JPH0461809B2 - - Google Patents

Info

Publication number
JPH0461809B2
JPH0461809B2 JP60299160A JP29916085A JPH0461809B2 JP H0461809 B2 JPH0461809 B2 JP H0461809B2 JP 60299160 A JP60299160 A JP 60299160A JP 29916085 A JP29916085 A JP 29916085A JP H0461809 B2 JPH0461809 B2 JP H0461809B2
Authority
JP
Japan
Prior art keywords
silica gel
groups
group
hydrophobic
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60299160A
Other languages
Japanese (ja)
Other versions
JPS62158112A (en
Inventor
Yasuyo Takahata
Ryuji Myagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKUHIN KENSA KYOKAI
Original Assignee
KAGAKUHIN KENSA KYOKAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKUHIN KENSA KYOKAI filed Critical KAGAKUHIN KENSA KYOKAI
Priority to JP29916085A priority Critical patent/JPS62158112A/en
Priority to US06/946,078 priority patent/US4694092A/en
Priority to EP86118093A priority patent/EP0228090B1/en
Priority to DE8686118093T priority patent/DE3682886D1/en
Publication of JPS62158112A publication Critical patent/JPS62158112A/en
Publication of JPH0461809B2 publication Critical patent/JPH0461809B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明はシリカゲルの細孔内面部が疎水化され
ていると共に、外表面部にシラノール基を有する
部分親水化シリカゲル及びその製造方法に関する
ものである。 従来の技術及び発明が解決しようとする問題点 従来より、シリカゲルは多孔性、表面における
活性なシラノール基の存在等の特性を利用して吸
着剤、乾燥剤、触媒担体など、各種用途に使用さ
れており、分析の分野では液体クロマトグラフイ
ーにおける担体或いは充填剤としての用途が知ら
れている。 この液体クロマトグラフイーにおいては、シリ
カゲルは主に順相クロマトグラフイーの担体とし
て広く使用されているが、シリカゲルは上述した
ように表面にシラノール基が存在しているため、
水、その他の極性溶媒、或いはアミノ酸等のイオ
ン性化合物を強く吸着し、従つてこのような極性
溶媒を使用したり、強いイオン性を有する化合物
を分離対象とする場合はシラノール基の保護が必
要となる。このために従来、シリカゲルのシラノ
ール基にアルキル基、特にオクタデシルシリル基
を導入することが行なわれており、この種のアル
キル基を導入したシリカゲルが極性溶媒を用いる
逆相クロマトグラフイーに多く使用されている。
しかし、この疎水性のアルキル基を導入したシリ
カゲルは、細孔内面部を含む全表面がアルキル基
の導入で疎水化されているもので、シリカゲルの
全表面の一部にのみ疎水基が導入されたもの或い
は一部に疎水基、残りの部分に親水性有機基が導
入されたものはない。 ところで、最近において、医学、薬学等の分野
で蛋白質と共存する微量成分を分析することが多
くなつているが、このような蛋白質と共存する成
分を逆相クロマトグラフイーで分析する場合、上
述したオクタデシルシリル基導入シリカゲルを用
い、これに蛋白質を含む試料を直接接触させる
と、シリカゲルの表面に蛋白質がゲル化するた
め、蛋白質を含む試料は最初に塩化アンモニウム
等を添加してPH調整することにより蛋白質を沈殿
させ、これを遠心分離により除去するという前処
理を行なう必要がある。しかしながら、このよう
な蛋白質を沈殿、遠心分離による除去はその操作
が面倒である上、時間もかかり、しかも分析すべ
き成分の共沈のおそれもあり、従つて蛋白質と共
存する成分のより簡単な分析法が望まれていた。 本発明の目的は、細孔内面部にオクタデシルシ
リル基等の疎水基が導入され、かつ表面部にシラ
ノール基を有し、このため疎水基と活性なシラノ
ール基とが共存しているので、それ自体吸着剤、
触媒や分析用の担体など、各種の用途を有し、ま
た蛋白質と共存する成分を逆相クロマトグラフイ
ーで分析する場合の充填剤を製造するのに有効に
使用される部分親水化シリカゲル及びその製造方
法を提供するものである。 問題点を解決するための手段及び作用 本発明者らは、シリカゲル、特にオクタデシル
シリル基等の疎水基が導入されたシリカゲルの特
性を改善することについて鋭意研究を行なつてい
るうち、オクタテジルシリル基等の疎水基を導入
したシリカゲルにプラズマ処理を施した場合、意
外にもシリカゲルからオクタデシルシリル基等の
疎水基が脱離し、シリカゲル表面のシラノール基
が顕出することを見い出すと共に、このような疎
水基の脱離はプラズマ処理された部分にのみ生
じ、疎水基導入シリカゲルのプラズマ処理により
その細孔内面部の疎水基は脱離せずにそのまま残
つて外表面部のみがシラノール化されることを知
見した。そして、このように全表面疎水基導入シ
リカゲルをプラズマ処理することにより得られた
細孔内面部に疎水基を有すると共に、外表面部に
シラノール基を有するシリカゲルは、細孔内が疎
水化しており、かつ外表面部に活性なシラノール
基を有するので、従来の全表面にシラノール基を
有するシリカゲル或いは細孔内面部を含む全表面
にオクタデシルシリル基等の疎水基が導入された
シリカゲルに比べて親水性と疎水性の両者の性質
を兼ね備えた特異な性状を有し、吸着剤、触媒や
分析用等の担体などとして有用であることを知得
すると共に、この部分親水化シリカゲルの外表面
部のシラノール基には親水性有機基を簡単に導入
することができること、そしてこのように細孔内
面部に疎水基を有し、かつ外表面部に親水性有機
基が導入されたシリカゲルは、意外なことは蛋白
質を吸着もゲル化させず、従つて蛋白質と共存す
る成分の分析にこの部分疎水化・親水性有機基導
入シリカゲルを充填剤としてカラムに充填して用
いると、分析対象成分がこのシリカゲルの疎水基
に吸着し、蛋白質はこのシリカゲルに吸着された
りゲル化されることなくそのままカラムから流出
するので蛋白質が確実に分離除去され、このため
分析対象成分を効果的に分析に供することができ
ることを知見して、本発明を完成するに至つたも
のである。 従つて、本発明はシリカゲルの細孔内面部に疎
水基が導入されていると共に、外表面部にシラノ
ール基を有することを特徴とする部分親水化シリ
カゲル及びこのような部分親水化シリカゲルを得
る方法として、細孔内面部を含む全表面に疎水基
が導入されたシリカゲルにプラズマ処理を施し
て、外表面部の疎水基を脱離し、シラノール基を
顕出させることを特徴とする部分親水化シリカゲ
ルの製造方法を提供するものである。 以下、本発明につき更に詳しく説明する。 本発明に係る部分親水化シリカゲルは、上述し
たようにシリカゲルの細孔内面部に疎水基を、外
表面部にシラノール基を有するものである。第1
図はこれを模型的に示したもので、aがシリカゲ
ル、bは細孔、cがその内面部、dが外表面部で
あり、内面部cに疎水基eが導入されていると共
に、外表面部dにはシリカゲルaに由来するシラ
ノール基fが存在している。 ここで、疎水基としては、本発明シリカゲルの
使用目的等の応じて適宜選択される。例えば、液
体カラムクロマイトグラフイー用の充填剤等とし
て用いる場合は、プロピル、オクチル、オクタデ
シル基等のアルキル基、シアノプロピル基等のシ
アノアルキル基、アミノプロピル基等のアミノア
ルキル基などが挙げられる。 なお、本発明シリカゲルの粒子形状に制限はな
く、球状、破砕状等、適宜な形状のものが用いら
れ、また粒径、細孔の大きさ、表面積なども本発
明シリカゲルの使用目的等に応じて選定される。 本発明の上述した細孔内面部に疎水基が導入さ
れ、外表面部にシラノール基を有する部分親水化
シリカゲルは、細孔内面部を含む全表面に疎水基
が導入されたシリカゲルにプラズマ処理を施すこ
とにより効率よく得ることができるもので、この
プラズマ処理により外表面部の疎水基が脱離さ
れ、シリカゲルに由来する表面シラノール基が顕
われるものである。 この場合、プラズマ処理としては低温プラズマ
処理が好適に採用され、これにより全表面に疎水
基が導入されたシリカゲルに対する熱作用を殆ん
ど与えず、しかも外表面部のみを処理することが
できる。プラズマ処理条件としては、圧力0.1〜
2Torr、特に0.5Torr前後、出力10〜150W、特に
80W前後、処理時間10〜120分、特に60分前後の
条件を採用することができ、また封入ガスとして
は酸素、水蒸気、空気、アルゴン、ヘリウム、炭
酸ガス等の無機ガスが使用され、特に酸素ガスが
好適に用いられる。 なお、全表面に疎水基が導入されたシリカゲル
は従来公知の方法で製造でき、各種市販品を用い
ることもできる。 本発明の部分親水化シリカゲルは、細孔内が疎
水化され、外表面部に活性なシラノール基を有す
るため、それ自体吸着剤、触媒担体、分析用担体
などとして有効に使用できるほか、シラノール基
に親水性有機基を導入した新規シリカゲルの製造
にも使用される。 即ち、細孔内が疎水化され、外表面部にシラノ
ール基を有するシリカゲルに対し、シラノールと
反応する化学結合基を有すると共に、親水性有機
基又は加水分解等により親水性有機基に変わり得
る有機基を有する化合物を反応させ、必要により
反応後有機基を親水性化することにより、親水性
有機基を導入し得るものである。 この場合、このようなシラノール基との反応性
化学結合基を有し、かつ親水性有機基もしくは親
水化可能な有機基を有する化合物としては、特に
限定するものではないが、β−(3,4−エポキ
シシクロヘキシル)エチルトリメトキシシラン、
γ−グリシドキシプロピルトリメトキシシラン、
γ−グリシドプロピルメチルジエトキシシラン、
γ−グリシドキシプロピルジメチルメトキシシラ
ン、γ−グリシドキシプロピルジメチルクロルシ
ランなどが挙げられる。 なお、これらの化合物と疎水基及びシラノール
基を有するシリカゲルとの反応を行なう場合の条
件、或いは必要により行なわれる親水化の条件
は、使用する化合物の種類等に応じて選択され
る。 このシラノール基に親水性有機基を導入するこ
とによつて得られた部分親水化シリカゲルも、細
孔内面部に疎水基が導入され、外表面部に親水性
有機基が導入され、疎水基と親水基とが共存して
いるので、吸着剤、触媒担体、分析用担体等とし
て有効に使用されるが、特に蛋白質と共存する成
分を分析する場合の分離剤或いは濃縮剤等として
好適に用いられる。即ち、この疎水基を細孔内面
部に有し、親水性有機基を外表面部に有するシリ
カゲルには蛋白質が全く作用せず、吸着やゲル化
がないので、蛋白質と分析対象成分とを導入する
と分析対象成分はこのシリカゲルの疎水基には吸
着されるが、蛋白質はそのままこのシリカゲル外
に排出される。従つて、蛋白質中の微量成分を分
析する場合、従来のように蛋白質を沈殿し、遠心
分離により除去するという面倒で時間のかかる前
処理を必要とせず、親水性有機基導入シリカゲル
の充填したカラムに試料に通すだけで蛋白質が確
実に分離溶出され、微量成分は保持されるのでこ
れを簡単に分析できる。また、このシリカゲル
は、このような性質を利用して蛋白質の精糖にも
好適に用いられる。 発明の効果 以上説明したように、本発明の部分親水化シリ
カゲルは、各種用途に好適に使用することがで
き、また本発明の製造方法より、かかる部分親水
化シリカゲルを効率よく確実に得ることができ
る。 以下、実施例と参考例を示し、本発明を具体的
に説明するが、本発明は下記の実施例に制限され
るものではない。 実施例 1 細孔内面部を含む全表面にオクタデシルシリル
基が導入された平均粒径5μmのシリカゲル約0.8
gを容量50mlのナス型フラスコに入れ、このナス
型フラスコ内の真空ポンプで約10-2Torrに減圧
した後、酸素ガスを導入して0.45Torrに調整し
た。次いで、このナス型フラスコを互いに所定間
隔を存して離間対向させた2枚の銅製電極板の間
に位置するように配置してナス型フラスコを回転
させ、同時に電極板に周波数13.56MHz、実効出
力80Wの高周波を印加し、ナス型フラスコ内に酸
素プラズマを発生持続させ、酸素プラズマにより
上記シリカゲルを60分間処理した。 上述したプラズマ処理によるシリカゲルの外表
面時の経時変化を赤外線吸収スペクトル
(KBrdisk法)で測定したところ、第2図に示す
結果が得られた。また、プラズマ処理前後のシリ
カゲルの元素分析を行なつたところ、第1表に示
す結果が得られた。
INDUSTRIAL APPLICATION FIELD The present invention relates to a partially hydrophilized silica gel in which the inner surface of the pores of silica gel is made hydrophobic and has silanol groups on the outer surface, and a method for producing the same. Conventional technology and problems to be solved by the invention Silica gel has traditionally been used for various purposes such as adsorbents, desiccants, and catalyst supports, taking advantage of its characteristics such as porosity and the presence of active silanol groups on the surface. In the field of analysis, it is known to be used as a carrier or filler in liquid chromatography. In this liquid chromatography, silica gel is mainly used as a carrier for normal phase chromatography, but as mentioned above, silica gel has silanol groups on its surface, so
