surface, so it can be effectively used as an adsorbent, catalyst carrier, analytical carrier, etc. It is also used to produce new silica gels with hydrophilic organic groups introduced into them.

即ち、細孔内が疎水化され、外表面部にシラノール基を
有するシリカゲルに対し、シラノールと反応する化学結
合基を有すると共に、親水性有機基又は加水分解等によ
り親水性有機基に変わり得る有機基を有する化合物を反
応させ、必要により反応後有機基を親水性化することに
より、親水性有機基を導入し得るものである。
In other words, silica gel whose pores are hydrophobic and has silanol groups on its outer surface has a chemical bonding group that reacts with silanol, and a hydrophilic organic group or an organic group that can be converted into a hydrophilic organic group by hydrolysis, etc. A hydrophilic organic group can be introduced by reacting a compound having a group and, if necessary, making the organic group hydrophilic after the reaction.

この場合、このようなシラノール基との反応性化学結合
基を有し、かつ親水性有機基もしくは親水化可能な有機
基を有する化合物としては、特に限定するものではない
が、β−(3,4−エポキシシクロヘキシル)エチルト
リメトキシシラン。
In this case, the compound having a chemical bonding group reactive with such a silanol group and having a hydrophilic organic group or a hydrophilic organic group is not particularly limited, but β-(3, 4-Epoxycyclohexyl)ethyltrimethoxysilane.

γ−グリシドキシプロピルトリメトキシシラン。γ-glycidoxypropyltrimethoxysilane.

γ−グリシドキシプロビルメチルジェトキシシラン、γ
−グリシドキシプロビルジメチルメトキシシラン、γ−
グリシドキシプロピルジメチルクロルシランなどが挙げ
られる。
γ-Glycidoxypropyl methyljethoxysilane, γ
-Glycidoxyprobyldimethylmethoxysilane, γ-
Examples include glycidoxypropyldimethylchlorosilane.

なお、これらの化合物と疎水基及びシラノール基を有す
るシリカゲルとの反応を行なう場合の条件、或いは必要
により行なわれる親水化の条件は。
The conditions for reacting these compounds with silica gel having a hydrophobic group and silanol group, or the conditions for making them hydrophilic if necessary, are as follows.

使用する化合物の種類等に応じて選択される。It is selected depending on the type of compound used.

このシラノール基に親水性有機基を導入することによっ
て得られた部分親水化シリカゲルも、細孔内面部に疎水
基が導入され、外表面部に親水性有機基が導入され、疎
水基と親水基とが共存しているので、吸着剤、触媒担体
、分析用担体等として有効に使用されるが、特に蛋白質
と共存する成分を分析する場合の分離剤或いは濃縮剤等
として好適に用いられる。即ち、この疎水基を細孔内面
部に有し、親水性有機基を外表面部に有するシリカゲル
には蛋白質が全く作用せず、吸着やゲル化がないので、
蛋白質と分析対象成分とを導入すると分析対象成分はこ
のシリカゲルの疎水基には吸着されるが、蛋白質はその
ままこのシリカゲル外に排出される。従って、蛋白質中
の微量成分を分析する場合、従来のように蛋白質を沈殿
し、遠心分離により除去するという面倒で時間のかかる
前処理を必要とせず、親水性有機基導入シリカゲルを充
填したカラムに試料を通すだけで蛋白質が確実に分離溶
出され、微量成分は保持されるのでこれを簡単に分析で
きる。また、このシリカゲルは、このような性質を利用
して蛋白質の精製にも好適に用いられる。
Partially hydrophilic silica gel obtained by introducing a hydrophilic organic group into this silanol group also has a hydrophobic group introduced into the inner surface of the pores and a hydrophilic organic group introduced into the outer surface. Because of this coexistence, it is effectively used as an adsorbent, catalyst carrier, analytical carrier, etc., and is especially suitable as a separating agent or concentrating agent when analyzing components that coexist with proteins. In other words, proteins do not act on the silica gel, which has hydrophobic groups on the inner surface of the pores and hydrophilic organic groups on the outer surface, and there is no adsorption or gelation.
When a protein and a component to be analyzed are introduced, the component to be analyzed is adsorbed to the hydrophobic groups of the silica gel, but the protein is directly discharged from the silica gel. Therefore, when analyzing trace components in proteins, there is no need for the troublesome and time-consuming pretreatment of precipitating the proteins and removing them by centrifugation as in the past. Proteins are reliably separated and eluted just by passing the sample through, and trace components are retained, making it easy to analyze them. Moreover, this silica gel is suitably used for protein purification by taking advantage of such properties.

発明の詳細 な説明したように、本発明の部分親水化シリカゲルは、
各種用途に好適に使用することができ、また本発明の製
造方法により、かかる部分親水化シリカゲルを効率よく
確実に得ることができる。
As described in detail of the invention, the partially hydrophilized silica gel of the present invention has
It can be suitably used for various purposes, and by the production method of the present invention, such partially hydrophilized silica gel can be efficiently and reliably obtained.

