JPS621574B2 - - Google Patents

Info

Publication number
JPS621574B2
JPS621574B2 JP15408083A JP15408083A JPS621574B2 JP S621574 B2 JPS621574 B2 JP S621574B2 JP 15408083 A JP15408083 A JP 15408083A JP 15408083 A JP15408083 A JP 15408083A JP S621574 B2 JPS621574 B2 JP S621574B2
Authority
JP
Japan
Prior art keywords
powder
precipitate
electrical resistance
tin oxide
low electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15408083A
Other languages
Japanese (ja)
Other versions
JPS6046925A (en
Inventor
Motohiko Yoshizumi
Kuniaki Wakabayashi
Makoto Tsunashima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP15408083A priority Critical patent/JPS6046925A/en
Publication of JPS6046925A publication Critical patent/JPS6046925A/en
Publication of JPS621574B2 publication Critical patent/JPS621574B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は低電気抵抗酸化スズ微粉末の製法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing fine tin oxide powder with low electrical resistance.

酸化スズ粉末は触媒、ガスセンサー、導電性粉
体として用いられている。触媒としては、オレフ
インのアリル型酸化用触媒、たとえばプロペンか
らアクロレイン、n−ブテンからブタジエン、イ
ソペンテンからイソプレン合成の触媒として用い
られている。
Tin oxide powder is used as a catalyst, gas sensor, and conductive powder. As a catalyst, it is used as a catalyst for the allylic oxidation of olefins, for example, for the synthesis of acrolein from propene, butadiene from n-butene, and isoprene from isopentene.

ガスセンサーとしては、可燃性ガス、たとえば
都市ガス、プロパンガス、水素ガス等を吸着した
時、電気抵抗が変化することが利用されている。
導電性粉体としては、SbをドープしたSnO2が低
電気抵抗となることが知られているが、Sbの毒
性の問題がありSbを含まないものが望まれてい
る。Sbを含まないものは抵抗は高くなるが、帯
電防止剤としては使用でき、色も白色に近いもの
となるので、紙、樹脂、繊維の帯電防止として使
用出来る。また可視光の波長(0.4〜0.8μm)以
下の粒子にすることにより透明性が出てくるた
め、塗料中に混入し、帯電防止塗料とすることも
できる。この塗料を塗布した塗膜は透明帯電防止
フイルムになるばかりでなく、帯電圧を制御する
ための感光機用塗膜ともなる。いずれの場合も、
粉末が微細であることが望ましい。すなわち、触
媒、ならびにセンサーにおいても粉末の表面を利
用することから、微細な程活性が高く、また、粉
末が微細になる程透明性も向上する。更に粉末の
分散性も高いことが望まれている。
Gas sensors utilize the fact that electrical resistance changes when a flammable gas such as city gas, propane gas, hydrogen gas, etc. is adsorbed.
As a conductive powder, SnO 2 doped with Sb is known to have low electrical resistance, but there is a problem with the toxicity of Sb, so a material that does not contain Sb is desired. Products that do not contain Sb have higher resistance, but can be used as antistatic agents, and their color is close to white, so they can be used as antistatic agents for paper, resin, and fibers. Furthermore, transparency is achieved by making the particles smaller than the wavelength of visible light (0.4 to 0.8 μm), so they can be mixed into paints and used as antistatic paints. A film coated with this paint not only becomes a transparent antistatic film, but also a film for photosensitive machines to control charging voltage. In either case,
It is desirable that the powder be fine. That is, since the surface of the powder is used in catalysts and sensors, the finer the powder, the higher the activity, and the finer the powder, the better the transparency. Furthermore, it is desired that the powder has high dispersibility.

酸化スズ粉末の製造法としては以下の方法が知
られている。
The following methods are known as methods for producing tin oxide powder.

(1) 金属スズを空気中で高温加熱酸化する。(1) Oxidize metal tin by heating it in air at high temperatures.

(2) スズを濃硝酸で処理して得た白色沈澱を高温
で焼成する。
(2) The white precipitate obtained by treating tin with concentrated nitric acid is calcined at high temperature.

(3) 4価のスズ塩の水溶液をアルカリで中和して
白色沈澱を得、これを高温で焼成する。
(3) Neutralize an aqueous solution of a tetravalent tin salt with an alkali to obtain a white precipitate, which is then calcined at a high temperature.

