JPH01120774A - Manufacture of electrolyte tile of molten carbonate fuel cell - Google Patents

Manufacture of electrolyte tile of molten carbonate fuel cell

Info

Publication number
JPH01120774A
JPH01120774A JP62278037A JP27803787A JPH01120774A JP H01120774 A JPH01120774 A JP H01120774A JP 62278037 A JP62278037 A JP 62278037A JP 27803787 A JP27803787 A JP 27803787A JP H01120774 A JPH01120774 A JP H01120774A
Authority
JP
Japan
Prior art keywords
electrolyte
tile
sheet
particle size
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62278037A
Other languages
Japanese (ja)
Inventor
Ikumasa Nishimura
西村 生真
Tadao Watanabe
忠雄 渡辺
Goro Saito
悟朗 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP62278037A priority Critical patent/JPH01120774A/en
Publication of JPH01120774A publication Critical patent/JPH01120774A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • H01M8/0295Matrices for immobilising electrolyte melts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To obtain an electrolyte tile having long life by mixing an electrolyte retaining material having specified small particle size with that having specified large particle size, and forming an electrolyte plate having appropriate porosity. CONSTITUTION:Lithium aluminate powder having a mean particle size of 0.1-1mum and that having a mean particle size of 1-3mum are mixed in a ratio of 2:1 to 10:1 and used as an electrolyte retaining material. A sheet is formed together with organic fibers and inorganic fibers by using a paper machine. This sheet is used as the retaining material of an electrolyte tile 1 and a cell is assembled. Electrolyte powder having eutectic structure is put in an alumina crucible 21, and wood pulp is burned out in the process to raise temperature to 650 deg.C, and electrolyte is impregnated in the sheet to use it as an electrolyte tile retainer. Continuous pores are formed in the sheet in the process to raise the temperature to the operating temperature of a molten carbonate fuel cell(MCFC), and molten electrolyte is impregnated in the pores to form an electrolyte tile. Breakage of the tile is prevented and the life of a battery is also remarkably increased.

Description

【発明の詳細な説明】 〈発明の目的〉 この発明の目的は、新規な方法で製造したシート状物を
電解質保持材として用いるために電池構造物に組み立て
た後、該構造物を昇温する過程でシート状物に電解質を
含浸することで、溶融炭酸塩燃料電池(以下MCFCと
いう)の電解質タイルとなし、組み立作業と大型化が容
易でかつ長寿命の電池性能を有するMCFCを提供する
ことにある。
[Detailed Description of the Invention] <Object of the Invention> The object of the present invention is to assemble a sheet material produced by a novel method into a battery structure for use as an electrolyte holding material, and then to raise the temperature of the structure. To provide an MCFC which is made into an electrolyte tile for a molten carbonate fuel cell (hereinafter referred to as MCFC) by impregnating a sheet-like material with an electrolyte in the process, and which is easy to assemble and enlarge, and has long-life battery performance. It is in.

〈従来の技術〉 MCFCは、電極板、電解質タイルおよび各種の電池構
造部品を用いて第1図のように構成される、第1図にお
いて1は電解質タイル、2は多孔質のニッケルもしくは
ニッケル合金からなるアノード電極で、3のカソード1
掻は酸化ニッケルの多孔質板になっている。さらに第1
図の4はセル枠であり、セル枠4と押さえ板5の間には
絶縁板6が挿入され、これらと前記電解質タイル1およ
び電極2.3をボルト7、ナツト8によって締付ける構
造になっている。そして、これを電気炉に装入して65
0℃まで昇温したのち、燃料および酸化剤をそれぞれ、
アノード側とカソード側電極に配設されたガス室10か
ら供給することにより、画電極には電気エネルギーが発
生する。この電気エネルギーはコレクター9を介してセ
ル枠4に伝わり、これを電流取り出し線11によって外
部へとり出すことができる。
<Prior art> MCFC is constructed as shown in Fig. 1 using electrode plates, electrolyte tiles, and various battery structural parts. In Fig. 1, 1 is an electrolyte tile, and 2 is a porous nickel or nickel alloy. An anode electrode consisting of 3 cathodes 1
The blade is a porous plate of nickel oxide. Furthermore, the first
4 in the figure is a cell frame, and an insulating plate 6 is inserted between the cell frame 4 and the holding plate 5, and the electrolyte tile 1 and the electrode 2.3 are tightened with bolts 7 and nuts 8. There is. Then, charge this into the electric furnace and
After raising the temperature to 0℃, the fuel and oxidizer were
Electrical energy is generated in the picture electrode by supplying it from the gas chambers 10 disposed on the anode and cathode sides. This electrical energy is transmitted to the cell frame 4 via the collector 9, and can be taken out to the outside through the current extraction line 11.

上記構成の電解質タイルの電解質としてアルカリ金属炭
酸塩を用い、高温度(500〜800℃)で作動させる
An alkali metal carbonate is used as the electrolyte of the electrolyte tile having the above structure, and the electrolyte tile is operated at high temperature (500 to 800°C).