以下、実施例と参考例を示し、本発明を具体的に説明す
るが1本発明は下記の実施例に制限されるものではない
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to examples and reference examples, but the present invention is not limited to the following examples.

〔実施例1〕 細孔内面部を含む全表面にオクタデシルシリル基が導入
された平均粒径5pnのシリカゲル約0.8 gを容量
50mQのナス型フラスコに入れ、このナス型フラスコ
内を真空ポンプで約1O−2T orrに減圧した後、
酸素ガスを導入して0.45Torrに調整した。次い
で、このナス型フラスコを互いに所定間隔を存して離間
対向させた2枚の銅製電極板の間に位置するよう配置し
てナス型フラスコを回転させ、同時に電極板に周波数1
3.56MHz、実効出力SOWの高周波を印加し、ナ
ス型フラスコ内に酸素プラズマを発生持続させ、酸素プ
ラズマにより上記シリカゲルを60分間処理した。
[Example 1] Approximately 0.8 g of silica gel with an average particle size of 5 pn, in which octadecylsilyl groups have been introduced into the entire surface including the inner surface of the pores, was placed in a 50 mQ eggplant-shaped flask, and the inside of this eggplant-shaped flask was pumped with a vacuum pump. After reducing the pressure to about 1O-2T orr,
Oxygen gas was introduced to adjust the pressure to 0.45 Torr. Next, this eggplant-shaped flask was placed between two copper electrode plates facing each other with a predetermined distance between them, and the eggplant-shaped flask was rotated. At the same time, a frequency of 1 was applied to the electrode plates.
A high frequency wave of 3.56 MHz and effective output SOW was applied to generate and sustain oxygen plasma in the eggplant-shaped flask, and the silica gel was treated with the oxygen plasma for 60 minutes.

上述したプラズマ処理によるシリカゲルの外表面部の経
時変化を赤外線吸収スペクトル(K B rdisk法
)で測定したところ、第2図に示す結果が得られた。ま
た、プラズマ処理前後のシリカゲルの元素分析を行なっ
たところ、第1表に示す結果が得られた。
When the change over time of the outer surface of the silica gel due to the plasma treatment described above was measured using an infrared absorption spectrum (KBRdisk method), the results shown in FIG. 2 were obtained. Further, elemental analysis of the silica gel before and after plasma treatment was performed, and the results shown in Table 1 were obtained.

第1表 第2図の結果は、全表面にオクタデシルシリル基を導入
したシリカゲルに対するプラズマ処理の経時に従い、赤
外線吸収スペクトルの2900ロー1近傍のメチレン基
の吸収が減少し、逆に3400(1)−1近傍の水酸基
の吸収が増加していることを示し、また第1表の結果は
プラズマ処理後の炭素及び水素の減少を示すものであり
、双方の結果からシリカゲルの外表面部のオクタデシル
シリル基がシラノール基に変化していると判断された。
The results shown in Table 1 and Figure 2 show that as the plasma treatment of silica gel with octadecylsilyl groups introduced into its entire surface increases over time, the absorption of methylene groups in the vicinity of 2900 rho1 in the infrared absorption spectrum decreases, and conversely, the absorption of methylene groups in the vicinity of 2900 rho1 decreases. This shows that absorption of hydroxyl groups near -1 increases, and the results in Table 1 show that carbon and hydrogen decrease after plasma treatment. Both results show that octadecylsilyl on the outer surface of silica gel It was determined that the group had changed to a silanol group.

また、酸素プラズマ処理されたシリカゲル及び未処理の
シリカゲルをそれぞれ充填剤として4.6mφX30m
mのカラムに充填して固定相を形成し、また移動相とし
て75%CH30H水溶液からなる溶離液を流速0 、
5 +++ll/minにて移動させ、それぞれにベン
ゼン1000ppm、ビフェニル20ppmを含有する
メタノール試料液を5μ悲注入して固定相を通過した液
のUVスペクトルを測定した。なお、UVスペクトルの
測定はUV検出波長254nm、感度0.32AUFS
で行なった。
In addition, 4.6 mφ x 30 m of oxygen plasma-treated silica gel and untreated silica gel were used as fillers.
m column to form a stationary phase, and an eluent consisting of a 75% CH30H aqueous solution was used as a mobile phase at a flow rate of 0.
The tube was moved at a rate of 5 +++ 1/min, and 5 μm of a methanol sample solution containing 1000 ppm of benzene and 20 ppm of biphenyl was injected into each sample, and the UV spectrum of the liquid that had passed through the stationary phase was measured. In addition, the UV spectrum measurement was performed using a UV detection wavelength of 254 nm and a sensitivity of 0.32 AUFS.
I did it.

