JPS62154575A - Manufacture of fuel electrode for molten carbonate fuel cell - Google Patents

Manufacture of fuel electrode for molten carbonate fuel cell

Info

Publication number
JPS62154575A
JPS62154575A JP60295422A JP29542285A JPS62154575A JP S62154575 A JPS62154575 A JP S62154575A JP 60295422 A JP60295422 A JP 60295422A JP 29542285 A JP29542285 A JP 29542285A JP S62154575 A JPS62154575 A JP S62154575A
Authority
JP
Japan
Prior art keywords
electrode
fuel cell
powder
wood pulp
molten carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60295422A
Other languages
Japanese (ja)
Other versions
JPH0520871B2 (en
Inventor
Hirozo Matsumoto
浩造 松本
Tsuneo Nakanishi
仲西 恒雄
Junji Nakamura
中村 淳次
Ikumasa Nishimura
生眞 西村
Goro Saito
悟朗 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd, Fuji Electric Corporate Research and Development Ltd filed Critical Toppan Printing Co Ltd
Priority to JP60295422A priority Critical patent/JPS62154575A/en
Publication of JPS62154575A publication Critical patent/JPS62154575A/en
Publication of JPH0520871B2 publication Critical patent/JPH0520871B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • H01M4/8885Sintering or firing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To obtain an anode for a molten carbonate fuel cell whose sintering resistance is good and electrode-scale enlargement is easy by pressing a metal mesh against a sheet obtained by processing wood pulp in which nickel powder is adsorbed with a paper machine, and heating it in an oxidizing atmosphere and a reducing atmosphere. CONSTITUTION:Nickel powder and wood pulp are mixed in the water to produce slurry suitable for making a sheet with a paper machine, and a coagulating agent is added to the slurry to coagulate the powder into the pulp, then a sheet is manufactured with a paper machine. A metal mesh is pressed against the sheet with a press, and they are heated in an atmosphere to burn off the wood pulp, then heated in a reducing atmosphere at high temperature to reduce the metal oxide produced in the above heating process and to sinter the nickel powder. Thereby, an electrode is reinforced by the metal mesh, and its sintering resistance is improved. By assembling this electrode as anode of a molten carbonate fuel cell, the fuel cell can retain good cell performance over a long period of time.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明は、溶融炭酸塩を電解質と1〜で作動する燃料
電池に係り、特にこの燃料電池に組み込まれる燃料極(
アノード)の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to a fuel cell that operates using molten carbonate and an electrolyte, and particularly relates to a fuel electrode (
(Anode) manufacturing method.

〔従来技術とその問題点〕[Prior art and its problems]

浴融炭酸塩燃料電池(以下の本文ではMCFCという)
は動作温度が高く、腐食性の旨い溶融炭酸塩を使用して
いるため、燃料極(以下、アノードという)と酸化極(
以下、カソードという)に用いる電極材料にも種々の要
求性能が課せられている。ア7ノード電極に対する要求
特性をまとめると以下のようになる。
Bath molten carbonate fuel cell (referred to as MCFC in the following text)
Since the operating temperature is high and corrosive molten carbonate is used, the fuel electrode (hereinafter referred to as anode) and oxidation electrode (
Various required performances are also imposed on the electrode materials used for the cathodes (hereinafter referred to as cathodes). The characteristics required for the anode electrode are summarized as follows.

(1)ガス雰囲気に対して安定であること。(1) It must be stable in a gas atmosphere.

(2)耐熱性とくにクリープg11扶が高いこと。(2) High heat resistance, especially creep g11.

(3)急激な電解質流人がなく、ガスと反応できること
(3) Ability to react with gas without rapid electrolyte drift.

f4)N気伝端、性が高いこと。f4) N Qi transmission end, high quality.

(5)安価であること。(5) It should be inexpensive.

従来、h、i CF Cのアノードには多孔質のNl框
極板が広く使用されている。これはNiが耐食性と導電
性をバランスよく共像し、かつ良質の粉末か入手しや−
「く、多孔質電極板の製造も比較的容易なためである。
Conventionally, a porous Nl frame electrode plate has been widely used for the anode of h,i CF C. This is because Ni has a well-balanced combination of corrosion resistance and conductivity, and it is easy to obtain high-quality powder.
This is because manufacturing of porous electrode plates is relatively easy.