(1)、(2)の方法ではせいぜい比表面積が10m2/g
以下の粉末しか得られず、(3)の方法でも焼成時に
焼結が起り易く、比表面積としては50m2/gまで
可能であるが、分散性が悪く透明性を出す目的に
は望ましくない。
In methods (1) and (2), the specific surface area is at most 10 m 2 /g.
Only the following powders can be obtained, and even with method (3), sintering tends to occur during firing, and although a specific surface area of up to 50 m 2 /g is possible, the dispersibility is poor and it is not desirable for the purpose of achieving transparency.

本発明者等は先に(3)の方法を特定の条件で実施
するとき極めて微細な酸化スズ粉末が得られるこ
とを見出した(特願昭58−52439)。
The present inventors have previously discovered that extremely fine tin oxide powder can be obtained when method (3) is carried out under specific conditions (Japanese Patent Application No. 58-52439).

該方法では、65℃以上に保つたアルカリ水溶液
中に、塩化スズ()水溶液を加え、最終的にPH
を5以下にする。アルカリ水中に塩化スズを加え
ていつた場合、初期のPHは当然14に近く、PHが10
になるまで塩化スズ水溶液を加えていつても沈澱
が折出しない。PHが10以下で急激に沈澱が析出す
る。すなわちPHが10以上で溶解していた塩化スズ
がPHが下がることにより、一気に水酸化スズとし
て析出し、微細な生成物となる。さらに塩化スズ
を加えて最終的にPHを5〜1に保つことにより分
散性が高まる。このようにして生成した沈澱は、
その後の粉末の焼成処理において、焼結すること
が少なくなり、粉末の粒子を細かいまま保つてお
くことができる。この範囲外で反応を終了させる
と焼成時に粉末が焼結しやすくなる。以上のこと
により、粉末の粒子は50m2/g以上の微細なもの
でしかも分散性の良いものが得られる。これに対
し、塩化スズ水溶液をアルカリで中和していく方
法であると、アルカリを添加した時点から沈澱が
生成し始め、反応が進むにしたがい粒子が成長を
起し、微細な粉末が得られない。
In this method, tin chloride () aqueous solution is added to an alkaline aqueous solution kept at 65°C or above, and the pH is finally adjusted.
to 5 or less. When tin chloride is added to alkaline water, the initial pH is naturally close to 14, and the pH is 10.
Even if an aqueous tin chloride solution is added until the amount of Precipitate rapidly forms when the pH is below 10. In other words, tin chloride, which was dissolved at a pH of 10 or higher, precipitates out as tin hydroxide at once as the pH decreases, becoming a fine product. Furthermore, dispersibility is improved by adding tin chloride and ultimately maintaining the pH at 5 to 1. The precipitate thus generated is
In the subsequent firing process of the powder, sintering is reduced and the powder particles can be kept fine. If the reaction is terminated outside this range, the powder will easily sinter during firing. As a result of the above, fine particles of 50 m 2 /g or more and good dispersibility can be obtained. On the other hand, with the method of neutralizing an aqueous tin chloride solution with an alkali, a precipitate begins to form as soon as the alkali is added, and as the reaction progresses, particles grow and a fine powder is obtained. do not have.

アルカリ水溶液としては、水酸化ナトリウム、
アンモニア、水酸化カリウム、炭酸ナトリウムを
水に溶解した溶液を使用できる。塩化スズ溶液は
4価の塩化スズを水に溶かしたもの、または塩酸
水溶液に溶かしたもの、またはアルコールに溶か
した溶液を用いることができる。
Examples of alkaline aqueous solutions include sodium hydroxide,
A solution of ammonia, potassium hydroxide, and sodium carbonate in water can be used. As the tin chloride solution, a solution in which tetravalent tin chloride is dissolved in water, in an aqueous hydrochloric acid solution, or in alcohol can be used.