しかしながら、動作温度が高く腐食性の強いアルカリ金
属炭酸塩を使用していることによって、■電極では、電
極を構成するニッケル粒子の成長と腐食による電気化学
的特性の劣化、■電解質タイルでは、組み立て中の破損
および、■保持材であるリチウムアルミネートの電解質
保持能力低下とヒートサイクルによる破損、■セル枠、
コレクターなどの電池構成材料では腐食の進行、などが
問題になってくる。
However, due to the high operating temperature and the use of highly corrosive alkali metal carbonates, the electrochemical properties of electrodes deteriorate due to the growth and corrosion of the nickel particles that make up the electrodes. Damage to the cell frame, ■ Decreased electrolyte holding capacity of the lithium aluminate holding material and damage due to heat cycling, ■ Cell frame,
Progression of corrosion is a problem with battery constituent materials such as collectors.

ところで、MCFCの構成においては、電解質タイルが
とくに重要な役割を担っている。電池の運転中に電解質
タイルに穴やクランクなどの欠陥が発生すると燃料と空
気の混合すなわちクロスオーバが起こり、電池出力性能
を喪失させる致命的な原因となる。このためMCFCの
電解質タイルには以下の性能が要求される。
By the way, in the configuration of MCFC, electrolyte tiles play a particularly important role. If a defect such as a hole or a crank occurs in the electrolyte tile during operation of the battery, mixing or crossover of fuel and air occurs, which is a fatal cause of loss of battery output performance. For this reason, the following performance is required for the electrolyte tile of MCFC.

(1)  機械的強度が高いこと (2)  耐熱性にすぐれていること (3)  電解質が安定に保持できること(4)  イ
オン導電性を有すること (5)  ヒートサイクルをうけてもクラッタなどの欠
陥が発生しないこと また、電解質タイルの製造はMCFCの製造コストの中
で大きな比重を占めており、経済性にすぐ・れた材質を
簡易な製造工程の開発が要請されている。MCFCの電
解質タイルは、電解質融体を保持するための保持材と電
解質であるアルカリ金属炭酸塩とからなっている。保持
材としては、これまでの研究経過からアルミナと炭酸リ
チウムを原料として炭酸塩混合法などで合成されたりチ
ウムアルミネートが最適とされ、これが最も多く用いら
れている。リチウムアルミネートにはr −、α−およ
びβ−の3つの同素体があるが、融体保持と機械的強度
の視点からγもしくはαタイプが使用される。電解質と
しては、アルカリ金属炭酸塩の中で共晶組成を有する炭
酸リチウムと炭酸カリウムの混合物が用いられる0両者
の共晶組成は47゜5%炭酸リチウム−520%炭酸カ
リウム(重量比)であり、その共晶組成は約4旧℃であ
る。また、リチウムアルミネート保持材と共晶組成電解
質の割合(重量比)は、通常5対5から4対6の範囲が
一般的である。
(1) High mechanical strength (2) Excellent heat resistance (3) Stable retention of electrolyte (4) Ionic conductivity (5) No defects such as clutter even after heat cycling In addition, the manufacture of electrolyte tiles accounts for a large proportion of the manufacturing cost of MCFC, and there is a need to develop a simple manufacturing process for materials that are highly economical. An MCFC electrolyte tile consists of a holding material for holding an electrolyte melt and an alkali metal carbonate as an electrolyte. As a retaining material, lithium aluminate, which is synthesized by a carbonate mixing method using alumina and lithium carbonate as raw materials, has been found to be optimal, and is the most commonly used material. Lithium aluminate has three allotropes: r-, α-, and β-, but the γ- or α-type is used from the viewpoint of melt retention and mechanical strength. As the electrolyte, a mixture of lithium carbonate and potassium carbonate having a eutectic composition among alkali metal carbonates is used.The eutectic composition of both is 47°5% lithium carbonate-520% potassium carbonate (weight ratio). , its eutectic composition is about 4 old degrees Celsius. Further, the ratio (weight ratio) of the lithium aluminate holding material to the eutectic electrolyte is generally in the range of 5:5 to 4:6.

これまで知られているMCFCの電解質タイルの製造方
法は以下の通りである。
The methods of manufacturing electrolyte tiles for MCFC known so far are as follows.

(1)  γ−リチウムアルミネートと共晶組成電解質
の混合粉末を常温で加圧成形し500℃前後で焼成する
いわゆるペースト法。
(1) A so-called paste method in which a mixed powder of γ-lithium aluminate and a eutectic electrolyte is pressure-molded at room temperature and fired at around 500°C.

(2)T−リチウムアルミネートと共晶組成電解質の混
合粉末を460〜490℃の温度範囲で0.6〜1゜0
Lon/cdの圧力で加圧し、この加圧状態を15〜1
50分間保持するいわゆるホットプレス法。
(2) Mixed powder of T-lithium aluminate and eutectic composition electrolyte at 0.6 to 1°C in the temperature range of 460 to 490°C.
Pressurize at a pressure of Lon/cd, and maintain this pressurized state at a pressure of 15 to 1
The so-called hot press method is held for 50 minutes.