It strongly adsorbs water, other polar solvents, or ionic compounds such as amino acids, so protection of the silanol group is necessary when using such polar solvents or when separating compounds with strong ionicity. becomes. For this purpose, alkyl groups, especially octadecylsilyl groups, have been introduced into the silanol groups of silica gel, and silica gels with this type of alkyl group are often used in reversed-phase chromatography using polar solvents. ing.
However, in silica gel into which hydrophobic alkyl groups have been introduced, the entire surface, including the inner surface of the pores, has been made hydrophobic by introducing the alkyl groups, and the hydrophobic groups have been introduced into only a portion of the entire surface of the silica gel. There are no products in which a hydrophobic group is introduced into a part or a hydrophilic organic group is introduced into the remaining part. By the way, in recent years, it has become common to analyze trace components that coexist with proteins in fields such as medicine and pharmacy.When analyzing such components that coexist with proteins using reversed phase chromatography, When octadecylsilyl group-introduced silica gel is used and a sample containing proteins is brought into direct contact with it, the protein gels on the surface of the silica gel. It is necessary to perform pretreatment to precipitate proteins and remove them by centrifugation. However, removal of such proteins by precipitation and centrifugation is not only cumbersome and time-consuming, but also involves the risk of co-precipitation of the components to be analyzed. An analytical method was desired. The object of the present invention is to introduce a hydrophobic group such as an octadecylsilyl group into the inner surface of the pore and a silanol group on the surface, so that the hydrophobic group and the active silanol group coexist. Adsorbent itself,
Partially hydrophilized silica gel, which has various uses such as catalysts and carriers for analysis, and is effectively used to produce packing materials for analyzing components coexisting with proteins by reversed-phase chromatography. A manufacturing method is provided. Means and Effects for Solving the Problems The present inventors have conducted intensive research on improving the properties of silica gel, particularly silica gel into which hydrophobic groups such as octadecylsilyl groups have been introduced, and found that octadecylsilyl They discovered that when plasma treatment is applied to silica gel into which hydrophobic groups such as silyl groups have been introduced, the hydrophobic groups such as octadecylsilyl groups are unexpectedly removed from the silica gel, and silanol groups on the surface of the silica gel are exposed. Desorption of hydrophobic groups occurs only in the plasma-treated area, and when plasma treatment of hydrophobic group-introduced silica gel occurs, the hydrophobic groups on the inner surface of the pores do not detach and remain as they are, and only the outer surface becomes silanolized. I found out. Silica gel that has hydrophobic groups on the inner surface of the pores and silanol groups on the outer surface obtained by plasma treating silica gel with hydrophobic groups introduced on its entire surface has hydrophobicized inside of the pores. , and has active silanol groups on the outer surface, so it is more hydrophilic than conventional silica gels that have silanol groups on the entire surface or silica gels that have hydrophobic groups such as octadecylsilyl groups introduced on the entire surface including the inner surface of the pores. This partially hydrophilic silica gel has a unique property that combines both hydrophilic and hydrophobic properties, and has been found to be useful as an adsorbent, a catalyst, and a carrier for analysis. It is surprising that hydrophilic organic groups can be easily introduced into the silica gel, which has hydrophobic groups on the inner surface of the pores and hydrophilic organic groups on the outer surface. does not adsorb or gel proteins; therefore, when this partially hydrophobicized, hydrophilic organic group-introduced silica gel is used as a packing material in a column to analyze components that coexist with proteins, the target components are The protein is adsorbed to the hydrophobic group and flows out of the column as it is without being adsorbed to the silica gel or gelated, so the protein is reliably separated and removed, and the target component can therefore be effectively analyzed. These findings led to the completion of the present invention. Therefore, the present invention provides a partially hydrophilic silica gel characterized in that a hydrophobic group is introduced into the inner surface of the pores of the silica gel and a silanol group is present on the outer surface, and a method for obtaining such a partially hydrophilized silica gel. Partially hydrophilic silica gel is characterized in that silica gel having hydrophobic groups introduced into its entire surface including the inner surface of pores is subjected to plasma treatment to remove the hydrophobic groups on the outer surface and expose silanol groups. The present invention provides a method for manufacturing. The present invention will be explained in more detail below. As described above, the partially hydrophilized silica gel according to the present invention has hydrophobic groups on the inner surface of the pores of the silica gel and silanol groups on the outer surface. 1st