上述したプラズマ処理を施したシリカゲルを充填剤とし
て用いた場合の測定結果を第3図に、未処理のシリカゲ
ルを充填剤として用いた場合の■す定結果を第4図に示
す。なお、第3図、第4図においてIはベンゼンの検出
ピーク、IIはビフェニルの検出ピークを示すものであ
る。また、第3図、第4図のベンゼン及びビフェニルの
検出ピークから得られたベンゼンとビフェニルの分難性
能を第2表に示す。
FIG. 3 shows the measurement results when the plasma-treated silica gel described above was used as the filler, and FIG. 4 shows the measurement results when the untreated silica gel was used as the filler. In FIGS. 3 and 4, I indicates the detected peak of benzene, and II indicates the detected peak of biphenyl. Further, Table 2 shows the separation performance of benzene and biphenyl obtained from the detection peaks of benzene and biphenyl in FIGS. 3 and 4.

第3図及び第4図の結果から、プラズマ処理されたシリ
カゲルは、未処理の全表面にオクタデシルシリル基が導
入されたシリカゲルに比しベンゼンとビフェニルとの分
離性能にやや劣るものの非極性のベンゼンとビフェニル
を分離し得、また全表面にシラノール基を有するシリカ
ゲルを液体クロマトグラフ用充填剤として用いた場合に
は、非極性のベンゼンやビフェニルは吸着分離しないこ
とから、プラズマ処理されたオクタデシルシリル見導入
シリカゲルが部分親水化されていることは明らかである
From the results shown in Figures 3 and 4, plasma-treated silica gel has a slightly inferior separation performance for benzene and biphenyl compared to untreated silica gel in which octadecylsilyl groups are introduced on the entire surface, but the plasma-treated silica gel has a nonpolar benzene and biphenyl separation performance. Furthermore, when silica gel having silanol groups on the entire surface is used as a packing material for liquid chromatography, non-polar benzene and biphenyl are not adsorbed and separated. It is clear that the introduced silica gel has been partially hydrophilized.

〔実施例2〕 実施例1の方法において、酸素ガスに代えて水蒸気を導
入してナス型フラスコ内を0 、3 Torrに調整し
、また、高周波の実効出力を50W、プラズマ処理時間
30分としたほかは実施例1と同様にして細孔内面部を
含む全表面にオクタデシルシリル基が導入されたシリカ
ゲルをプラズマ処理(水蒸気プラズマ処理)した。
[Example 2] In the method of Example 1, water vapor was introduced instead of oxygen gas to adjust the inside of the eggplant-shaped flask to 0.3 Torr, and the effective output of the high frequency was 50 W and the plasma treatment time was 30 minutes. A silica gel having octadecylsilyl groups introduced into the entire surface including the inner surface of the pores was subjected to plasma treatment (steam plasma treatment) in the same manner as in Example 1 except for the above.

処理されたシリカゲルにつき実施例1と同様にして赤外
線吸収スペクトルを測定すると共に、元素分析を行なっ
た結果、実施例1と同様にシリカゲルの外表面部がシラ
ノール基に変化していることが認められた。
As a result of measuring the infrared absorption spectrum of the treated silica gel in the same manner as in Example 1 and conducting elemental analysis, it was found that the outer surface of the silica gel had changed to silanol groups as in Example 1. Ta.

〔実施例3〕 実施例1の方法において酸素ガスに代えてヘリウムガス
を導入してナス型フラスコ内を0.6Torrに調整し
、また、高周波の実効出力を70W、プラズマ処理時間
40分としたほかは実施例1と同様にして細孔内面部を
含む全表面にオクタデシルシリル基が導入されたシリカ
ゲルをプラズマ処理した。
[Example 3] In the method of Example 1, helium gas was introduced instead of oxygen gas to adjust the inside of the eggplant-shaped flask to 0.6 Torr, and the effective output of the high frequency was 70 W and the plasma treatment time was 40 minutes. The silica gel in which octadecylsilyl groups were introduced into the entire surface including the inner surface of the pores was subjected to plasma treatment in the same manner as in Example 1 except for the above.

処理されたシリカゲルにつき実施例1と同様にして赤外
線吸収スペクトルを測定すると共に、元素分析を行なっ
た結果、実施例1と同様にシリカゲルの外表面部がシラ
ノール基に変化していることが認められた。
As a result of measuring the infrared absorption spectrum of the treated silica gel in the same manner as in Example 1 and conducting elemental analysis, it was found that the outer surface of the silica gel had changed to silanol groups as in Example 1. Ta.