(3)T−リチウムアルミネートに有機バインダーを添
加して1〜3.5ton/c−の圧力で成形し、焼成し
て保持のみでマトリックスを作成し、後に電解質媒体を
含浸するいわゆるマトリックス法。
(3) A so-called matrix method in which an organic binder is added to T-lithium aluminate, molded at a pressure of 1 to 3.5 ton/c-, a matrix is created only by firing and holding, and then impregnated with an electrolyte medium.

〈従来技術の問題点〉 前記のペースト法では、成形圧力を高くすると成形体に
クラックが発生しやすく、また焼成時のクラック発生を
防止するためその昇温・降温速度はできるだけゆっくり
行うという細心の注意が必要である。このように昇i温
に時間がかかるため生産性に劣るという問題がある。さ
らに、この方法で得られる電解質タイルのかさ密度は、
その理論値の高々85%前後であるため機械的強度が弱
く、燃料電池のヒートサイクル中に欠陥を発生したり、
ガスのクロスオーバーが生じやすいという欠点を存する
<Problems with the prior art> In the above-mentioned paste method, cracks tend to occur in the molded product when the molding pressure is increased, and in order to prevent cracks from occurring during firing, the heating and cooling rates must be kept as slow as possible. Caution must be taken. As described above, since it takes time to raise the temperature, there is a problem that productivity is poor. Furthermore, the bulk density of the electrolyte tile obtained by this method is
Since the mechanical strength is around 85% of the theoretical value at most, the mechanical strength is weak and defects may occur during the heat cycle of the fuel cell.
It has the disadvantage that gas crossover is likely to occur.

ホットプレス法はペースト法に比べて電解質タイルのか
さ密度を向上させることは容易であり、機械的強度もす
ぐれたものが得られるという利点がある。ただ、電解質
タイルのかさ密度を上げるためにはその加圧力を高める
ことが必要である。
The hot press method has the advantage that it is easier to improve the bulk density of the electrolyte tile than the paste method, and it also provides products with excellent mechanical strength. However, in order to increase the bulk density of the electrolyte tiles, it is necessary to increase the pressing force.

また、このためには大型プレス装置が不可欠で設備費が
高価になるという欠点がある。更に、ホットプレス法に
おいても、電解質タイルの欠陥発生をさけるためには、
昇降温速度をできる限りゆっくりする必要があるので、
ペースト法と同様に生産性に難点がある。
Further, a large press device is essential for this purpose, which has the disadvantage of increasing equipment costs. Furthermore, in the hot pressing method, in order to avoid defects in the electrolyte tiles,
It is necessary to slow down the rate of temperature rise and fall as much as possible.
Like the paste method, there are problems with productivity.

マトリックス法といわれる中にはドクターブレード法、
カレンダー法および電気泳動法などがある。これらの方
法は、ペースト法およびホットプレス法に比べて電解質
タイルの大面積比は容易であるが、製造工程が複雑で降
温焼成が必要なため、製造コストが高くなるという傾向
をもち、かつ成形時の強度が極めて低く、取扱い中に破
損しゃすいという欠点がある。また、バインダーには人
体に対して有害−な有機系材料を多量に使用するので安
全衛生上の対策も必要となる。
Among the so-called matrix methods are the doctor blade method,
Examples include calendar method and electrophoresis method. Although these methods can easily produce large-area electrolyte tiles compared to the paste method and hot press method, the manufacturing process is complicated and low-temperature firing is required, which tends to increase manufacturing costs. The disadvantage is that it has extremely low mechanical strength and is easily damaged during handling. Furthermore, since the binder uses a large amount of organic materials that are harmful to the human body, safety and health measures are also required.

したがって、以上の方法で製造された電解質タイルを用
いて構成したMCFCは、電池出力性能が不十分、電解
質タイルの機械的強度が劣るため大面積化が困難および
製造工程が複雑で、コストが高いという問題を有する。
Therefore, the MCFC constructed using the electrolyte tiles manufactured by the above method has insufficient battery output performance, is difficult to increase in area due to the poor mechanical strength of the electrolyte tiles, and has a complicated manufacturing process, resulting in high costs. There is a problem.

また、以上の方法の電解質タイルを用いて構成したMC
FCでは、650′Cの運転温度まで昇温する際は1時
間当たり6゜℃以下でないと電解質タイルが破損する場
合も多い。かつこれら電解質タイルはヒートサイクルに
対しても弱いという欠点もあった。
In addition, MC constructed using the electrolyte tiles of the above method
In FC, when raising the temperature to an operating temperature of 650'C, the electrolyte tile is often damaged unless the temperature is lower than 6°C per hour. Furthermore, these electrolyte tiles also had the disadvantage of being susceptible to heat cycles.

また、電解質保持材としての多孔質体の気孔率が小さす
ぎるとシートが硬いので1掻との接触が悪く、また大き
すぎると保持した電解質が運転中に流出し、ともに電池
寿命を油上させるという問題があった。
In addition, if the porosity of the porous body used as an electrolyte holding material is too small, the sheet will be hard and will not make good contact with one scraper, and if it is too large, the held electrolyte will flow out during operation, both of which will shorten battery life. There was a problem.