アルカリ水溶液中に注入する塩化スズ溶液はそ
の濃度に特に限定はないが、好ましい濃度10〜60
%である。注入速度にも特に限定はない。沈澱析
出温度は約65℃が臨界値であることが分かつた。
これより低いと焼成時に粒子が焼結を起しやす
い。生成した沈澱を洗浄後乾燥を行ないさらに焼
成をすることにより、二酸化スズ粉末とすること
ができるが、焼成温度が350℃以下では結晶の発
達が悪く非晶質であり、700℃以上にすると焼結
が起る。このため焼成温度は空気中350℃〜700℃
とした。
The concentration of the tin chloride solution injected into the alkaline aqueous solution is not particularly limited, but the preferred concentration is 10 to 60.
%. There is also no particular limitation on the injection rate. It was found that the critical temperature for precipitation was approximately 65°C.
If it is lower than this, particles tend to sinter during firing. Tin dioxide powder can be obtained by washing and drying the generated precipitate and further calcination, but if the calcination temperature is below 350°C, the crystals will not develop well and it will be amorphous, and if the temperature is above 700°C, it will become amorphous. A conclusion occurs. For this reason, the firing temperature is 350℃ to 700℃ in air.
And so.

本発明の方法は、上記の方法の改良にかかり、
上記方法の沈澱生成段階で得られる乾燥沈澱を、
350℃〜700℃で還元焼成することからなる方法が
提供される。それによつて、100Kg/cm2に加圧し
た圧粉体の形で測定した電気抵抗が101〜105Ω・
cmの低電気抵抗酸化スズ粉末が得られる。これに
対して上に記した特願昭58−52439号の製品の同
様にして測定した電気抵抗は106Ω・cmのオーダ
ー以上である。
The method of the present invention is an improvement of the above method,
The dried precipitate obtained in the precipitate generation step of the above method,
A method is provided comprising reduction calcination at 350°C to 700°C. As a result, the electrical resistance measured in the form of a green compact pressurized to 100 kg/cm 2 is 10 1 to 10 5 Ω.
cm of low electrical resistance tin oxide powder is obtained. On the other hand, the electrical resistance of the product of Japanese Patent Application No. 58-52439 mentioned above, measured in the same manner, is on the order of 10 6 Ω·cm or more.

還元性雰囲気または不活性雰囲気中での焼成に
より、SnO2の極く一部が金属スズに還元されて
SnをドープしたSnO2、SnO2-xとでも記すべき状
態になつていると考えられるが、未だ確認されて
いない。(不活性雰囲気中で加熱してもSnO2の酸
素が除去されて還元が起る。) 焼成温度は350℃未満では結晶の発達が悪く非
晶質であるため高抵抗となり、700℃を越えると
還元が進み過ぎて空気に触れると急激な酸化が起
こり発火し、また焼結が起こる。
By calcination in a reducing or inert atmosphere, a small portion of SnO2 is reduced to metallic tin.
It is thought that it is in a state that could be described as Sn-doped SnO 2 or SnO 2-x , but this has not been confirmed yet. (Even when heated in an inert atmosphere, oxygen in SnO 2 is removed and reduction occurs.) If the firing temperature is lower than 350°C, the crystals will not develop well and it will be amorphous, resulting in high resistance, and if it exceeds 700°C. When the reduction progresses too much and it comes into contact with air, rapid oxidation occurs, causing fire and sintering.

本発明方法によつて得られる低電気抵抗酸化ス
ズ微粉末は、その電気低抗値が低く、粉末は極め
て微細で、良好な分散性を示す。
The low electrical resistance tin oxide fine powder obtained by the method of the present invention has a low electrical resistance value, is extremely fine, and exhibits good dispersibility.

以下本発明の実施例を示す。なお粉末の微細
性、分散性の目安としては、比表面積または粉末
をPH=10の水溶液中で分散後、0.3μm以下の粒
子が何%あるかで示した。
Examples of the present invention will be shown below. As a measure of the fineness and dispersibility of the powder, the specific surface area or the percentage of particles of 0.3 μm or less after dispersing the powder in an aqueous solution with a pH of 10 was used.