通常、多孔1Ni1!を極板は粒径が3〜7μmのカー
ダニルニッケル扮末を用い、これを所望の寸法。
Usually porous 1Ni1! The electrode plate uses cardanyl nickel powder with a particle size of 3 to 7 μm, and is adjusted to the desired size.

形状をイイする黒鉛型などに充填し、還元性雰囲気中で
約650°〜1000℃の温度範囲で焼結することによ
って製造される。MCFCのアノード電(へとして望し
い細孔容積(空孔率)、平均空孔径または空孔径分布な
どは実験的に決定されるが、これらは主に電解質板の多
孔度および電池の動作条件に依存する。良好な′電池特
性を得るためには、反応を行うのに十分なだけの電解質
が1iLW4′ホ板から電極に流入し、かつ反応ガスの
1を極内の迅速な拡散を妨げるほどには′電解質が電極
に流入しないような空孔率、空孔径などをもつことが*
 ’k fこは要求される。一般的に言えば、前記条件
を満たすための多孔質電極板の空孔率は60〜80%、
平均空孔径は1〜10μm(望ましきは4〜7μfrL
)とされ、多孔質Ni電極板はこれら要求をほぼ満足し
ている。しかし、多孔質Ni@極板はクリープ強度が小
さいため、!池の運転下において滉結が経時的に進行し
て空孔率および表面積などが減少してMCFCの電池性
能を低下させるという欠点をもっている。
It is manufactured by filling a graphite mold with a suitable shape and sintering it in a reducing atmosphere at a temperature in the range of about 650° to 1000°C. The desired pore volume (porosity), average pore diameter, pore diameter distribution, etc. for the anode electrode of MCFC are determined experimentally, but these mainly depend on the porosity of the electrolyte plate and the operating conditions of the battery. In order to obtain good 'cell properties, enough electrolyte flows from the 1iLW4' plate into the electrode to carry out the reaction, and enough electrolyte flows into the electrode from the 1iLW4' plate to prevent rapid diffusion of the reactant gas into the electrode. The electrode must have a porosity, pore diameter, etc. that prevents the electrolyte from flowing into the electrode.
'kf is requested. Generally speaking, the porosity of the porous electrode plate to satisfy the above conditions is 60 to 80%,
The average pore diameter is 1 to 10 μm (preferably 4 to 7 μfrL)
), and the porous Ni electrode plate almost satisfies these requirements. However, since the porous Ni@electrode plate has low creep strength,! During operation of the pond, condensation progresses over time and porosity and surface area decrease, resulting in a deterioration of MCFC battery performance.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、耐焼結性に富みかつ電極大型化の容易
なM CF C用アノード電極の腸造方法を提供するこ
とである。
An object of the present invention is to provide a method for making an anode electrode for M CF C that is highly sintering resistant and easy to increase the size of the electrode.

〔発明の要点〕[Key points of the invention]

この目的は本発明によれは、Ni粉末と木材パルプを水
中で混合して抄造に適する水性スラリーとし、これに凝
集剤を添加12て粉末をパルプに吸着凝集させ、抄造す
ることで得た板状の成形物に金属メ、シェをプレス成型
によって圧着せしめた後、酸化性雰囲気で加熱1〜で木
材パルプを焼失飛散するし、続いて前記加熱で生じた金
属酸化物の還元と、N1粉末の焼結を行うために制減の
還ノじ性雰囲気で加熱することにより達成される。
According to the present invention, Ni powder and wood pulp are mixed in water to form an aqueous slurry suitable for papermaking, a flocculant is added to this, the powder is adsorbed and agglomerated by the pulp, and a board obtained by papermaking is obtained. After press-molding the metal shell onto the molded product, the wood pulp is burned and scattered by heating in an oxidizing atmosphere, followed by reduction of the metal oxides generated by the heating, and N1 powder. This is accomplished by heating in a reduced reflux atmosphere to effect sintering.