〈発明の構成〉 発明者らが本発明を知見し、それを完結させるに至った
経緯をまず説明する。
<Structure of the Invention> First, the circumstances that led the inventors to discover and complete the present invention will be explained.

セラミック多孔質体としては、従来から素焼き陶器ある
いは一定の粗さをもつセラミック粒子を焼結したような
気孔率は小さいが連続した気孔をもつ多孔質体、あるい
は発泡ガラスのように独立した気泡をもつ多孔質体が知
られている。また、近年セラミックフオームのように軟
質ウレタンフオームの発泡を利用した連続気孔型のセラ
ミック多孔質体でセラミック部と気孔部との体積比が全
く逆転したような海綿状のセラミック多孔質体がある。
Porous ceramic bodies have traditionally been made of unglazed pottery or porous bodies with continuous pores, such as those made by sintering ceramic particles with a certain roughness, or those with small porosity but with continuous pores, such as foamed glass. Porous materials are known. Furthermore, in recent years, there has been a spongy ceramic porous body such as ceramic foam, which is an open-pore type ceramic porous body that utilizes foaming of soft urethane foam, and the volume ratio of the ceramic part and the pore part is completely reversed.

このようなセラミンク多孔質の作り方を電解質タイル保
持材のマトリックスの製造に応用しようと意図した。し
かし、前記の作り方では以下の欠点があるため電解質タ
イル保持材マトリックスの製造は困難であることがわか
った。
We intended to apply this method of making porous ceramic to the production of a matrix for an electrolyte tile holding material. However, it has been found that it is difficult to manufacture the electrolyte tile holding material matrix using the method described above due to the following drawbacks.

(1)  セラミック多孔質体としての硬さと緻密性が
不十分。゛ (2)  気孔部に各種の無機物質や電解質を充てんし
て使用する場合には、イオン通過性や電子伝導性に欠け
るものがある。
(1) Insufficient hardness and density as a ceramic porous body. (2) When the pores are filled with various inorganic substances or electrolytes, some may lack ion permeability or electron conductivity.

(3)  イオン通過性や電子伝導性は満足しても気孔
部の空孔部が大きいため、各種の無機物質や電解質が気
孔部から流出しやすい。(電解質保持性が悪い) 一方、セラミックの未焼成シートを作る場合の方法とし
ての、射出成形法、押出成形法、静水圧プレス法では3
0cii以上の大面積のセラミックシートを作ると表面
が割れたり、反ったりして均一な性状のものを得にくい
という難点がある。
(3) Even if the ion permeability and electron conductivity are satisfied, the pores are large, so various inorganic substances and electrolytes tend to flow out from the pores. (poor electrolyte retention) On the other hand, the injection molding method, extrusion molding method, and isostatic pressing method as methods for producing unfired ceramic sheets
When a ceramic sheet with a large area of 0cii or more is made, the surface cracks or warps, making it difficult to obtain a sheet with uniform properties.

これに対し、抄紙法は無機物質の粉体と木材パルプ、天
然繊維、合成繊維のうちから選択された少なくとも一種
の有機質繊維材を湿式混合し、疑集したのち抄造してシ
ート状物を得るものである。
On the other hand, in the papermaking method, inorganic powder and at least one type of organic fiber material selected from wood pulp, natural fibers, and synthetic fibers are wet mixed, aggregated, and then made into a sheet to obtain a sheet-like product. It is something.

この方法は他のものに比べて薄板で大面積のシートが容
易に製造でき、かつシート状物は可撓性を有し折り曲げ
等も自在で機械的取り扱いの面でも優れている。抄紙法
で得たシート状物を焼成することで有機質繊維材は焼失
し、薄くて大面積のセラミック多孔質体が容易に製造で
きる。この多孔質体は、緻密で強度があり、気孔率が高
く細孔が迷路のようになって連続している。
Compared to other methods, this method can easily produce thin sheets with a large area, and the sheet-like material is flexible and can be bent freely and is excellent in terms of mechanical handling. By firing the sheet-like material obtained by the papermaking method, the organic fiber material is burned out, and a thin, large-area ceramic porous body can be easily produced. This porous material is dense and strong, has a high porosity, and has continuous pores like a labyrinth.

本発明者らは、此の抄紙法の特徴と利点に着眼し、これ
をMCFCの電解質タイルに応用した発明を、先に特願
昭58−181485号として出願した。
The present inventors focused on the characteristics and advantages of this paper-making method, and previously filed an invention in Japanese Patent Application No. 181485-1985, which applied this to MCFC electrolyte tiles.