The figure shows this schematically, where a is a silica gel, b is a pore, c is an inner surface, and d is an outer surface.A hydrophobic group e is introduced into the inner surface c, and the outer Silanol groups f derived from silica gel a are present in the surface portion d. Here, the hydrophobic group is appropriately selected depending on the intended use of the silica gel of the present invention. For example, when used as a packing material for liquid column chromatography, examples thereof include alkyl groups such as propyl, octyl, and octadecyl groups, cyanoalkyl groups such as cyanopropyl groups, and aminoalkyl groups such as aminopropyl groups. Note that there is no restriction on the particle shape of the silica gel of the present invention, and any suitable shape such as spherical or crushed shape may be used, and the particle size, pore size, surface area, etc. may also be determined depending on the purpose of use of the silica gel of the present invention. Selected based on The above-mentioned partially hydrophilized silica gel of the present invention having hydrophobic groups introduced into the inner surface of the pores and silanol groups on the outer surface is obtained by plasma treatment of the silica gel having hydrophobic groups introduced into the entire surface including the inner surface of the pores. This plasma treatment removes hydrophobic groups on the outer surface and exposes surface silanol groups derived from silica gel. In this case, low-temperature plasma treatment is suitably employed as the plasma treatment, whereby only the outer surface can be treated with almost no thermal effect on the silica gel into which hydrophobic groups have been introduced over the entire surface. The plasma processing conditions are pressure 0.1~
2Torr, especially around 0.5Torr, output 10~150W, especially
Conditions of around 80W and processing time of 10 to 120 minutes, especially around 60 minutes, can be adopted, and inorganic gases such as oxygen, water vapor, air, argon, helium, carbon dioxide, etc. are used as the sealed gas, especially oxygen Gas is preferably used. Note that silica gel having hydrophobic groups introduced onto its entire surface can be produced by a conventionally known method, and various commercially available products can also be used. The partially hydrophilic silica gel of the present invention has pores made hydrophobic and has active silanol groups on the outer surface, so it can be effectively used as an adsorbent, catalyst carrier, analytical carrier, etc. It is also used to produce new silica gels with hydrophilic organic groups introduced into them. In other words, silica gel whose pores are hydrophobic and has silanol groups on its outer surface has a chemical bonding group that reacts with silanol, and a hydrophilic organic group or an organic group that can be converted into a hydrophilic organic group by hydrolysis, etc. A hydrophilic organic group can be introduced by reacting a compound having a group and, if necessary, making the organic group hydrophilic after the reaction. In this case, the compound having a chemical bonding group reactive with such a silanol group and having a hydrophilic organic group or a hydrophilic organic group is not particularly limited, but β-(3, 4-epoxycyclohexyl)ethyltrimethoxysilane,
γ-glycidoxypropyltrimethoxysilane,
γ-glycidopropylmethyldiethoxysilane,
Examples include γ-glycidoxypropyldimethylmethoxysilane and γ-glycidoxypropyldimethylchlorosilane. The conditions for reacting these compounds with silica gel having a hydrophobic group and a silanol group, or the conditions for hydrophilization if necessary, are selected depending on the type of compound used, etc. Partially hydrophilic silica gel obtained by introducing a hydrophilic organic group into the silanol group also has a hydrophobic group introduced into the inner surface of the pores and a hydrophilic organic group introduced into the outer surface. Since it coexists with hydrophilic groups, it can be effectively used as an adsorbent, catalyst carrier, analytical carrier, etc., but it is particularly suitable for use as a separating agent or concentrating agent when analyzing components that coexist with proteins. . In other words, proteins do not act on the silica gel, which has hydrophobic groups on the inner surface of the pores and hydrophilic organic groups on the outer surface, and there is no adsorption or gelation. Then, the target component to be analyzed is adsorbed to the hydrophobic groups of this silica gel, but the protein is directly discharged from the silica gel. Therefore, when analyzing trace components in proteins, it is possible to use columns packed with hydrophilic organic group-introduced silica gel without the need for the conventional pretreatment of precipitating proteins and removing them by centrifugation. By simply passing the sample through the sample, proteins are reliably separated and eluted, and trace components are retained, making them easy to analyze. Moreover, this silica gel is suitably used for protein sugar refining by utilizing such properties. Effects of the Invention As explained above, the partially hydrophilized silica gel of the present invention can be suitably used for various purposes, and the production method of the present invention makes it possible to efficiently and reliably obtain such partially hydrophilized silica gel. can. EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples and Reference Examples, but the present invention is not limited to the Examples below. Example 1 Silica gel with an average particle size of 5 μm and approximately 0.8 μm in which octadecylsilyl groups were introduced on the entire surface including the inner surface of the pores.
g was placed in a 50 ml eggplant-shaped flask, and after reducing the pressure to about 10 -2 Torr with a vacuum pump inside the eggplant-shaped flask, oxygen gas was introduced to adjust the pressure to 0.45 Torr. Next, this eggplant-shaped flask was placed between two copper electrode plates facing each other with a predetermined distance between them, and the eggplant-shaped flask was rotated. At the same time, a frequency of 13.56 MHz and an effective output of 80 W were applied to the electrode plates. A high frequency wave was applied to generate and sustain oxygen plasma in the eggplant-shaped flask, and the silica gel was treated with the oxygen plasma for 60 minutes. When the change over time of the outer surface of the silica gel due to the plasma treatment described above was measured by infrared absorption spectroscopy (KBrdisk method), the results shown in FIG. 2 were obtained. Further, elemental analysis of the silica gel before and after plasma treatment was conducted, and the results shown in Table 1 were obtained.