〔発明の実施例〕[Embodiments of the invention]

本発明で用いるNi粉末は一般1こ市販されている電解
粉やカーボニルニッケル粉末などのいずれでも良いが、
電極としたときの電気化学的性質を向上させるにはより
微細な粉末(粒径1〜10μfn)の方が好ましい。ま
た、粉末な吸着・城集させるために用いるパルプには種
々のものがあるが、本発明では繊維径が細く、繊維同志
の絡みも多くかつ安価であると、いう観点から木材パル
プを選定した。
The Ni powder used in the present invention may be any commercially available electrolytic powder or carbonyl nickel powder, but
In order to improve electrochemical properties when used as an electrode, finer powder (particle size 1 to 10 μfn) is preferable. In addition, there are various types of pulp used for adsorbing and collecting powder, but in the present invention, wood pulp was selected from the viewpoints that the fiber diameter is small, the fibers are often entwined with each other, and it is inexpensive. .

この木材パルプの癌加量は所望するアノードの空孔率に
応じて任意に選択可能であるが、本発明で意図するアノ
ードの製造に当っては焼結前の成形物の全′M量に対し
て3〜15%が好ましい範囲であった。
The porosity of this wood pulp can be arbitrarily selected depending on the desired porosity of the anode, but in producing the anode intended in the present invention, the total amount of M in the molded product before sintering is The preferable range was 3 to 15%.

板状の成形物1こ圧着させ、かつ焼結後に電極の補強材
としての役割を発揮する金属メツシュの材質は、強度、
耐熱性および耐食性を兼備したニッケル、ステンレス、
カンタルなどが適しており、′メツシュ形状としては1
0〜8tJメ、シュでその線径が0.1〜Q、 3 m
m ′の範囲が本発明の目的に合致していた。
The material of the metal mesh, which is pressed together with a plate-shaped molded object and acts as a reinforcing material for the electrode after sintering, has a high strength,
Nickel, stainless steel, which has both heat resistance and corrosion resistance.
Kanthal etc. are suitable, and the mesh shape is 1.
0~8tJ, wire diameter is 0.1~Q, 3m
The range of m' was consistent with the objectives of the present invention.

一方、板状の成形物に金1属メ、シュを圧着するには、
両者を積層した後プレス機で徐々に圧を上げる方法を用
いる。圧力は50〜200ψtytrttv範囲で行な
うと良い。この際、必要ならば、プレス成型時にプレス
機を加温する。例えば、ω〜150℃の温度範囲で徐々
に温度を上昇させるとか、30’・600・90’・1
20℃という具合に段階的l・こ温良を上昇させても良
好な結果が得られろ。ηiお、ブ)/ス成型工程は金属
メツシーを成形物に圧着させるとともに、抄造した成形
物は水分が非常に多いので、それを脱水して表面性状を
フラットで均一に保てる乾燥法としての効果も有してい
る。
On the other hand, in order to press a metal metal mesh onto a plate-shaped molded product,
A method is used in which after laminating both layers, the pressure is gradually increased using a press machine. The pressure is preferably in the range of 50 to 200 ψtytrttv. At this time, if necessary, the press machine is heated during press molding. For example, gradually increasing the temperature in the temperature range of ω ~ 150℃, 30', 600, 90', 1
Even if the temperature is increased stepwise to 20°C, good results can be obtained. The molding process presses the metal mesh onto the molded product, and since the molded product contains a lot of moisture, it is effective as a drying method that dehydrates the water and keeps the surface texture flat and uniform. It also has

以上のプレス成型工程を経た後、金属メツシー付き成形
物を電気炉に入れて酸1じ性写囲気中で、必要ならば空
気を流しながら常温から100℃/11前後の速度で加
熱すると、400°C近辺から成形物に含まれる木材パ
ルプ、凝集剤は焼失気イじを開始し、これらはほぼ50
0℃で完全に焼失しで1−よう。したがって、酸化性雰
囲気での加熱漏曳は450°〜600°Cで、その保持
時間は1〜3時間が好ましい範囲であるが、最も望まし
いのは500’Cで1〜2時間保持する条件である。こ
れは温良か600°C前後になると、粉末、メツシュの
酸化物生成か多くなって、電極の導電性に悪影響をもた
らT恐れがあるためである。
After going through the above press molding process, the molded product with the metal mesh is placed in an electric furnace and heated at a rate of around 100°C/11°C from room temperature in an acidic atmosphere, with air flowing if necessary. The wood pulp and flocculant contained in the molded product begin to burn out at around 50°C, and these
Completely burned out at 0°C. Therefore, the heating leakage in an oxidizing atmosphere is preferably 450° to 600°C for 1 to 3 hours, but the most desirable condition is 500°C for 1 to 2 hours. be. This is because when the temperature is around 600°C, more oxides are produced in the powder and mesh, which may adversely affect the conductivity of the electrode.