また、特願昭59−201291号として出願した発明
は抄紙法により成形したシート状物を電解質タイルの保
持材として電池に組み込んだ後、運転温度まで昇温する
過程で有機質繊維材を焼失飛散させ、この有機質繊維材
がぬけた細孔部分とリウムアルッミネート粒子同志の間
隔が作る細孔部分に電解質融体を含浸して電解質タイル
とすることにより、作業性、経済性をより向上しようと
したものである。
In addition, the invention filed as Japanese Patent Application No. 59-201291 is that after a sheet-like material formed by a papermaking method is incorporated into a battery as a holding material for an electrolyte tile, the organic fiber material is burned and scattered during the process of raising the temperature to the operating temperature. We attempted to further improve workability and economic efficiency by impregnating the pores created by the gaps between the organic fibers and the lithium aluminate particles with an electrolyte melt to form an electrolyte tile. It is something.

さらには特願昭60−274584号では、繊維材とし
て有機繊維材の量を0.5〜20重量%と規定し、さら
に新たに形成されたシートあるいは電解質タイルの補強
の目的とし無機繊維を5〜50重量%添加した耐熱サイ
クルに強いタイルについて出願した。
Furthermore, in Japanese Patent Application No. 60-274584, the amount of organic fiber material as the fiber material is specified as 0.5 to 20% by weight, and inorganic fibers are added for the purpose of reinforcing newly formed sheets or electrolyte tiles. An application has been filed for a tile that is resistant to heat cycles with ~50% addition by weight.

本発明は、これらの発明をさらに改良したもので電解質
保持材料たとえばリチウム・アルミネートを0.1〜1
.0μmの小粒径と1〜3μmの大粒径の混合物とし、
望ましい実施態様としては、その混合重量比(小粒径/
大粒径)が2〜10とすることで適性な気孔率の電解質
板を得、電極との接触の良い、また電解質の保持性能の
よい、すなわち電池寿命の長い電解質タイルを得ようと
するものである。
The present invention is a further improvement of these inventions, in which the electrolyte holding material, such as lithium aluminate, is
.. A mixture of small particle size of 0 μm and large particle size of 1 to 3 μm,
In a desirable embodiment, the mixing weight ratio (small particle size/
By setting the particle size (large particle size) to 2 to 10, an electrolyte plate with an appropriate porosity can be obtained, and an electrolyte tile with good contact with the electrode and good electrolyte retention performance, i.e., a long battery life, can be obtained. It is.

ここで、小粒径は従来単品で使用していたもので、大粒
径を1〜3μmにしたのは、これ以上の大粒径では気孔
率が大きくなりすぎ、また混合比2〜10としたのは、
2より小さすぎると混合の効果がなくまた大きすぎると
、気孔率が大きくなりすぎるためである。
Here, the small particle size was conventionally used as a single product, and the reason why the large particle size was set to 1 to 3 μm was because the porosity would become too large if the particle size was larger than this, and the mixing ratio was 2 to 10. What I did was
This is because if it is too small than 2, there will be no mixing effect, and if it is too large, the porosity will become too large.

〈発明の詳述〉 以下に本発明の詳細な説明する。電解質保持材には平均
粒径0.1〜1μmと1〜3μmのりチウムアルミネー
トを2:1から10:1の割合で混合した粉末を使用し
、有機繊維と無機繊維で抄紙を行なう、製造方法は、ま
ず0.5〜20%の有機繊維、5〜50%の無機繊維、
さらに2種の粒径の粉末を混合したリチウム・アルミネ
ート粉末からなる固形分に対して5〜30倍程度の重量
の水を加えて湿式混合し、抄紙に適する水性スラリーに
調整し凝集剤を添加し、凝集させ抄造機にて抄造し厚さ
1〜2m11の厚さのシート状物を成形する。
<Detailed Description of the Invention> The present invention will be described in detail below. The electrolyte retaining material is a powder made by mixing porium aluminate with an average particle size of 0.1 to 1 μm and 1 to 3 μm in a ratio of 2:1 to 10:1, and paper is made using organic fibers and inorganic fibers. The method begins with 0.5-20% organic fiber, 5-50% inorganic fiber,
Furthermore, approximately 5 to 30 times the weight of water is added to the solid content of lithium aluminate powder, which is a mixture of powders with two different particle sizes, and wet-mixed to form an aqueous slurry suitable for papermaking. The mixture is added, agglomerated, and made into a sheet using a paper making machine to form a sheet with a thickness of 1 to 2 m11.

このシート状物を第1図に示した電解質タイルlの保持
剤として用いて第2図に示すような電池構造物に組み立
てる。第2図において、21は電解質粉末を入れたアル
ミナルツボであり、このアルミナルツボは押さえ板の周
辺部に穴を加工し、その部分に設置されている。そして
、アルミナルツボに連結しているアルミナ製パイプ22
はシート状物に接している。この電池構造物は第2図の
電気炉23に装入され、650’C運転温度まで昇温す
る。木材パルプは450℃付近から焼失を開始し、48
0〜490℃では完全に焼失飛散する。そして約して3
01角で厚み20m5+のシート状物にする。
This sheet-like material is used as a holding agent for the electrolyte tile l shown in FIG. 1 and assembled into a battery structure as shown in FIG. 2. In FIG. 2, reference numeral 21 denotes an aluminium crucible containing electrolyte powder, and this aluminium crucible is installed in a hole drilled in the periphery of the holding plate. And the alumina pipe 22 connected to the alumina pot
is in contact with the sheet material. This battery structure is charged into the electric furnace 23 shown in FIG. 2, and heated to an operating temperature of 650'C. Wood pulp starts to burn out at around 450℃, and reaches 48℃.
At 0 to 490°C, it is completely burnt out and scattered. And about 3
Make it into a sheet-like product with 01 squares and a thickness of 20m5+.