【表】 第2図の結果は、全表面にオクタデシルシリル
基を導入したシリカゲルに対するプラズマ処理の
経時に従い、赤外線吸収スペクトルの2900cm-1
傍のメチレン基の吸収が減少し、逆に3400cm-1
傍の水親基の吸収が増加していることを示し、ま
た第1表の結果はプラズマ処理後の炭素及び水素
の減少を示すものであり、双方の結果からシリカ
ゲルの外表面部のオクタデシルシリル基がシラノ
ール基に変化していると判断された。 また、酸素プラズマ処理されたシリカゲル及び
未処理のシリカゲルをそれぞれ充填剤として4.6
mmφ×30mmのカラムに充填して固定相を形成し、
また移動相として75%CH3OH水溶液からなる溶
離液を流速0.5ml/minにて移動させ、それぞれ
にベンゼン1000ppm、ビフエニル20ppmを含有す
るメタノール試料液を5μ注入して固定相を通
過した液のUVスペクトルを測定した。なお、
UVスペクトルの測定はUV検出波長254nm、感
度0.32AUFSで行なつた。 上述したプラズマ処理を施したシリカゲルを充
填剤として用いた場合の測定結果を第3図に、未
処理のシリカゲルを充填剤として用いた場合の測
定結果を第4図に示す。なお、第3図、第4図に
おいてははベンゼンの検出ピーク、はビフエ
ニルの検出ピークを示すものである。また、第3
図、第4図のベンゼン及びビフエニルの検出ピー
クから得られたベンゼンとビフエニルの分離性能
を第2表に示す。
[Table] The results shown in Figure 2 show that as the plasma treatment of silica gel with octadecylsilyl groups introduced into its entire surface increases over time, the absorption of methylene groups near 2900 cm -1 in the infrared absorption spectrum decreases, and conversely, the absorption of methylene groups near 3400 cm -1 decreases. This shows that the absorption of hydrophilic groups in the silica gel increases, and the results in Table 1 show a decrease in carbon and hydrogen after plasma treatment. was determined to have changed to a silanol group. In addition, oxygen plasma treated silica gel and untreated silica gel were used as fillers at 4.6
Fill a mmφ x 30mm column to form a stationary phase.
In addition, an eluent consisting of a 75% CH 3 OH aqueous solution was moved at a flow rate of 0.5 ml/min as a mobile phase, and 5μ of a methanol sample solution containing 1000 ppm of benzene and 20 ppm of biphenyl was injected into each of the eluents that had passed through the stationary phase. UV spectra were measured. In addition,
The UV spectrum was measured at a UV detection wavelength of 254 nm and a sensitivity of 0.32 AUFS. FIG. 3 shows the measurement results when the plasma-treated silica gel described above was used as the filler, and FIG. 4 shows the measurement results when the untreated silica gel was used as the filler. In addition, in FIGS. 3 and 4, the detected peak of benzene indicates the detected peak of biphenyl. Also, the third
Table 2 shows the separation performance of benzene and biphenyl obtained from the detection peaks of benzene and biphenyl shown in FIGS.