木材パルプ、凝集剤を焼失、気化させた際に生じた酸化
物の還元、Ni粉末の焼結およびNi粉末と金属メツシ
ュの拡散結合を目的として実施する還元性殉囲気中での
加熱処理条件は次の通りである。(1)温度=650°
〜1000℃ (2)保持時間二〇、5〜3時間 +3
) i’囲気:水素、窒素2アルゴン、真空(10to
rr以下)。
The heat treatment conditions in a reducing atmosphere are as follows: It is as follows. (1) Temperature = 650°
~1000℃ (2) Holding time 20, 5 to 3 hours +3
) i' Surroundings: hydrogen, nitrogen 2 argon, vacuum (10 to
rr or less).

この加熱処理条件の範囲であるならば、本発明で所望す
るアノード電極の空孔率、空孔径、壁孔径分布および比
表面積などを任意に設定することが可能であった。
Within this range of heat treatment conditions, it was possible to arbitrarily set the porosity, pore diameter, wall pore diameter distribution, specific surface area, etc. of the anode electrode desired in the present invention.

(実施例1) この実施例では電極の製造方法について述べる。(Example 1) In this example, a method for manufacturing an electrode will be described.

(入試料の調整 (B)凝集剤 21部程度の容器に水1000部と木材パルプ5部を入
れ、10〜20分はど攪拌して水に十分分散させて、そ
こヘカーボニルニッケル粉末を45部を加えて5〜10
分はど攪拌して水性スラリーを作る。その中へあらかじ
め作っておいたポリアクリルアンド系アニオン凝集剤(
0,1%水溶g)を30部添加し、1分はど攪拌し、さ
らにあらかじめ作っておいたボ11アクリルアンド系カ
チオン凝集剤(0,1%水溶液)を20部添加し、1分
はど攪拌して凝秦フロックを作る。前記工程で凝集した
試料を抄造機で抄造して30部1mi角で厚み1,21
111の成形物を得た。次に線径Q、 l 酩で頒メ、
シュのNiメ、シュを成形物に積層し、プレス機で85
にβの圧力にてN1メ、シ、を成形物に圧着せしめた。
(Preparation of input sample (B) Put 1,000 parts of water and 5 parts of wood pulp into a container containing about 21 parts of flocculant, stir for 10 to 20 minutes to thoroughly disperse it in the water, and add 45 parts of carbonyl nickel powder to it. 5 to 10 parts
Mix thoroughly to make an aqueous slurry. A polyacrylic anionic flocculant (pre-prepared therein)
Add 30 parts of 0.1% aqueous solution g), stir for 1 minute, then add 20 parts of Bo11 acrylic and type cation flocculant (0.1% aqueous solution) prepared in advance, and stir for 1 minute. Stir to form a floc. The sample agglomerated in the above step was made into paper using a paper making machine, and 30 parts, 1 mm square, and 1.21 mm thick were made.
No. 111 molded products were obtained. Next, distribute the wire diameter Q and l,
Laminate the Ni film on the molded product and use a press machine to
The N1 pieces were crimped onto the molded product at a pressure of β.

これを電気炉に装入し、大気中において常温より150
℃ハの速度で500°Cまで加熱し、この温度で2時間
保持して成形物に含まれる木材パルプ、凝集剤を焼失飛
散させた後、室温まで冷却した。その後、水系炉にて水
系を流しながら常温より300℃、用の速度で600°
Cまでに昇温し、これ以降は150’Cハの速度で80
0℃まで昇温させ、800℃で1時間保持することでN
iメ。
This was charged into an electric furnace and heated to 150°C from room temperature in the atmosphere.
The molded article was heated to 500° C. at a rate of 500° C., held at this temperature for 2 hours to burn off and scatter the wood pulp and flocculant contained in the molded product, and then cooled to room temperature. After that, in a water-based furnace, the water system is heated to 300°C from room temperature and 600° at the specified speed.
The temperature was raised to 80°C, and from then on, the temperature was increased to 80°C at a rate of 150°C.
By raising the temperature to 0℃ and holding it at 800℃ for 1 hour, N
i-mail.