〔参考例〕[Reference example]

実施例1により得られた細孔内面部にオクタデシルシリ
ル基が導入され、外表面部にシラノール基を有する部分
親水化シリカゲル0.8 gをトリエチルアミン3IT
1gを含むトルエン溶液5muに懸濁させた後、水10
■、γ−グリシドキシトリメトキシシラン0.37 g
を加え、還流下に17時間反応させた。次いで、吸引濾
過して固体相を分離回収し、これをトルエン及びアセト
ンで順次洗浄し、乾燥した後、約1o−4規定硫酸水溶
液中に懸濁させ、還流下で2時間加水分解反応を行なっ
た。
0.8 g of the partially hydrophilized silica gel obtained in Example 1, which had octadecylsilyl groups introduced into the inner surface of the pores and silanol groups on the outer surface, was mixed with triethylamine 3IT.
After suspending in 5 mu of toluene solution containing 1 g, 10 mu of water
■, γ-glycidoxytrimethoxysilane 0.37 g
was added, and the mixture was reacted under reflux for 17 hours. Next, the solid phase was separated and collected by suction filtration, washed successively with toluene and acetone, dried, suspended in an approximately 10-4N aqueous sulfuric acid solution, and subjected to a hydrolysis reaction under reflux for 2 hours. Ta.

処理物を分離、洗浄後、80℃で乾燥して、下記式に示
すように前記シラノール基のOH基を置換シロキシ基に
変えた、細孔内面部にオクタデシルシリル基、外表面部
に置換シロキシ基が導入された部分親水化シリカゲルを
得た。
After separating and washing the treated product, it is dried at 80°C, and as shown in the formula below, the OH group of the silanol group is changed to a substituted siloxy group, with an octadecylsilyl group on the inner surface of the pore and a substituted siloxy group on the outer surface. Partially hydrophilic silica gel into which groups were introduced was obtained.

次に、上記方法で1!)られた置換シロキシ基導入部分
親水化シリカゲルを濃縮カラム用充填剤として使用した
下記実験を行なった。
Next, use the above method to get 1! The following experiment was conducted using the partially hydrophilized silica gel into which a substituted siloxy group was introduced as a packing material for a concentration column.

実験1 第5図に示した装置を使用し、人血清中のフエノバルビ
タールの分析を行なった。
Experiment 1 Using the apparatus shown in Figure 5, phenobarbital in human serum was analyzed.

ここで、第5図中1は試料ループ2が接続された第1六
方バルブ、3は濃縮カラム4及び分析カラム5がそれぞ
れ接続された第2六方バルブで、まず試料を注入する場
合は、第1六方バルブ1を図の実線で示す流路状態とし
、試料を第1−六方バルブ1の試料溶液注入口6から試
料溶液を導入する。これにより試料溶液は第1六方バル
ブ1の第1流路口1aから試料ループ2を通って所定量
の試料溶液が試料ループ2に採取され、余剰の試料溶液
は第4流路口1cl、第3流路口1cを順次経てドレン
7に排出される。次いで、試料ループ2に採取された試
料溶液を濃縮カラム4に濃縮する場合は、第1六方バル
ブ1を点線で示す流路状態。
Here, in Fig. 5, 1 is the first six-way valve to which the sample loop 2 is connected, 3 is the second six-way valve to which the concentration column 4 and the analysis column 5 are respectively connected. 1. The hexagonal valve 1 is placed in the flow path state shown by the solid line in the figure, and a sample solution is introduced from the sample solution inlet 6 of the 1st hexagonal valve 1. As a result, the sample solution passes through the sample loop 2 from the first flow path port 1a of the first hexagonal valve 1, and a predetermined amount of the sample solution is collected into the sample loop 2. The water is discharged to the drain 7 through the outlet 1c in sequence. Next, when the sample solution collected in the sample loop 2 is concentrated in the concentration column 4, the first hexagonal valve 1 is shown as a flow path state by a dotted line.

第2六六バルブ3を実線で示す流路状態とし、ポンプ8
を作動させて濃縮用キャリヤー容器9内の濃縮用キャリ
ヤーを第1六方バルブの第5流路口1eから導入する。
The 266th valve 3 is in the flow path state shown by the solid line, and the pump 8
is operated to introduce the concentration carrier in the concentration carrier container 9 from the fifth channel port 1e of the first hexagonal valve.

これにより、キャリヤーは第4流路口1dを通り、試料
ループ2内の試料溶液を押し出し、第1流路口1a、第
6流路1fを順次経て、第2六方バルブ3の第1流路口
3aに導入され、更に第6流路ロ3fから濃縮カラム4
に導入されて試料溶液がこの濃縮カラム4で濃縮される
と共に、このカラム4を通過した液は第3流路口3c、
第2流路口3bを順次経てドレン10に排出される。そ
して、前記濃縮カラム4内の試料を分析カラム5に送り
、分析を行なう場合は、第2六方バルブ3を点線に示す
流路状態とし、ポンプ11を作動させて溶離液容器12
内の溶離液を第二六方バルブ3の第4流路口3dに導入
するもので、これにより溶離液は第3流路口3c、濃縮
カラム4.第6流路口3f、第5流路口3eを順次経て
分析カラム5に流入し、溶離液により溶離せしめられた
試料はこの分析カラム6から検出器13に送られ、分析
される。
As a result, the carrier passes through the fourth channel port 1d, pushes out the sample solution in the sample loop 2, sequentially passes through the first channel port 1a and the sixth channel 1f, and enters the first channel port 3a of the second hexagonal valve 3. is introduced into the concentration column 4 from the sixth flow path 3f.
The sample solution is concentrated in this concentration column 4, and the liquid that has passed through this column 4 is introduced into the third channel port 3c,
The water is discharged to the drain 10 through the second flow path port 3b in sequence. When the sample in the concentration column 4 is sent to the analysis column 5 for analysis, the second hexagonal valve 3 is set to the flow path shown by the dotted line, the pump 11 is operated, and the eluent container 12 is
The eluent is introduced into the fourth flow path port 3d of the second hexagonal valve 3, so that the eluent is transferred to the third flow path port 3c and the concentration column 4. The sample flows into the analytical column 5 sequentially through the sixth channel port 3f and the fifth channel port 3e, and is eluted with the eluent.The sample is sent from the analytical column 6 to the detector 13 and analyzed.