【表】 第3図及び第4図の結果から、プラズマ処理さ
れたシリカゲルは、未処理の全表面にオクタデシ
ルシリル基が導入されたシリカゲルに比したベン
ゼンとビフエニルとの分離性能にやや劣るものの
非極性のベンゼンとビフエニルを分離し得、また
全表面にシラノール基を有するシリカゲルを液体
クロマトグラフ用充填剤として用いた場合には、
非極性のベンゼンやビフエニルは吸着分離しない
ことから、プラズマ処理されたオクタデシルシリ
ル基導入シリカゲルが部分親水化されていること
は明らかである。 実施例 2 実施例1の方法において、酸素ガスに代えて水
蒸気を導入してナス型フラスコ内を0.3Torrに調
整し、また、高周波の実効出力を50W、プラズマ
処理時間30分としたほかは実施例1と同様にして
細孔内面部を含む全表面にオクタデシルシリル基
が導入されたシリカゲルをプラズマ処理(水蒸気
プラズマ処理)した。 処理されたシリカゲルにつき実施例1と同様に
して赤外線吸収スペクトルを測定すると共に、元
素分析を行なつた結果、実施例1と同様にシリカ
ゲルの外表面部がシラノール基に変化しているこ
とが認められた。 実施例 3 実施例1の方法において酸素ガスに代えてヘリ
ウムガスを導入してナス型フラスコ内を0.6Torr
に調整し、また、高周波の実効出力を70W、プラ
ズマ処理時間40分としたほかは実施例1と同様に
して細孔内面部を含む全表面にオクタデシルシリ
ル基が導入されたシリカゲルをプラズマ処理し
た。 処理されたシリカゲルにつき実施例1と同様に
して赤外線吸収スペクトルを測定すると共に、元
素分析を行なつた結果、実施例1と同様にシリカ
ゲルの外表面部がシラノール基に変化しているこ
とが認められた。 参考例 実施例1により得られた細孔内面部にオクタデ
シルシリル基が導入され、外表面部にシラノール
基を有する部分親水化シリカゲル0.8gをトリエ
チルアミン3mgを含むトルエン溶液5mlに懸濁さ
せた後、水10mg、γ−グリシドキシトリメトキシ
シラン0.37gを加え、還流下に17時間反応させ
た。次いで、吸引過して固体相を分離回収し、
これをトルエン及びアセトンで順次洗浄し、乾燥
した後、約10-4規定硫酸水溶液中に懸濁させ、還
流下で2時間加水分解反応を行なつた。処理物を
分離、洗浄後、80℃で乾燥して、下記式に示すよ
うに前記シラノール基のOH基を置換シロキシ基
に変えた、細孔内面面にオクタデシルシリル基、
外表面部に置換シロキシ基が導入された部分親水
化シリカゲルを得た。 次に、上記方法で得られた置換シロキシ基導入
部分親水化シリカゲルを濃縮カラム用充填剤とし
て使用した下記実験を行なつた。 実験1 第5図に示した装置を使用し、人血清中のフエ
ノバルビタールの分析を行なつた。 ここで、第5図中1は試料ループ2が接族され
た第1六方バルブ、3は濃縮カラム4及び分析カ
ラム5がそれぞれ接続された第2六方バルブで、
まず試料を注入する場合は、第1六方バルブ1を
図の実線で示す流路状態とし、試料を第1六方バ
ルブ1の試料溶液注入口6から試料溶液を導入す
る。これにより試料溶液は第1六方バルブ1の第
1流路口1aから試料ループ2を通つて所定量の
試料溶液が試料ループ2に採取され、余剰の試料
溶液は第4流路口1d、第3流路口1cを順次経
てドレン7に排出される。次いで、試料ループ2
に採取された試料溶液を濃縮カラム4に濃縮する
場合は、第1六方バルブ1を点線で示す流路状
態、第2六方バルブ3を実線で示す流路状態と
し、ポンプ8を作動させて濃縮用キヤリヤー容器
9内の濃縮用キヤリヤーの第1六方バルブの第5
流路口1eから導入する。これにより、キヤリヤ
ーは第4流路口1dを通り、試料ループ2内の試
料溶液を押し出し、第1流路口1a、第6流路1
fを順次経て、第六方バルブ3の第1流路口3a
に導入され、更に第6流路口3fから濃縮カラム
4に導入されて試料溶液がこの濃縮カラム4で濃
縮されると共に、このカラム4を通過した液は第
3流路口3c、第2流路口3bを順次経てドレン
10に排出される。そして、前記濃縮カラム4内
の試料を分析カラム5に送り、分析を行なう場合
は、第2六方バルブ3を点線に示す流路状態と
し、ポンプ11を作動させて溶離液容器12内の
溶離液を第二六方バルブ3の第4流路口3dに導
入するもので、これにより溶離液は第3流路口3
c、濃縮カラム4、第6流路口3f、第5流路口
3eを順次経て分析カラム5に流入し、溶離液に
より溶離せしめられた試料はこの分析カラム6か
ら検出器13に送られ、分析される。 なお、第5図中14は分流用抵抗ループ、1
5,16はそれぞれ三方ジヨイントであり、試料
濃縮時において濃縮用キヤリヤーはその一部が一
方の三方ジヨイント15から分流抵抗ループ14
に分流され、他方の三方ジヨイント16におい
て、第1六方バルブ1の第6流路口1fから第2
六方バルブ3の第1流路口3aに向けて流れる試
料ループ2からの試料溶液と合流し、これにより
試料が希釈されるものである。 而して、上記した装置において、試料溶液とし
て、6倍に希釈した人血清にフエノバルビタール
を53ppm添加した試料A、水にフエノバルビター
ルを53ppm溶解した試料B、人血清を5倍に希釈
した試料Cをそれぞれ使用し(注入量50μ)、
濃縮用キヤリヤーとして水、溶離液として50%メ
タノール水溶液を使用し(いずれも流速1ml/
min)、上述した方法により試料の濃縮、分析を
行なつた。この場合、濃縮カラムは4.6mmφ×30
mmの大きさと、前記置換シロキシ基導入部分親水
化シリカゲルを充填し、分析カラムは4.6mmφ×
250mmの大きさとして、ZorbaxODS(デユポン社
製)を充填した。また、濃縮時において、一方の
三方ジヨイント15における余流比(希釈比)は
1:3.84(試料ループ導ん入量:分流用抵抗ルー
プ導入量)とし、分析は波長254nm、感度
0.32AUFSで行なつた。 以上の結果を第6図(試料A)、第7図(試料
B)、第8図(試料C)に示す。 第6,8図のクロマトグラムを第7のクロマト
グラムと比較してみると、第6,8図の試料は人
血清を含むにもかかわらず、第7図の人血清を含
まない試料と同様にクロマトグラムに人血清に由
来する蛋白質のピークが現われていないことが認
められる。このことは、濃縮の段階で試料溶液を
濃縮カラムに導入した時に試料溶液中の人血清が
濃縮カラムに充填された置換シロキン基導入部分
類水化シリカゲルに吸着したりゲル化したりする
ことなく、濃縮用キヤリヤーと共に濃縮カラムか
ら排出されたことを示すもので、実際、ドレン1
0に排出された溶液から人血清の存在が確認され
た。また、このことから、第6,7図のクロマト
グラフを比較すれば明らかなように、蛋白質(人
血清)中のフエノバルビタールが蛋白質に全く影
響されることなく確実に分析し得ることが認めら
れ、置換シロキシ基導入部分親水化シリカゲルを
濃縮用充填剤として用いることにより、フエノバ
ルビタールと蛋白質とが混合されていても、フエ
ノバルビタールと蛋白質とを確実に分離し、フエ
ノバルビタールのみを置換シロキシ基導入部分親
水化シリカゲルに吸着し得ることが認められた。 更に、蛋白質除去能を検討するために下記の実
験を行なつた。 実験2 上記した外表面部に置換シロキシ基を有する部
分親水化シリカゲル及び全表面にオクタデシルシ
リル基を有するシリカゲルをカラムに充填し、こ
のカラムに50〜500ppmの牛血清アルブミンを通
してこのカラムを通過する牛血清アルブミン量を
測定した。結果を第9図に示す。なお、図中は
外表面部に置換シロキシ基を有する部分親水化シ
リカゲル、は全表面にオクタデシルシリル基を
有するシリカゲルの結果である。また、分析条件
は下記の通りである。 分析条件:カラム 4.6mmφ×30mm 溶離液 リン酸緩衝液(PH=7) 測定波長 280nm 感 度 0.04AUFS 注入量 10μ 第9図の結果より、外表面部に置換シロキシ基
を有する部分親水化シリカゲルは、牛血清アルブ
ミン量に比例してピーク高さが高くなり、従つて
このことから牛血清アルブミン(蛋白質)はこの
部分親水化シリカゲルに補足されることなく通過
していることが知見される。これに対し、オクタ
デシルシリル基を全表面に有するシリカゲルは牛
血清アルブミンに吸着され、カラムを殆んど通過
しないものであつた。
[Table] From the results shown in Figures 3 and 4, the plasma-treated silica gel has slightly inferior benzene and biphenyl separation performance compared to the untreated silica gel with octadecylsilyl groups introduced on its entire surface, but it is still acceptable. When silica gel that can separate polar benzene and biphenyl and has silanol groups on its entire surface is used as a packing material for liquid chromatography,
Since nonpolar benzene and biphenyl are not adsorbed and separated, it is clear that the plasma-treated octadecylsilyl group-introduced silica gel is partially hydrophilized. Example 2 The method of Example 1 was carried out except that water vapor was introduced instead of oxygen gas and the inside of the eggplant-shaped flask was adjusted to 0.3 Torr, and the effective output of high frequency was 50 W and the plasma treatment time was 30 minutes. In the same manner as in Example 1, silica gel in which octadecylsilyl groups were introduced into the entire surface including the inner surface of the pores was subjected to plasma treatment (steam plasma treatment). As a result of measuring the infrared absorption spectrum of the treated silica gel in the same manner as in Example 1 and conducting elemental analysis, it was found that the outer surface of the silica gel had changed to silanol groups as in Example 1. It was done. Example 3 In the method of Example 1, helium gas was introduced instead of oxygen gas, and the inside of the eggplant-shaped flask was heated to 0.6 Torr.
In addition, silica gel in which octadecylsilyl groups were introduced into the entire surface including the inner surface of the pores was plasma treated in the same manner as in Example 1, except that the effective power of the high frequency was 70 W and the plasma treatment time was 40 minutes. . As a result of measuring the infrared absorption spectrum of the treated silica gel in the same manner as in Example 1 and conducting elemental analysis, it was found that the outer surface of the silica gel had changed to silanol groups as in Example 1. It was done. Reference Example After suspending 0.8 g of partially hydrophilized silica gel obtained in Example 1, in which octadecylsilyl groups were introduced into the inner surface of the pores and silanol groups were introduced into the outer surface, in 5 ml of toluene solution containing 3 mg of triethylamine, 10 mg of water and 0.37 g of γ-glycidoxytrimethoxysilane were added, and the mixture was reacted under reflux for 17 hours. Next, the solid phase is separated and collected by suction,
This was washed successively with toluene and acetone, dried, suspended in an aqueous solution of about 10 -4 N sulfuric acid, and subjected to a hydrolysis reaction under reflux for 2 hours. After separating and washing the treated material, it is dried at 80°C, and the OH group of the silanol group is changed to a substituted siloxy group, and an octadecylsilyl group is formed on the inner surface of the pore, as shown in the formula below.
Partially hydrophilic silica gel with substituted siloxy groups introduced onto the outer surface was obtained. Next, the following experiment was conducted using the substituted siloxy group-introduced partially hydrophilized silica gel obtained by the above method as a packing material for a concentration column. Experiment 1 Using the apparatus shown in Figure 5, phenobarbital in human serum was analyzed. Here, in FIG. 5, 1 is a first six-way valve to which a sample loop 2 is connected, 3 is a second six-way valve to which a concentration column 4 and an analysis column 5 are connected, respectively.
First, when injecting a sample, the first six-way valve 1 is placed in the flow path state shown by the solid line in the figure, and the sample solution is introduced from the sample solution inlet 6 of the first six-way valve 1. As a result, the sample solution passes through the sample loop 2 from the first flow path port 1a of the first hexagonal valve 1, and a predetermined amount of the sample solution is collected into the sample loop 2, and the excess sample solution passes through the fourth flow path port 1d and the third flow path. The water is discharged to the drain 7 through the outlet 1c in sequence. Next, sample loop 2