シーを補強材とした多孔質Ni電極板を得た。本条件で
得られた多孔質Ni@、[板の厚さは0.83mm。
A porous Ni electrode plate using shea as a reinforcing material was obtained. Porous Ni@ obtained under these conditions [plate thickness: 0.83 mm].

空孔率は67%2平均空孔半径は5.5μmそして比表
面積は0.15m’/?であった。
The porosity is 67%2, the average pore radius is 5.5 μm, and the specific surface area is 0.15 m'/? Met.

(実施例2) この実施例では、実施例1で得た多孔質Ni電極板のク
リープ強度を検討した。クリープ強度は、温度:650
℃、雰囲気:真空、荷重82.5KVゴの条件で圧縮ク
リープ試験を行い、その時の圧縮クリープひずみの大小
によって判断した。
(Example 2) In this example, the creep strength of the porous Ni electrode plate obtained in Example 1 was examined. Creep strength is temperature: 650
A compression creep test was conducted under the conditions of ℃, atmosphere: vacuum, and a load of 82.5 KV, and judgment was made based on the magnitude of the compression creep strain at that time.

比較品としては、平均粒径4.7μmのカーボニルニッ
ケル粉末を深さ1.0!I11の黒鉛鋳型に充填し、こ
れを水素雰囲気中780°C×IHの焼結を行って製造
したNi電極板を用いた。この比較品の空孔率は73.
3%、平均仝孔半径は6.1μmおよび比表面積は0.
18m/2であった。第1図に圧相白クリープ試験で得
られたクリープひずみと試験時間の関係を示す。実線1
で示す本発明品のクリープひずみは1000時間で工)
5%前後であるのにλ・↑し、実@2の比4品は短時間
側でも大きなりリープひずみを呈し、 1000時間で
は55%にもなっている。また、クリープ試験前とi 
ooo時間クリりプ後の空孔率、平均空孔半径および比
表面積の変化は第1表のようになる。
As a comparison product, carbonyl nickel powder with an average particle size of 4.7 μm was used at a depth of 1.0! A Ni electrode plate manufactured by filling a graphite mold of I11 and sintering it at 780°C x IH in a hydrogen atmosphere was used. The porosity of this comparative product is 73.
3%, average hole radius is 6.1 μm and specific surface area is 0.
It was 18m/2. Figure 1 shows the relationship between the creep strain and test time obtained in the pressure white creep test. solid line 1
The creep strain of the product of the present invention is expressed in 1000 hours)
Even though it is around 5%, λ↑ increases, and the 4 products with actual @2 ratio exhibit large leap strain even on the short time side, reaching 55% at 1000 hours. In addition, before the creep test and i
Changes in porosity, average pore radius and specific surface area after ooo time clipping are as shown in Table 1.

第  1  表 第1図および第1表1こ示す結果より、この実施?Il
による電極は金属メ、シーの補修効果によりクリープ強
度が顕著に増加I−1かつ多孔質電極板の空孔特性も変
化の少ないこと?:播12できた。
1 From the results shown in Table 1 and Table 1, this implementation? Il
The creep strength of the electrode significantly increases due to the repair effect of the metal sheet I-1, and the pore characteristics of the porous electrode plate do not change much. : I was able to spread 12.

(実施例3) この実施例では、iM径がよ)1で厚さが0.851!
II前後の実施泗II極および実施し1]2で説明17
た比較の多孔)XNi電極板をアノードに用いて〜1c
F(コを嘴成し、その電池性能′?:d〜べ1こ。なお
、電油試験はクリープ試験前と1000時間の圧縮クリ
ープ試験を行っ1このちの′電極板の両者について実施
した。
(Example 3) In this example, the iM diameter is 1 and the thickness is 0.851!
Implementation before and after II II and implementation 1] Explained in 2 17
Using a comparative porous) XNi electrode plate as an anode ~1c
The battery performance'?: d~be1.The electrohydraulic test was carried out on both the electrode plates before the creep test and after the 1000 hour compressive creep test.