なお、第5図中14は分流用抵抗ループ、15゜16は
それぞれ三方ジヨイントであり、試料濃縮時において濃
縮用キャリヤーはその一部が一方の三方ジヨイント15
から分流抵抗ループ14に分流され、他方の三方ジヨイ
ント16において、第1六方バルブ1の第6流路ロ1f
から第2六方バルブ3の第1流路口3aに向けて流れる
試料ループ2からの試料溶液と合流し、これにより試料
が希釈されるものである。
In Fig. 5, reference numeral 14 indicates a resistor loop for diversion, and 15° and 16 indicate three-way joints, and when concentrating a sample, part of the concentration carrier is connected to one of the three-way joints 15.
At the other three-way joint 16, the sixth flow path 1f of the first six-way valve 1
The sample solution from the sample loop 2 flowing from the sample loop 2 toward the first flow path port 3a of the second hexagonal valve 3 joins with the sample solution, thereby diluting the sample.

而して、上記した装置において、試料溶液として、6倍
に希釈した人血清にフエノバルビタールを53ppm添
加した試料A、水にフェノバルビタールを53ppVI
溶解した試料B1人血清を5倍に希釈した試料Cをそれ
ぞれ使用しく注入量50μ(1) 、 濃縮用キャリヤ
ーとして水、溶離液として50%メタノール水溶液を使
用しくいずれも流速1mQ/m1n)、上述した方法に
より試料の濃縮、分析を行なった。この場合、濃縮カラ
ムは4.6mφX30mmの大きさとし、前記置換シロ
キシ基導入部分親水化シリカゲルを充填し、分析カラム
は4.6mmφX250mmの大きさとし、Z orb
ax○DS(デュポン社製)を充填した。また、濃縮時
において、一方の三方ジヨイント15における分流比(
希釈比)は1:3.84(試料ループ導入量:分流用抵
抗ループ導入量)とし、分析は波長254nm、感度0
.32AUFSで行なった。
In the above-mentioned apparatus, the sample solutions were sample A, which was prepared by adding 53 ppm of phenobarbital to human serum diluted 6 times, and sample A, which was prepared by adding 53 ppm of phenobarbital to water.
Dissolved sample B and sample C, which are diluted human serum 5 times, were used.The injection volume was 50μ (1), water was used as the carrier for concentration, and a 50% aqueous methanol solution was used as the eluent (both at a flow rate of 1mQ/mln), as described above. Samples were concentrated and analyzed using the method described above. In this case, the concentration column has a size of 4.6 mφ x 30 mm, and is filled with the above-mentioned substituted siloxy group-introduced partially hydrophilized silica gel, and the analytical column has a size of 4.6 mmφ x 250 mm, and the Z orb
It was filled with ax○DS (manufactured by DuPont). In addition, during concentration, the dividing ratio at one three-way joint 15 (
The dilution ratio) was 1:3.84 (sample loop introduction amount: diversion resistance loop introduction amount), and the analysis was conducted at a wavelength of 254 nm and a sensitivity of 0.
.. It was performed at 32 AUFS.

以上の結果を第6図(試料A)、第7図(試料B)、第
8図(試料C)に示す。
The above results are shown in FIG. 6 (sample A), FIG. 7 (sample B), and FIG. 8 (sample C).