これを、ロールプレスあるいは平プレスで、常温で、数
10 kg / cdになるような圧をかけて余分な水
を除去する。これから250mm角のものを切り出して
電解質タイル用保持材とし、さらに20On+Iw角の
多孔質ニッケル電極板とともに、第1図のように電池構
造物に組み立てる。第2図のアルミナルツボには共晶組
成電解質(47,5重量%炭酸リチウム−52,5重量
%炭酸カリウム)粉末を入れて、これを電気炉に装填す
る。
Excess water is removed by applying a pressure of several tens of kg/cd using a roll press or flat press at room temperature. A 250 mm square piece was cut out from this and used as a holding material for the electrolyte tile, and then assembled together with a 20 On+Iw square porous nickel electrode plate into a battery structure as shown in Figure 1. A eutectic composition electrolyte powder (47.5% by weight lithium carbonate-52.5% by weight potassium carbonate) was placed in the alumina crucible shown in FIG. 2, and this was loaded into an electric furnace.

その後、1時間当たり 120℃の昇温速度で昇温し、
650℃まで昇温する過程で木材パルプを焼失飛散させ
ると共に電解質を含浸させた。この場合のタイル保持材
と電解質の割合は45 : 55であった。
After that, the temperature was increased at a rate of 120°C per hour,
In the process of raising the temperature to 650°C, the wood pulp was burned and scattered, and at the same time it was impregnated with an electrolyte. The ratio of tile holding material and electrolyte in this case was 45:55.

前記工程で構成したMCFCの燃料極にはAir+30
%COオ、電気極にはH,+CO□のガス供給して単セ
ルの寿命試験を行なった。
Air+30 was applied to the fuel electrode of the MCFC constructed in the above process.
A life test of the single cell was conducted by supplying gases of %CO□, H, and +CO□ to the electrode.

この際に得られた寿命試験結果を第3図に示す。The life test results obtained at this time are shown in FIG.

ちなみに比較例として従来の粒径を小粒径のみのりチウ
ムアルミネート粉末を使用した電解質タイルの2I!、
程度の容器に水1000部と木材パルプ1.0部とアル
ミナファイバー20部を入れ、20分程撹拌し、水に十
分分散させる。これとは別に小粒径(平均粒径0.1μ
m)のりチウムアルミネート54部と大粒径(平均粒径
3μm)のりチウムアルミネートを十分混合し混合リチ
ウムアルミネート粉末を得る。
By the way, as a comparative example, 2I! is an electrolyte tile using lithium aluminate powder with only a small particle size compared to the conventional particle size. ,
Put 1,000 parts of water, 1.0 part of wood pulp, and 20 parts of alumina fiber into a container of about 100 ml, and stir for about 20 minutes to fully disperse it in the water. Apart from this, small particle size (average particle size 0.1μ)
m) Thoroughly mix 54 parts of lithium aluminate with large particle size (average particle size: 3 μm) to obtain a mixed lithium aluminate powder.

この粉末を前述の繊維を分散させた水中に加えて1分は
ど撹拌し水性スラリーを作る。
This powder is added to the water in which the fibers are dispersed and stirred for 1 minute to form an aqueous slurry.

その中へあらかしめ作っておいたアニオン系ポリアクリ
ルアミド系高分子凝集剤0.1%水溶液を30部加えて
2分はど撹拌し、これもあらかじめ作っておいたカチオ
ン系ポリアクリルアミド高分子凝集剤0.1%水溶液を
20部添加し1分はど撹拌しえ凝集させる。
Add 30 parts of a 0.1% aqueous solution of anionic polyacrylamide polymer flocculant prepared in advance into the mixture and stir for 2 minutes. Add 20 parts of 0.1% aqueous solution and stir for 1 minute to coagulate.

以上のようにして凝集した試料を抄造機で抄造490℃
付近で電解質成分が融液となり、木材パルプが抜けた細
孔部分に電解質が含浸を開始する。
The agglomerated sample as described above is made into paper using a paper making machine at 490°C.
Nearby, the electrolyte components become a melt, and the electrolyte begins to impregnate the pores where the wood pulp has escaped.

500℃の温度になると、シート状物の細孔部分には電
解質が完全に含浸して電解質タイルとなり、MCFCと
して完成する。
When the temperature reaches 500° C., the pores of the sheet are completely impregnated with electrolyte, forming electrolyte tiles and completing the MCFC.

なお、シート状物へ含浸するために必要な電解質成分は
前記ではアルミナル・ンボに用意する例を説明したが、
これ以外にセル枠に溝を加工し、この部分に所容量の電
解質成分を充填しておく方法も可能である。
In addition, although the electrolyte components necessary for impregnating the sheet-like material are prepared in an alumina container in the above example,
In addition to this, it is also possible to form a groove in the cell frame and fill this groove with a predetermined amount of electrolyte component.