八ICE’Cは、リチウムアルミネートを′YILI!
4質保持材として共晶組成電解質成分(47,5本量%
炭酸リチウムー52.5厘t%炭酸カリウム)を55重
建物倉有する5Q IAa X 2m11厚の邂m實板
をアノードとカソード間lこ配置し、燃料室2よび酸化
剤室を備え、かつ簗電子を水ね1こハウジングで電極板
と電解質板を両面から押しつけ1こ構造の単電池を構成
した。
Eight ICE'C 'YILI' Lithium Aluminate!
A eutectic composition electrolyte component (47.5% by weight) is used as a quaternary retention material.
A 5Q IAa x 2m11-thick steel plate with 55 heavy-duty buildings containing lithium carbonate (52.5 t% potassium carbonate) was placed between the anode and cathode, and equipped with a fuel chamber 2 and an oxidizer chamber, and The electrode plate and electrolyte plate were pressed together from both sides in a single housing to form a unit cell with a single cell structure.

かかる構成の単電池に、燃料ガス組成はH2+20%C
02,酸化剤カスI!l成はAir+(資)%CO2か
らなるガス)i 0.5 、、e/−の流量で供給し6
50℃で電流−電圧特性の関係を測定した。
In a cell with such a configuration, the fuel gas composition is H2 + 20%C.
02, Oxidizer scum I! The gas is supplied at a flow rate of 0.5, e/-6.
The relationship between current and voltage characteristics was measured at 50°C.

第2図に電流密度1000時間で測定したアノード分極
値を示す。クリープ試験前の電極板をアノード′dL#
に用いたときは、不実施例品と比較品で優劣は認められ
ない。1000時間クリープ試験後の電極板のアノード
分極値をみると、本発明品はクリープ試験前の値とほぼ
同等であるのに対して、比較品のアノード分極値は極め
て大きな値となり、MCFCの特性上好しくないことを
示(−でいる。1−またがって、金漬メ、シュで補強し
た′A元四品の方が寿命特性の面で有利であることが明
らかである。
FIG. 2 shows anode polarization values measured at a current density of 1000 hours. The electrode plate before the creep test is anode 'dL#
When used for this purpose, no superiority or inferiority was observed between the non-example product and the comparative product. Looking at the anode polarization value of the electrode plate after the 1000 hour creep test, the inventive product is almost the same as the value before the creep test, while the anode polarization value of the comparative product is extremely large, indicating that the characteristics of MCFC It is clear that the original four products of 'A', which are reinforced with gold pickled mesh and mesh, are more advantageous in terms of life characteristics.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように本発明によれば、Ni粉
末と木材パルプを水中で混合して水性スラ;1−とし、
これに凝集剤を加えて粉末をパルプに吸着凝集せしめ、
抄造によって板状の成形物を得、この成形物と金属メ、
シ、をブレス成型で11合化した後、酸化性雰囲気と還
元性雰囲気の二つの工程で加熱処理を行うことによって
多孔負電極板?形成しているため、金属メツシーか補強
効果を発揮して耐焼結性に梗れた電極となる。そしてこ
れをMCFCのアノードに組み込むことにより、MCF
Cの長期にわたる電池性能を維持することが可能となる
As is clear from the above description, according to the present invention, Ni powder and wood pulp are mixed in water to form an aqueous slurry;
A flocculant is added to this to adsorb and agglomerate the powder into the pulp.
A plate-shaped molded product is obtained by papermaking, and this molded product and metal
After combining 11 with breath molding, heat treatment is performed in two steps in an oxidizing atmosphere and a reducing atmosphere to create a porous negative electrode plate. Because of this, the metal mesh exhibits a reinforcing effect, resulting in an electrode with excellent sintering resistance. By incorporating this into the anode of the MCFC, the MCF
It becomes possible to maintain the long-term battery performance of C.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は11L極板の圧縮クリープ試験におけるクリー
プひずみと試験時間の関係を示すグラフ、第2図はMC
FCの単電池でクリープ試験前と1000時間クリープ
試験後の電極板について測定したアノード分極値の結果
を示すグラフである。 024     ム    ε    lOB’+  
fvl  (H,y、too 、)第1 図
Figure 1 is a graph showing the relationship between creep strain and test time in a compression creep test of 11L electrode plate, Figure 2 is a graph showing the relationship between MC
It is a graph showing the results of anode polarization values measured for electrode plates before and after a 1000-hour creep test in a single FC cell. 024 Mu ε lOB'+
fvl (H, y, too,) Fig. 1

Claims (1)