実施例 1 水10に水酸化ナトリウム335gを加え80℃に
加熱した。これに、塩化第二スズを水に60%溶解
した原料500gに、塩酸と水の1:1の溶液610ml
加えたものを定量ポンプで滴下させ反応を行ない
最終PHを2とした。出来た沈澱を水で洗浄後乾燥
し雰囲気炉で窒素置換後水素を1/分流し400
℃1時間焼成した。この粉末をアトマイザーで粉
砕後柴田化学器機工業(株)製SA−1000型で比表面
積を測定したところ68.9m2/gであつた。この粉
末を100Kg/cm2で加圧し比抵抗を測定した結果956
Ω・cmであつた。
Example 1 335g of sodium hydroxide was added to 10ml of water and heated to 80°C. Add to this 500 g of raw material with 60% tin chloride dissolved in water, and 610 ml of a 1:1 solution of hydrochloric acid and water.
The added material was added dropwise using a metering pump to carry out the reaction, and the final pH was set to 2. The resulting precipitate was washed with water, dried, replaced with nitrogen in an atmosphere furnace, and then hydrogen was poured at 1/min for 400 min.
It was baked at ℃ for 1 hour. After pulverizing this powder with an atomizer, the specific surface area was measured using Model SA-1000 manufactured by Shibata Kagaku Kiki Kogyo Co., Ltd. and found to be 68.9 m 2 /g. This powder was pressurized at 100Kg/cm 2 and the specific resistance was measured, and the result was 95 6
It was Ω・cm.

実施例 2 実施例1の第1段階で生成した乾燥沈澱を真空
中500℃で1時間焼成した。この粉末は1.2×105
Ω・cmであつた。この粉末を110℃の乾燥機中8
時間乾燥後直ちに測定したところ3.7×105Ω・cm
であつた。空気中500℃1時間焼成した2.6×106
Ω・cmの粉末は110℃8時間乾燥直後には1.7×
107Ω・cmであつた。
Example 2 The dried precipitate produced in the first step of Example 1 was calcined in vacuo at 500° C. for 1 hour. This powder is 1.2×10 5
It was Ω・cm. This powder was placed in a dryer at 110°C.
When measured immediately after drying for a while, it was 3.7×10 5 Ω・cm
It was hot. 2.6×10 6 fired in air at 500℃ for 1 hour
Ω・cm powder is 1.7× immediately after drying at 110℃ for 8 hours.
It was 10 7 Ω・cm.

実施例 3 実施例1の第1段階で生成した乾燥沈澱粉末を
直径10cmの流動床で窒素1/分流しながら400
℃で1時間焼成した。この粉末の比抵抗は1.8×
104Ω・cmであつた。この粉末5gに水40ml加
え、アンモニア水でPH=10としボールミルで17時
間分散後遠心沈降法で0.3μm以下の含有率を測
定したところ56.2%であつた。
Example 3 The dry precipitated powder produced in the first step of Example 1 was heated to 400 ml of nitrogen in a fluidized bed with a diameter of 10 cm with a nitrogen flow of 1/2.
It was baked at ℃ for 1 hour. The specific resistance of this powder is 1.8×
It was 10 4 Ω・cm. 40 ml of water was added to 5 g of this powder, the pH was adjusted to 10 with aqueous ammonia, and after dispersion in a ball mill for 17 hours, the content of particles below 0.3 μm was measured by a centrifugal sedimentation method and found to be 56.2%.

実施例 4 実施例1の第1段階で生成した乾燥沈澱粉末を
窒素置換後窒素と水素各1/分流し500℃で2
時間焼成した。この粉末の比抵抗は1.2×104Ω・
cmであつた。
Example 4 The dry precipitated powder produced in the first step of Example 1 was purged with nitrogen and then flushed with nitrogen and hydrogen at 1/min each at 500°C for 2 hours.
Baked for an hour. The specific resistance of this powder is 1.2×10 4 Ω・
It was cm.

Claims (1)

【特許請求の範囲】 1 PH10以上のアルカリ水溶液を65℃以上に保ち
ながら、この溶液に塩化スズ溶液を加えて沈澱を
生成させ、最終的にPHを5〜1に保つことによつ
て微細な沈澱を得、これを洗浄乾燥後、還元性雰
囲気または不活性雰囲気中で、350℃〜700℃の温
度で焼成することからなる低電気抵抗酸化スズ微
粉末の製造法。 2 特許請求の範囲第1項に記載の低電気抵抗酸
化スズの微粉末の製造法であつて、焼成をH2
He、N2、Arのいずれか、またはその組合せ中で
行なう方法。 3 特許請求の範囲第1項に記載の低電気抵抗酸
化スズの微粉末の製造法であつて、焼成を真空中
で行なう方法。
[Claims] 1. While keeping an alkaline aqueous solution with a pH of 10 or higher at 65°C or higher, a tin chloride solution is added to this solution to form a precipitate, and finally by keeping the pH between 5 and 1, fine particles can be formed. A method for producing a low electrical resistance tin oxide fine powder, which comprises obtaining a precipitate, washing and drying the precipitate, and then calcining the precipitate at a temperature of 350°C to 700°C in a reducing atmosphere or an inert atmosphere. 2. A method for producing a fine powder of low electrical resistance tin oxide according to claim 1, wherein the calcination is performed using H 2 ,
A method carried out in He, N 2 , Ar, or a combination thereof. 3. A method for producing a fine powder of low electrical resistance tin oxide according to claim 1, wherein the firing is performed in a vacuum.
JP15408083A 1983-08-25 1983-08-25 Production of fine powder of tin oxide having low electrical resistance Granted JPS6046925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15408083A JPS6046925A (en) 1983-08-25 1983-08-25 Production of fine powder of tin oxide having low electrical resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15408083A JPS6046925A (en) 1983-08-25 1983-08-25 Production of fine powder of tin oxide having low electrical resistance