When concentrating the sample solution collected in the concentration column 4, the first six-way valve 1 is set to the flow path shown by the dotted line, the second six-way valve 3 is set to the flow path shown by the solid line, and the pump 8 is operated to perform the concentration. The fifth of the first six-way valve of the carrier for concentration in the carrier container 9 for
It is introduced from the channel opening 1e. As a result, the carrier passes through the fourth channel port 1d, pushes out the sample solution in the sample loop 2, and pushes out the sample solution in the sample loop 2 through the first channel port 1a and the sixth channel 1.
f sequentially, and then the first flow path port 3a of the six-way valve 3.
The sample solution is introduced into the concentration column 4 from the sixth flow path port 3f, and the sample solution is concentrated in this concentration column 4, and the liquid that has passed through this column 4 is introduced into the third flow path port 3c and the second flow path port 3b The water is sequentially discharged to the drain 10. When the sample in the concentration column 4 is sent to the analysis column 5 for analysis, the second hexagonal valve 3 is set to the flow path shown by the dotted line, and the pump 11 is operated to remove the eluent in the eluate container 12. is introduced into the fourth flow path port 3d of the second six-way valve 3, whereby the eluent is introduced into the third flow path port 3d.
c. The sample flows into the analysis column 5 through the concentration column 4, the sixth flow path port 3f, and the fifth flow path port 3e in order, and is eluted with the eluent.The sample is sent from the analysis column 6 to the detector 13 and analyzed. Ru. In addition, 14 in FIG. 5 is a resistor loop for shunt, 1
5 and 16 are three-way joints, and during sample concentration, a part of the carrier for concentration flows from one three-way joint 15 to the shunt resistance loop 14.
At the other three-way joint 16, the flow is diverted from the sixth flow path opening 1f of the first six-way valve 1 to the second
It joins with the sample solution from the sample loop 2 flowing toward the first channel port 3a of the six-way valve 3, thereby diluting the sample. In the above-mentioned apparatus, the sample solutions were Sample A, in which 53 ppm of phenobarbital was added to human serum diluted 6 times, Sample B, in which 53 ppm of phenobarbital was dissolved in water, and Human serum diluted 5 times. Using each sample C (injection amount 50μ),
Water was used as the carrier for concentration, and 50% methanol aqueous solution was used as the eluent (flow rate of 1 ml/ml in both cases).
min), the sample was concentrated and analyzed using the method described above. In this case, the concentration column is 4.6mmφ×30
The analytical column is 4.6 mmφ×
ZorbaxODS (manufactured by Dupont) was filled to a size of 250 mm. In addition, during concentration, the afterflow ratio (dilution ratio) in one three-way joint 15 is 1:3.84 (amount introduced into the sample loop: amount introduced into the diversion resistance loop), and the analysis is performed at a wavelength of 254 nm and a sensitivity of
This was done at 0.32 AUFS. The above results are shown in FIG. 6 (sample A), FIG. 7 (sample B), and FIG. 8 (sample C). Comparing the chromatograms in Figures 6 and 8 with the chromatogram in Figure 7, although the samples in Figures 6 and 8 contain human serum, they are similar to the samples in Figure 7 that do not contain human serum. It is observed that the peak of proteins derived from human serum does not appear in the chromatogram. This means that when the sample solution is introduced into the concentration column during the concentration stage, the human serum in the sample solution does not adsorb or gelatinize on the substituted siloxane group-introduced hydrated silica gel packed in the concentration column. This indicates that it was discharged from the concentration column together with the concentration carrier, and in fact, drain 1
The presence of human serum was confirmed from the solution discharged. In addition, from this, as is clear from the comparison of the chromatographs in Figures 6 and 7, it is recognized that phenobarbital in proteins (human serum) can be reliably analyzed without being affected by proteins at all. By using hydrophilized silica gel with a substituted siloxy group introduced as a packing material for concentration, even if phenobarbital and protein are mixed, phenobarbital and protein can be reliably separated and only phenobarbital can be extracted. It was found that the substituted siloxy group-introduced moiety can be adsorbed on hydrophilized silica gel. Furthermore, the following experiment was conducted to examine protein removal ability. Experiment 2 A column is filled with the above-mentioned partially hydrophilized silica gel having substituted siloxy groups on the outer surface and silica gel having octadecylsilyl groups on the entire surface, and 50 to 500 ppm of bovine serum albumin is passed through the column. Serum albumin level was measured. The results are shown in Figure 9. In the figure, the partially hydrophilized silica gel having substituted siloxy groups on the outer surface is the result of silica gel having octadecylsilyl groups on the entire surface. Moreover, the analysis conditions are as follows. Analysis conditions: Column 4.6mmφ The peak height increases in proportion to the amount of bovine serum albumin, which indicates that bovine serum albumin (protein) passes through the partially hydrophilized silica gel without being captured. In contrast, silica gel having octadecylsilyl groups on its entire surface was adsorbed to bovine serum albumin and hardly passed through the column.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の部分親水化シリカゲルを模型
的に説明する部分断面図、第2図は全表面にオク
タデシルシリル基が導入されたシリカゲルに低温
プラズマ処理を施した場合における経時的な外表
面部変化を示す赤外線吸収スペクトル、第3図は
本発明の部分親水化シリカゲルを充填剤として用
いてベンゼン及びビフエニル混合溶液を通過させ
た場合の流出液の紫外線吸収スペクトル、第4図
は全表面にオクタデシルシリル基が導入されたシ
リカゲルを充填剤として用いてベンゼン及びビフ
エニル混合溶液を通過させた場合の流出液の紫外
線吸収スペクトル、第5図は置換シロキシ基導入
部分親水化シリカゲルの蛋白質分離特性を調べる
ために用いた装置のフローチヤート、第6図乃至
第8図は同装置を用いて試料分析を行なつた場合
のクロマトグラムで、第6図は試料として人血清
中にフエノバルビタノールを添加したものを用い
た場合のクロマトグラム、第7図は水にフエノバ
ルビタールを添加した試料のクロマトグラム、第
8図は人血清のクロマトグラム、第9図は牛血清
アルブミンを外表面部に置換シロキシ基を有する
部分親水化シリカゲル及び全表面にオクタデシル
シリル基を有するシリカゲルを充填したカラムに
通した場合の牛血清アルブミンの通過量を示すグ
ラフである。 a……シリカゲル、b……細孔、c……その内
面部、d……外表面部、e……疎水基、f……シ
ラノール基。
Figure 1 is a partial cross-sectional view schematically illustrating the partially hydrophilized silica gel of the present invention, and Figure 2 is the outer surface over time of a silica gel with octadecylsilyl groups introduced into its entire surface that is subjected to low-temperature plasma treatment. Figure 3 shows the ultraviolet absorption spectrum of the effluent when a mixed solution of benzene and biphenyl is passed through it using the partially hydrophilized silica gel of the present invention as a filler. The ultraviolet absorption spectrum of the effluent when a mixed solution of benzene and biphenyl is passed through using silica gel into which an octadecylsilyl group has been introduced as a filler. Figure 5 shows the protein separation characteristics of partially hydrophilized silica gel into which a substituted siloxy group has been introduced. Figures 6 to 8 are flowcharts of the equipment used for this purpose, and chromatograms when sample analysis is performed using the same equipment. Figure 7 is a chromatogram of a sample prepared by adding phenobarbital to water, Figure 8 is a chromatogram of human serum, and Figure 9 is a sample in which bovine serum albumin is substituted on the outer surface. It is a graph showing the amount of bovine serum albumin that passes through a column filled with partially hydrophilized silica gel having siloxy groups and silica gel having octadecylsilyl groups on the entire surface. a... Silica gel, b... Pore, c... Inner surface portion, d... Outer surface portion, e... Hydrophobic group, f... Silanol group.