第6,8図のクロマ1ヘゲラムを第7図のクロマトグラ
ムと比較してみると、第6,8図の試料は人血清を含む
にもかかわらず、第7図の人血清を含まない試料と同様
にクロマトグラムに人血清に由来する蛋白質のピークが
現われていないことが認められる。このことは、濃縮の
段階で試料溶液を濃縮カラムに導入した時に試料溶液中
の人血清が濃縮カラムに充填された置換シロキシ基導入
部分親水化シリカゲルに吸着したりゲル化しまたすする
ことなく、濃縮用キャリヤーと共に濃縮カラムから排出
されたことを示すもので、実際、ドレン10に排出され
た溶液から人血清の存在が確認された。また、このこと
から、第6,7図のクロマトグラムを比較すれば明らか
なように、蛋白質(人血清)中のフェノバルビタールが
蛋白質に全く影響されることなく確実に分析し得ること
が認められ、置換シロキシ基導入部分親水化シリカゲル
を濃縮用充填剤として用いることにより、フェノバルビ
タールと蛋白質とが混合されていても、フェノバルビタ
ールと蛋白質とを確実に分離し、フェノバルビタールの
みを置換シロキシ基導入部分親水化シリカゲルに吸着し
得ることが認められた。
Comparing the chromatograms of Chroma 1 Hegerum in Figures 6 and 8 with the chromatograms in Figure 7, we find that although the samples in Figures 6 and 8 contain human serum, the sample in Figure 7 does not contain human serum. Similarly, it is observed that the peak of proteins derived from human serum does not appear in the chromatogram. This means that when the sample solution is introduced into the concentration column during the concentration stage, the human serum in the sample solution does not adsorb or gelatinize on the substituted siloxy group-introduced hydrophilic silica gel filled in the concentration column. This indicates that the solution was discharged from the concentration column together with the concentration carrier, and the presence of human serum was actually confirmed in the solution discharged into the drain 10. Furthermore, from this, as is clear from comparing the chromatograms in Figures 6 and 7, it is recognized that phenobarbital in proteins (human serum) can be reliably analyzed without being affected by proteins at all. By using hydrophilic silica gel as a packing material for concentration, even if phenobarbital and protein are mixed, phenobarbital and protein can be reliably separated, and only phenobarbital can be introduced with a substituted siloxy group. It was found that it could be adsorbed on partially hydrophilized silica gel.

更に、蛋白質除去能を検討するために下記の実験を行な
った。
Furthermore, the following experiment was conducted to examine protein removal ability.

来盈又 上記した外表面部に置換シロキシ基を有する部分親水化
シリカゲル及び全表面にオクタデシルシリル基を有する
シリカゲルをカラムに充填し、このカラムに50〜50
0ppmの牛血清アルブミンを通してこのカラムを通過
する牛血清アルブミン量を測定した。結果を第9図に示
す。なお、図中I■は外表面部に置換シロキシ基を有す
る部分親水化シリカゲル、■は全表面にオクタデシルシ
リル基を有するシリカゲルの結果である。また、分析条
件は下記の通りである。
In addition, a column was filled with the partially hydrophilized silica gel having a substituted siloxy group on the outer surface and the silica gel having an octadecylsilyl group on the entire surface, and the column was filled with 50 to 50
The amount of bovine serum albumin passing through this column was measured through 0 ppm bovine serum albumin. The results are shown in Figure 9. In the figure, I■ is the result of partially hydrophilized silica gel having substituted siloxy groups on the outer surface, and ■ is the result of silica gel having octadecylsilyl groups on the entire surface. Moreover, the analysis conditions are as follows.