次に本発明の具体的な実施例を述べる。なお、組成は全
て重量比である。
Next, specific examples of the present invention will be described. In addition, all compositions are weight ratios.

〈実施例1〉 (A)試料の調整 (B)凝集剤 特性も併記した。650℃1・50mA/c+aで実施
例電解質タイルでは2000時間後も安定なのに対し比
較例で700時間でかなりの特性劣化がみられた。
<Example 1> (A) Sample preparation (B) Coagulant properties are also listed. At 650° C. and 1.50 mA/c+a, the electrolyte tile of the example was stable even after 2,000 hours, whereas the comparative example showed a considerable deterioration of characteristics after 700 hours.

〈実施例2〉 (A)試料の調整 (B)凝集剤 以上の樺な組成(A)、(B)を用いて、以下は実施例
1と全く同様にしてMCFCを構成した。
<Example 2> (A) Preparation of sample (B) A MCFC was constructed in the same manner as in Example 1 using the compositions (A) and (B) that were more than coagulant.

この場合もその電池性能は実施例1と同等であった。ま
た以下に異なった粒径を2種混合したりチウムアルミネ
ートを使用した生シートを650℃で焼失して得られた
多孔質体の気孔率を従来法によるそれと比較して第1表
に示す。
In this case as well, the battery performance was the same as in Example 1. Table 1 also shows the porosity of porous bodies obtained by mixing two types of different particle sizes or by burning out green sheets using lithium aluminate at 650°C and comparing them with those obtained by conventional methods. .

第    1    表 〈発明の効果〉 以上述べたように、本発明によれば抄紙法で製造したり
チウムアルミネート、有機繊維材、無機繊維からなるシ
ート状物を電解質タイル保持材として電池を組み立てた
のちMCFCの運転温度に昇温する過程でシート状物に
連続した細孔を形成するとともに、この細孔に電解質融
体を含浸させて電解質タイルとすることでタイルの破損
を防止するとともに、組立作業の簡略化を図ることがで
きる、さらにリチウムアルミネートを異なった粒径をも
つ2種の混合品とすることで得られた多孔質体の気孔率
は第1表に示す様に小さくなり、その結果、第3図に示
す様に電池寿命も大幅に改善されたMCFCを提供でい
る。
Table 1 <Effects of the Invention> As described above, according to the present invention, a battery can be assembled using a sheet-like material manufactured by a paper-making method or made of thium aluminate, organic fiber material, and inorganic fiber as an electrolyte tile holding material. Later, in the process of raising the temperature to the operating temperature of the MCFC, continuous pores are formed in the sheet-like material, and these pores are impregnated with electrolyte melt to form electrolyte tiles, which prevents damage to the tiles and facilitates assembly. The work can be simplified, and the porosity of the porous body obtained by mixing two types of lithium aluminate with different particle sizes becomes smaller as shown in Table 1. As a result, as shown in FIG. 3, we have been able to provide an MCFC with significantly improved battery life.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、−C的な燃料電池の一例を示す説明図であり
、第2図は、本発明の製造方法の一実施例を示す側断面
図であり、第3図は、本発明の製造方法により得られた
電解質タイルを用いた燃料電池セルの寿命特性を示すグ
ラフ図である。 l・・・・・・電解質タイル 2・・・・・・アノード
電極3・・・・・・カソード電極 4・・・・・・セル
枠5・・・・・・押え板    6・・・・・・絶縁板
7・・・・・・ボルト    8・・・・・・ナツト9
・・・・・・電流コレクター 10・・・・・・ガス室    11・・・・・・電流
取り出し線第1図 第2図
FIG. 1 is an explanatory diagram showing an example of a -C type fuel cell, FIG. 2 is a side sectional view showing an example of the manufacturing method of the present invention, and FIG. FIG. 2 is a graph diagram showing the life characteristics of a fuel cell using an electrolyte tile obtained by the manufacturing method. l... Electrolyte tile 2... Anode electrode 3... Cathode electrode 4... Cell frame 5... Pressing plate 6... ...Insulating plate 7...Bolt 8...Nut 9
...Current collector 10...Gas chamber 11...Current extraction line Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1)空気極、燃料極、電解質タイルおよびセル枠より構
成される溶融炭酸塩型燃料電池の電解質タイルの製法に
おいて、その粉末粒径が0.1〜1.0μmと1.0〜
3.0μmとの2種の混合物である電解質保持材と無機
ファイバー及び有機繊維材を湿式混合して水性スラリー
となし、凝集・抄造して得られたシート状物を電解質保
持板として電池構成物に組み立てた後、該構造物を65
0℃まで昇温する過程で前記有機繊維材を焼失飛散させ
るとともに炭酸リチウムと炭酸カリウムからなる電解質
成分をシート状物に含浸して電解質タイルとすることを
特徴とする溶融炭酸塩型燃料電池の電解質タイルの製法
。 2)電解質保持材が、リチウム、アルミネート、チタン
酸ストロンチウム、チタン酸カリウム、セリア、ジルコ
ニア等から選ばれた少なくとも一種である特許請求の範
囲1項記載の電解質タイルの製法。 3)2種の電解質保持材の混合重量比(0.1〜1. 0μm/1.0〜3.0μm)が、2〜10である特許
請求の範囲1項記載の電解質タイルの製法。
[Claims] 1) A method for producing an electrolyte tile for a molten carbonate fuel cell comprising an air electrode, a fuel electrode, an electrolyte tile, and a cell frame, wherein the powder particle size is 0.1 to 1.0 μm and 1 .0~
Electrolyte holding material, which is a mixture of 3.0 μm, inorganic fiber, and organic fiber material, are wet-mixed to form an aqueous slurry, and the sheet-like material obtained by agglomeration and papermaking is used as an electrolyte holding plate to construct a battery. After assembling the structure to 65
A molten carbonate fuel cell characterized in that the organic fiber material is burnt and scattered in the process of raising the temperature to 0°C, and the sheet material is impregnated with an electrolyte component consisting of lithium carbonate and potassium carbonate to form an electrolyte tile. Manufacturing method of electrolyte tiles. 2) The method for producing an electrolyte tile according to claim 1, wherein the electrolyte holding material is at least one selected from lithium, aluminate, strontium titanate, potassium titanate, ceria, zirconia, etc. 3) The method for producing an electrolyte tile according to claim 1, wherein the mixed weight ratio (0.1 to 1.0 μm/1.0 to 3.0 μm) of the two types of electrolyte holding materials is 2 to 10.
JP62278037A 1987-11-02 1987-11-02 Manufacture of electrolyte tile of molten carbonate fuel cell Pending JPH01120774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62278037A JPH01120774A (en) 1987-11-02 1987-11-02 Manufacture of electrolyte tile of molten carbonate fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62278037A JPH01120774A (en) 1987-11-02 1987-11-02 Manufacture of electrolyte tile of molten carbonate fuel cell