Claims (1)

【特許請求の範囲】 1 シリカゲルの細孔内面部に疎水基が導入され
ていると共に、外表面部にシラノール基を有する
ことを特徴とする部分親水化シリカゲル。 2 疎水基がアルキル基である特許請求の範囲第
1項記載の部分親水化シリカゲル。 3 細孔内面部を含む全表面に疎水基が導入され
たシリカゲルにプラズマ処理を施して、外表面部
の疎水基を脱離し、シラノール基を顕出させるこ
とを特徴とするシリカゲルの細孔内面部に疎水基
が導入されていると共に、外表面部にシラノール
基を有する部分親水化シリカゲルの製造方法。 4 疎水基がアルキル基である特許請求の範囲第
3項記載の製造方法。
[Scope of Claims] 1. A partially hydrophilized silica gel characterized by having a hydrophobic group introduced into the inner surface of the pores of the silica gel and having a silanol group on the outer surface. 2. The partially hydrophilized silica gel according to claim 1, wherein the hydrophobic group is an alkyl group. 3. The inner surface of the pores of silica gel, which is characterized in that silica gel having hydrophobic groups introduced into the entire surface including the inner surface of the pores is subjected to plasma treatment to remove the hydrophobic groups on the outer surface and expose silanol groups. A method for producing a partially hydrophilized silica gel having a hydrophobic group introduced therein and a silanol group on its outer surface. 4. The manufacturing method according to claim 3, wherein the hydrophobic group is an alkyl group.
JP29916085A 1985-12-27 1985-12-27 Partially hydrophilized silica gel and its production Granted JPS62158112A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP29916085A JPS62158112A (en) 1985-12-27 1985-12-27 Partially hydrophilized silica gel and its production
US06/946,078 US4694092A (en) 1985-12-27 1986-12-24 Partially hydrophilicized silica gel and process for producing the same
EP86118093A EP0228090B1 (en) 1985-12-27 1986-12-29 Partially hydrophilicized silica sel and process for producing the same
DE8686118093T DE3682886D1 (en) 1985-12-27 1986-12-29 PARTLY HYDROPHYLIZED SILICONE GEL AND METHOD FOR THE PRODUCTION THEREOF.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29916085A JPS62158112A (en) 1985-12-27 1985-12-27 Partially hydrophilized silica gel and its production