Publications (2)

Publication Number Publication Date
JPS6046925A JPS6046925A (en) 1985-03-14
JPS621574B2 true JPS621574B2 (en) 1987-01-14

Family

ID=15576452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15408083A Granted JPS6046925A (en) 1983-08-25 1983-08-25 Production of fine powder of tin oxide having low electrical resistance

Country Status (1)

Country Link
JP (1) JPS6046925A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5204177A (en) * 1986-03-06 1993-04-20 Catalysts & Chemicals Industries, Co., Ltd. Process for preparing conductive fine particles and conductive coating materials containing said particles
US4937148A (en) * 1986-03-06 1990-06-26 Catalysts & Chemicals Industries Co., Ltd. Process for preparing conductive fine particles
NL9000268A (en) * 1990-02-05 1991-09-02 Oce Nederland Bv Doped tin oxide powder, a process for its preparation, and its use in electrically conductive or anti-static coatings.
JP4553345B2 (en) * 2003-09-30 2010-09-29 三井金属鉱業株式会社 Conductive powder
JP4575656B2 (en) * 2003-09-30 2010-11-04 三井金属鉱業株式会社 Conductive powder
JP5051566B2 (en) * 2005-03-11 2012-10-17 三菱マテリアル株式会社 Transparent conductive fine powder, method for producing the same, dispersion, and paint
JP5301370B2 (en) * 2008-07-02 2013-09-25 石原産業株式会社 Tin oxide particles and method for producing the same
JP5511291B2 (en) * 2009-09-30 2014-06-04 Dowaエコシステム株式会社 Method for purifying tin-containing waste and glass foam
US20120177565A1 (en) * 2011-01-07 2012-07-12 Southern Taiwan University Method for making a conductive tin dioxide powder

Also Published As

Publication number Publication date
JPS6046925A (en) 1985-03-14

Similar Documents

Publication Publication Date Title
GB1567995A (en) Heat stable iron oxides
GB2181723A (en) Stabilised zirconia
JPS621574B2 (en)
JPH0455315A (en) Production of cerium oxide fine powder
KR100444142B1 (en) ITO fine powder and method for producing the same
JP2707325B2 (en) Method for producing white conductive zinc oxide
JPH0232213B2 (en) TEIDENKITEIKOSANKASUZUBIFUNMATSUNOSEIZOHO
US4812302A (en) Process for preparing high purity Mn3 O4
JP2001058822A (en) Tin-doped indium oxide powder and its production
JPS621573B2 (en)
JPS621572B2 (en)
JPS6241175B2 (en)
JPH0679964B2 (en) Process for producing antimony-tin oxide powder
JPH0114174B2 (en)
KR100236115B1 (en) Method for the preparation of ruthenium dioxide powder
JPH06227815A (en) Production of electrically conductive fine powder
KR100405287B1 (en) Cobaltous Oxide Containing Finely-dispersed Metallic Cobalt, Methods of Producing the Same and Use Thereof
JPS60186416A (en) Production of sn-doped in2o3 powder having low electrical resistance
JPS61286221A (en) Preparation of white electroconductive powder
JPH06183733A (en) Electric conductive white powder and it production
JPH04321523A (en) Production of tricobalt tetroxide
JPH08239215A (en) Production of barium titanate-based semiconductor ceramic composition raw material
JPH0292824A (en) Acicular low oxidized titanium and production thereof
JP2644707B2 (en) Method for producing ceramics containing fine metal particles or fine metal oxide particles
JPS6186421A (en) Preparation of white electroconductive powder