Publications (1)

Publication Number Publication Date
JPH01120774A true JPH01120774A (en) 1989-05-12

Family

ID=17591767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62278037A Pending JPH01120774A (en) 1987-11-02 1987-11-02 Manufacture of electrolyte tile of molten carbonate fuel cell

Country Status (1)

Country Link
JP (1) JPH01120774A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0343963A (en) * 1989-07-10 1991-02-25 Hitachi Ltd Treatment method for molten carbonate fuel cell
JP2006196280A (en) * 2005-01-13 2006-07-27 Univ Of Fukui Composite sheet body and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0343963A (en) * 1989-07-10 1991-02-25 Hitachi Ltd Treatment method for molten carbonate fuel cell
JP2006196280A (en) * 2005-01-13 2006-07-27 Univ Of Fukui Composite sheet body and its manufacturing method
JP4644801B2 (en) * 2005-01-13 2011-03-09 国立大学法人福井大学 Composite sheet body and method for producing the same

Similar Documents

Publication Publication Date Title
JPH0258744B2 (en)
JP3331313B2 (en) Electrolyte matrix for molten carbonate fuel cells
US4710436A (en) Molten carbonate fuel cell and method of manufacturing electrolyte plate thereof
JPS62154465A (en) Anode of molten carbonate fuel battery and manufacture of the same
US4656735A (en) Process for producing an electrolyte retaining matrix of electrical insulating long fibers
JPH01120774A (en) Manufacture of electrolyte tile of molten carbonate fuel cell
JPS58129781A (en) Fused salt type fuel cell
JPS63289772A (en) Manufacture of electrolyte tile for fused carbonate type fuel cell
JPS62176063A (en) Manufacture of electrolyte tile of molten carbonate fuel cell
JPS62145663A (en) Manufacture of electrolyte plate for molten carbonate fuel cell
JPS63138662A (en) Manufacture of electrolyte tile for fused carbonate type fuel cell
JPH0350387B2 (en)
JP2013149630A (en) Method of manufacturing fiber-reinforced electrolyte plate of molten carbonate fuel cell
KR20140075526A (en) an electrode having conductive material integral structure and a secondary battery using thereof
JPS62133676A (en) Manufacture of electrolytic tile for molten carbonate type fuel cell
US4460495A (en) Cathode for molten carbonate fuel cell
JPS5987767A (en) Molten salt fuel cell
JPH06290799A (en) Manufacture of electrolytic sheet for fused carbonate type fuel cell
JPH0626130B2 (en) Method for manufacturing electrolyte plate for molten carbonate fuel cell
JPH0259592B2 (en)
JPS6343266A (en) Manufacture of electrolyte plate for molten carbonate fuel cell
JPS58119161A (en) Manufacture of electrode for fused salt fuel battery
JPH0258743B2 (en)
KR100933078B1 (en) Manufacturing Method of Molten Carbonate Fuel Cell Matrix Using Nano Size Powder
JPH01211867A (en) Electrolyte plate for fused carbonate type fuel cell