分析条件:カラム  4.6mφ×301ffII溶離
液  リン酸緩衝液(pH= 7 )測定波長 280
nm 感度 0.04AUFS 注入量  10μQ 第9図の結果より、外表面部に置換シロキシ基を有する
部分親水化シリカゲルは、牛血清アルブミン量に比例し
てピーク高さが高くなり、従ってこのことから牛唾清ア
ルブミン(蛋白質)はこの部分親水化シリカゲルに捕捉
されることなく通過していることが知見される。これに
対し、オクタデシルシリル基を全表面に有するシリカゲ
ルは牛血清アルブミンに吸着され、カラムを殆んど通過
しないものであった。
Analysis conditions: Column 4.6mφ x 301ffII Eluent Phosphate buffer (pH = 7) Measurement wavelength 280
nm Sensitivity 0.04AUFS Injection volume 10μQ From the results shown in Figure 9, partially hydrophilized silica gel having substituted siloxy groups on its outer surface has a peak height that increases in proportion to the amount of bovine serum albumin. It is found that salivary albumin (protein) passes through this partially hydrophilized silica gel without being captured. In contrast, silica gel having octadecylsilyl groups on its entire surface was adsorbed to bovine serum albumin and hardly passed through the column.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の部分親水化シリカゲルを模型的に説明
する部分断面図、第2図は全表面にオクタデシルシリル
基が導入されたシリカゲルに低温プラズマ処理を施した
場合における経時的な外表面部変化を示す赤外線吸収ス
ペクトル、第3図は本発明の部分親水化シリカゲルを充
填剤として用いてベンゼン及びビフェニル混合溶液を通
過させた場合の流出液の紫外線吸収スペクトル、第4図
は全表面にオクタデシルシリル基が導入されたシリカゲ
ルを充填剤として用いてベンゼン及びビフェニル混合溶
液を通過させた場合の流出液の紫外線吸収スペクトル、
第5図は置換シロキシ基導入部分親水化シリカゲルの蛋
白質分離特性を調べるために用いた装置のブローチヤー
ド、第6図乃至第8図は同装置を用いて試料分析を行な
った場合のクロマトグラムで、第6図は試料として人血
清中にフェノバルビタールを添加したものを用いた場合
のクロマトグラム、第7図は水にフェノバルビタールを
添加した試料のクロマトグラム、第8図は人血清のクロ
マトグラム、第9図は牛血清アルブミンを外表面部に置
換シロキシ基を有する部分親水化シリカゲル及び全表面
にオクタデシルシリル基を有するシリカゲルを充填した
カラムに通した場合の牛血清アルブミンの通過量を示す
グラフである。 a・・・シリカゲル、b・・・細孔、C・・・その内面
部、d・・・外表面部、e・・・疎水基、f・・・シラ
ノール基。 出願人 財団法人 化学品検査協会 代理人 弁理士 小 島 隆 司 第2 図                    m
プi艮′マじ1t7を救(cAづ 第3図 It@L!+1ic#)<1M14F/l(?)交L 
斗4 g轡 間 cqrン 0   L   If   6   g   to  
 /L   t4イ’t 44 II4 k’l (?
)0  2−  1#   6   g   10  
 /L  7チ僅+!T叫聞(分)
Figure 1 is a partial cross-sectional view schematically illustrating the partially hydrophilized silica gel of the present invention, and Figure 2 is the outer surface over time of a silica gel with octadecylsilyl groups introduced into its entire surface that is subjected to low-temperature plasma treatment. Figure 3 shows the ultraviolet absorption spectrum of the effluent when a mixed solution of benzene and biphenyl is passed through it using the partially hydrophilized silica gel of the present invention as a filler. Ultraviolet absorption spectrum of the effluent when a mixed solution of benzene and biphenyl is passed through using silica gel into which an octadecylsilyl group is introduced as a filler,
Figure 5 shows the broochyard of the device used to investigate the protein separation properties of hydrophilic silica gel with substituted siloxy groups introduced, and Figures 6 to 8 show chromatograms obtained when sample analysis was performed using the same device. , Figure 6 is a chromatogram using human serum with phenobarbital added as a sample, Figure 7 is a chromatogram of a sample with phenobarbital added to water, and Figure 8 is a chromatogram of human serum. , FIG. 9 is a graph showing the amount of bovine serum albumin passed through a column filled with partially hydrophilized silica gel having substituted siloxy groups on the outer surface and silica gel having octadecylsilyl groups on the entire surface. It is. a... Silica gel, b... Pore, C... Inner surface portion, d... Outer surface portion, e... Hydrophobic group, f... Silanol group. Applicant Chemical Inspection Association Agent Patent Attorney Takashi Kojima Figure 2 m
Pui 艮′ Seriously 1t7 saved (cAzu 3rd figure It@L!+1ic#)<1M14F/l(?) Interchange L
斗4 g轡between cqrn0 L If 6 g to
/L t4i't 44 II4 k'l (?
)0 2- 1# 6 g 10
/L 7chi only +! T shout (minutes)

Claims (1)

【特許請求の範囲】 1、シリカゲルの細孔内面部に疎水基が導入されている
と共に、外表面部にシラノール基を有することを特徴と
する部分親水化シリカゲル。 2、疎水基がアルキル基である特許請求の範囲第1項記
載の部分親水化シリカゲル。 3、細孔内面部を含む全表面に疎水基が導入されたシリ
カゲルにプラズマ処理を施して、外表面部の疎水基を脱
離し、シラノール基を顕出させることを特徴とするシリ
カゲルの細孔内面部に疎水基が導入されていると共に、
外表面部にシラノール基を有する部分親水化シリカゲル
の製造方法。 4、疎水基がアルキル基である特許請求の範囲第3項記
載の製造方法。
[Scope of Claims] 1. A partially hydrophilized silica gel characterized by having a hydrophobic group introduced into the inner surface of the pores of the silica gel and having a silanol group on the outer surface. 2. The partially hydrophilized silica gel according to claim 1, wherein the hydrophobic group is an alkyl group. 3. Silica gel pores characterized by subjecting silica gel in which hydrophobic groups have been introduced to the entire surface, including the inner surface of the pores, to plasma treatment to remove the hydrophobic groups on the outer surface and expose silanol groups. Hydrophobic groups are introduced into the inner surface, and
A method for producing partially hydrophilized silica gel having silanol groups on its outer surface. 4. The manufacturing method according to claim 3, wherein the hydrophobic group is an alkyl group.
JP29916085A 1985-12-27 1985-12-27 Partially hydrophilized silica gel and its production Granted JPS62158112A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP29916085A JPS62158112A (en) 1985-12-27 1985-12-27 Partially hydrophilized silica gel and its production
US06/946,078 US4694092A (en) 1985-12-27 1986-12-24 Partially hydrophilicized silica gel and process for producing the same
EP86118093A EP0228090B1 (en) 1985-12-27 1986-12-29 Partially hydrophilicized silica sel and process for producing the same
DE8686118093T DE3682886D1 (en) 1985-12-27 1986-12-29 PARTLY HYDROPHYLIZED SILICONE GEL AND METHOD FOR THE PRODUCTION THEREOF.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29916085A JPS62158112A (en) 1985-12-27 1985-12-27 Partially hydrophilized silica gel and its production