【特許請求の範囲】[Claims] 1)Ni粉末と木材パルプを水中で混合して抄造に適す
る水性スラリーとなし、凝集剤を添加して粉末をパルプ
に吸着凝集し抄造することで得た板状の成形物に金属メ
ッシュをプレス成型によって圧着せしめた後、該成形物
を酸化性雰囲気で加熱して木材パルプを焼失飛散し、続
いて高温の還元性雰囲気で加熱して前記酸化で生じた金
属酸化物を還元するとともにNi粉末を焼結することを
特徴とする溶融炭酸塩燃料電池用燃料極の製造方法。
1) Mix Ni powder and wood pulp in water to make an aqueous slurry suitable for papermaking, add a flocculant, adsorb the powder to the pulp, coagulate it, and press a metal mesh onto a plate-shaped product obtained by making paper. After being compressed by molding, the molded product is heated in an oxidizing atmosphere to burn off and scatter the wood pulp, and then heated in a high-temperature reducing atmosphere to reduce metal oxides produced by the oxidation and to form Ni powder. A method for producing a fuel electrode for a molten carbonate fuel cell, the method comprising: sintering a fuel electrode for a molten carbonate fuel cell.
JP60295422A 1985-12-27 1985-12-27 Manufacture of fuel electrode for molten carbonate fuel cell Granted JPS62154575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60295422A JPS62154575A (en) 1985-12-27 1985-12-27 Manufacture of fuel electrode for molten carbonate fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60295422A JPS62154575A (en) 1985-12-27 1985-12-27 Manufacture of fuel electrode for molten carbonate fuel cell

Publications (2)

Publication Number Publication Date
JPS62154575A true JPS62154575A (en) 1987-07-09
JPH0520871B2 JPH0520871B2 (en) 1993-03-22

Family

ID=17820400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60295422A Granted JPS62154575A (en) 1985-12-27 1985-12-27 Manufacture of fuel electrode for molten carbonate fuel cell

Country Status (1)

Country Link
JP (1) JPS62154575A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7470480B2 (en) 2003-08-11 2008-12-30 Shinko Electric Industries Co., Ltd. Solid electrolyte fuel-cell device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7470480B2 (en) 2003-08-11 2008-12-30 Shinko Electric Industries Co., Ltd. Solid electrolyte fuel-cell device

Also Published As

Publication number Publication date
JPH0520871B2 (en) 1993-03-22

Similar Documents

Publication Publication Date Title
KR100824844B1 (en) Nickel foam and felt-based anode for solid oxide fuel cells
US4710436A (en) Molten carbonate fuel cell and method of manufacturing electrolyte plate thereof
US4656735A (en) Process for producing an electrolyte retaining matrix of electrical insulating long fibers
JPS62154575A (en) Manufacture of fuel electrode for molten carbonate fuel cell
JPS58129775A (en) Fuel battery
JPH0520872B2 (en)
JPH01186561A (en) Fuel cell
JPS58129781A (en) Fused salt type fuel cell
JPH0258743B2 (en)
JPS58119161A (en) Manufacture of electrode for fused salt fuel battery
JPH0548581B2 (en)
JPH0261095B2 (en)
JPS63138662A (en) Manufacture of electrolyte tile for fused carbonate type fuel cell
JPH06290799A (en) Manufacture of electrolytic sheet for fused carbonate type fuel cell
JPS62154572A (en) Manufacture of molten carbonate fuel cell
JP2004047126A (en) Porous metal gas diffusing sheet for solid high polymer fuel cell exhibiting superior contact surface conductivity for long period
CN117773099A (en) Porous titanium alloy substrate prepared based on spherical titanium alloy powder and preparation method thereof
JPS6178066A (en) Method for manufacturing electrolytic tiles of fused carbonate fuel cell
JPS62176063A (en) Manufacture of electrolyte tile of molten carbonate fuel cell
JPS63289772A (en) Manufacture of electrolyte tile for fused carbonate type fuel cell
JPH01120774A (en) Manufacture of electrolyte tile of molten carbonate fuel cell
JPH07282814A (en) Manufacture of gas diffusion electrode
JPH0282455A (en) Impalpable powder member-porous member for gas diffusion electrode construction and water repellent treatment therefor
JPH0520870B2 (en)
Hryniewicz et al. Porous sinters for elevated-temperature natural-gas fuel cells