Publications (2)

Publication Number Publication Date
JPS62158112A JPS62158112A (en) 1987-07-14
JPH0461809B2 true JPH0461809B2 (en) 1992-10-02

Family

ID=17868906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29916085A Granted JPS62158112A (en) 1985-12-27 1985-12-27 Partially hydrophilized silica gel and its production

Country Status (1)

Country Link
JP (1) JPS62158112A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1019188B1 (en) * 1997-09-29 2005-07-13 MERCK PATENT GmbH Chemically-modified porous materials with an electroneutral hydrophilic outer surface
JP2002256169A (en) * 2001-02-28 2002-09-11 Mitsubishi Materials Corp Silica powder and its manufacturing method
US6900157B2 (en) * 2001-09-10 2005-05-31 Tosoh Corporation Process for production of partially hydrophilized porous adsorbents
KR100613685B1 (en) 2004-10-20 2006-08-21 한국화학연구원 Method for modifying surface of silica

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4544485A (en) * 1984-08-31 1985-10-01 Purdue Research Foundation Chromatographic method and means

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4544485A (en) * 1984-08-31 1985-10-01 Purdue Research Foundation Chromatographic method and means

Also Published As

Publication number Publication date
JPS62158112A (en) 1987-07-14

Similar Documents

Publication Publication Date Title
US4131544A (en) Macroencapsulated sorbent element and process for using the same
Pu et al. 2-Mercaptobenzothiazole-bonded silica gel as selective adsorbent for preconcentration of gold, platinum and palladium prior to their simultaneous inductively coupled plasma optical emission spectrometric determination
Falter et al. Determination of mercury species in natural waters at picogram level with on-line RP C18 preconcentration and HPLC-UV-PCO-CVAAS
EP0228090B1 (en) Partially hydrophilicized silica sel and process for producing the same
CN110240705B (en) Preparation method and application of nitrogen-rich covalent organic framework material
EP1175933A1 (en) Gas separation apparatus
Liu et al. Amino-functionalized hypercrosslinked polymer as sorbent for effective extraction of nitroimidazoles from water, drink and honey samples
Gambero et al. Use of chemically modified silica with β-diketoamine groups for separation of α-lactoalbumin from bovine milk whey by affinity chromatography
JPH0461809B2 (en)
JPH0774797B2 (en) Packing agent for liquid chromatography and method for producing and using the same
JPH0468244B2 (en)
JPH0338891B2 (en)
Rykowska et al. Extraction of copper ions using silica gel with chemically modified surface
Kasturi et al. Reordering/resonation studies of alkylamide phases
Nazario et al. Analysis of fluoxetine and norfluoxetine in human plasma by HPLC-UV using a high purity C18 silica-based SPE sorbent
Wei et al. In‐situ preparation of porous monolithic polymer inside hollow fiber as a micro‐solid phase extraction device for glucocorticoids in cosmetics
JP2004003897A (en) Carrier for chromatography, carrier for pretreatment, and kit
Masters et al. Ligand-exchange chromatography of amino sugars and amino acids on copper-loaded silylated controlled-pore glass
JP2792038B2 (en) Analysis method and pretreatment method for sample in which water-soluble polymer substance and low-molecular component coexist, and filler for chromatography
CN105675773B (en) A kind of method of prealbumin in solid extracting agent enrichment human plasma
JPS58223061A (en) Assay of non-protein material
CN109942686A (en) A kind of refining methd of pitressin acetylation impurity
Faria et al. Development of a polymer‐coated stationary phase with improved chemical stability in alkaline mobile phases
Cole et al. Cyclohexylamine additives for enhanced peptide separations in reversed phase liquid chromatography
Huber Biopolymer chromatography