Publications (2)

Publication Number Publication Date
JPS62158112A true JPS62158112A (en) 1987-07-14
JPH0461809B2 JPH0461809B2 (en) 1992-10-02

Family

ID=17868906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29916085A Granted JPS62158112A (en) 1985-12-27 1985-12-27 Partially hydrophilized silica gel and its production

Country Status (1)

Country Link
JP (1) JPS62158112A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002256169A (en) * 2001-02-28 2002-09-11 Mitsubishi Materials Corp Silica powder and its manufacturing method
US6900157B2 (en) * 2001-09-10 2005-05-31 Tosoh Corporation Process for production of partially hydrophilized porous adsorbents
KR100613685B1 (en) 2004-10-20 2006-08-21 한국화학연구원 Method for modifying surface of silica
JP2010014716A (en) * 1997-09-29 2010-01-21 Merck Patent Gmbh Chemically modified porous material with electroneutral hydrophilic outer surface

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4544485A (en) * 1984-08-31 1985-10-01 Purdue Research Foundation Chromatographic method and means

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4544485A (en) * 1984-08-31 1985-10-01 Purdue Research Foundation Chromatographic method and means

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010014716A (en) * 1997-09-29 2010-01-21 Merck Patent Gmbh Chemically modified porous material with electroneutral hydrophilic outer surface
JP2002256169A (en) * 2001-02-28 2002-09-11 Mitsubishi Materials Corp Silica powder and its manufacturing method
US6900157B2 (en) * 2001-09-10 2005-05-31 Tosoh Corporation Process for production of partially hydrophilized porous adsorbents
KR100613685B1 (en) 2004-10-20 2006-08-21 한국화학연구원 Method for modifying surface of silica

Also Published As

Publication number Publication date
JPH0461809B2 (en) 1992-10-02

Similar Documents

Publication Publication Date Title
Pu et al. 2-Mercaptobenzothiazole-bonded silica gel as selective adsorbent for preconcentration of gold, platinum and palladium prior to their simultaneous inductively coupled plasma optical emission spectrometric determination
CN110240705B (en) Preparation method and application of nitrogen-rich covalent organic framework material
US4694092A (en) Partially hydrophilicized silica gel and process for producing the same
Zhai et al. Selective determination of trace mercury (II) after preconcentration with 4-(2-pyridylazo)-resorcinol-modified nanometer-sized SiO 2 particles from sample solutions
Lv et al. Layer-by-layer fabrication of restricted access media-molecularly imprinted magnetic microspheres for magnetic dispersion microextraction of bisphenol A from milk samples
US8053565B2 (en) Multi-media affinity column to prevent leaching of ligands
JPS62158112A (en) Partially hydrophilized silica gel and its production
CN109400823B (en) Octavinyl-POSS and ethylene glycol dimethacrylate co-crosslinked boron affinity monolithic column and preparation method thereof
Chang et al. Synthesis and efficiency of a polyacrylacylisothiourea chelating fibre for the preconcentration and separation of trace amounts of gold, palladium and ruthenium from solution samples
JPS62158113A (en) Partially hydrophilized silica gel and its production
Rykowska et al. Extraction of copper ions using silica gel with chemically modified surface
Pai et al. Maleic acid/ammonium hydroxide buffer system for preconcentration of trace metals from seawater
Masters et al. Ligand-exchange chromatography of amino sugars and amino acids on copper-loaded silylated controlled-pore glass
Liu et al. MIL-101 (Fe)@ TiO 2 nanotube composite material is used for the solid phase extraction of non-steroidal anti-inflammatory drugs under the synergy of multiple interactions
JPH0245758A (en) Analysis and pretreatment of sample in which water soluble high polymer and low molecular component coexist and packing material for chromatography
JP2510302B2 (en) Method for measuring amines in biological fluids
CN113603843B (en) Limited medium-molecularly imprinted polymer and preparation method and application thereof
CN215574873U (en) Nitrogen purification device for laboratory analyzer
CN114713205B (en) Chromatographic packing and synthesis and application thereof
Tian et al. Synthesis of molecularly imprinted co-polymers for recognition of ephedrine
Huber Biopolymer chromatography
Ye et al. Spectrophotometric determination of phenol by flow injection on-line preconcentration with a micro-column containing magnetic microspheres functionalized with Cyanex272
CN113000033A (en) Amino surface modification purification membrane material and preparation method and application thereof
CN117443363A (en) Application of expanded graphene oxide as stationary phase material
Halkevych et al. High performance liquid chromatographic determination of bupropion using H-clinoptilolite as a sorbent for plasma and urine purification