JPS62153488A - Construction of underground vertical cylindrical structure - Google Patents

Construction of underground vertical cylindrical structure

Info

Publication number
JPS62153488A
JPS62153488A JP60296469A JP29646985A JPS62153488A JP S62153488 A JPS62153488 A JP S62153488A JP 60296469 A JP60296469 A JP 60296469A JP 29646985 A JP29646985 A JP 29646985A JP S62153488 A JPS62153488 A JP S62153488A
Authority
JP
Japan
Prior art keywords
construction
underground
cylindrical structure
cylinder
holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60296469A
Other languages
Japanese (ja)
Other versions
JPH0566477B2 (en
Inventor
久木野 慶紀
誠一 矢部
小田原 健治
橋本 博行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP60296469A priority Critical patent/JPS62153488A/en
Publication of JPS62153488A publication Critical patent/JPS62153488A/en
Publication of JPH0566477B2 publication Critical patent/JPH0566477B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、IB深N曝気槽の外管(シャフト)等の地中
深くに埋設される曙型筒状t!造物の施工法に関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention is applicable to Akebono-shaped cylindrical t! Concerning construction methods for structures.

近年、有機系廃水の処理に、第5図に示す超深層曝気法
が採用されている0図において、イは、超深層曝気槽を
構成する地中深く埋設した外管、口は、核外管に内装さ
れている小径の内管、ハは、汚水入口、二は、処理水出
口、ホは、返送汚水入口、へは、内管へ処理用空気を、
外管へ循環開始用空気を供給するコンプレッサである。
In recent years, the ultra-deep aeration method shown in Figure 5 has been adopted for the treatment of organic wastewater. A small-diameter inner pipe built into the pipe, C is the sewage inlet, 2 is the treated water outlet, E is the return sewage inlet, to is the air for treatment to the inner pipe,
This is a compressor that supplies air for starting circulation to the outer tube.

この超深層曝気法は、生物学的処理方法であり、従来の
活性汚泥法に比較して、 (1)敷地面積が少ない。
This ultra-deep aeration method is a biological treatment method, and compared to the conventional activated sludge method, (1) the site area is smaller;

(2)酸素利用効率が高い。(2) High oxygen utilization efficiency.

(3)高濃度有機排水の処理が可能。(3) Highly concentrated organic wastewater can be treated.

(4)lη苑全発生量少ない。(4) The total amount generated in lηen is low.

(5)臭気の発生が少ない。(5) Less odor is generated.

などの特長を有しており、通用分野も、下水処理、団地
等の生活廃水処理、一般産業廃水、凍原処理、中水施設
などと幅広く、今後の需要増が見込まれている。また、
この場合、超深層曝気槽は、直径3〜6m、深さ50〜
150mの外管を地下に建造する必要から、品質、経済
性等の面で優れた施工法が望まれている 本発明は、斯様な要望に応えるものであり、安全かつ短
期間に建造する施工法である。
It has the following characteristics, and it can be used in a wide range of fields, including sewage treatment, domestic wastewater treatment in housing complexes, general industrial wastewater, frozen ground treatment, gray water facilities, etc., and demand is expected to increase in the future. Also,
In this case, the ultra-deep aeration tank has a diameter of 3 to 6 m and a depth of 50 to 6 m.
Since it is necessary to construct a 150 m long outer pipe underground, a construction method that is superior in terms of quality and economy is desired.The present invention meets these demands and allows construction to be carried out safely and in a short period of time. This is a construction method.

「従来の技術」 従来、上記外管を地下に建造する場合、第6図に示すよ
うに、地下掘削後、その掘削孔aへ所定長さの鋼管b・
・・を地上で接続しながら挿入して、構築するか、又は
、第7図に示すように、地下掘削後、その掘削孔aへ円
筒状のPCaユニ7)C・・・を次々に落し込み、底部
から積み上げて、構築する方法がとられている。
"Prior Art" Conventionally, when constructing the above-mentioned outer pipe underground, as shown in Fig. 6, after underground excavation, a predetermined length of steel pipe b is inserted into the excavated hole a.
... can be constructed by inserting them while connecting them above ground, or, as shown in Figure 7, after underground excavation, cylindrical PCa units 7) C... can be dropped one after another into the excavation hole a. The method used is to build up the structure from the bottom up.

「発明が解決しようとする問題点」 しかし、前者は、 ■鋼製のため不経済である。"The problem that the invention attempts to solve" However, the former is ■It is uneconomical because it is made of steel.

■腐蝕の進行など耐久性が低い。■Durability is low due to progress of corrosion.

などの欠点があり、後者の場合、 ■地下で接続するため接合部の品質確保が難しい(水密
性、強度)。
In the latter case, it is difficult to ensure the quality of the joint (watertightness, strength) because it is connected underground.

■大口径の場合、大型場重機を必要とする。■For large diameters, large field heavy equipment is required.

■PCaユニットと掘削土砂との隙間が残り、不安定で
ある。
■A gap remains between the PCa unit and the excavated soil, making it unstable.

などの欠点がある。There are drawbacks such as.

本発明は、斯る欠点を一掃し、より優れた工法を提供し
ようとするものである。
The present invention aims to eliminate these drawbacks and provide a more excellent construction method.

「問題点を解決するための手段」 本発明は、周壁に複数の透孔を縦貫させた多数のコンク
リート製筒体を造り、また、地下に該筒体の外径よりも
やや大径の掘削孔を穿設して、該掘削孔に上記筒体を次
々に挿入し、この際上下の筒体相互を透孔に鉄筋、PC
鋼線等の連結材を挿入し締付けることにより互いに機械
的に連結し、かくして所定長さの連続筒体を掘削孔内に
設置したなら該連続筒体と掘削孔孔壁との隙間にグラウ
トを注入し裏込めすることを特徴とする。
``Means for Solving the Problems'' The present invention involves constructing a large number of concrete cylinders with a plurality of through holes vertically penetrating the peripheral wall, and excavating underground with a diameter slightly larger than the outer diameter of the cylinders. A hole is drilled and the cylinders are inserted into the hole one after another. At this time, the upper and lower cylinders are inserted into the through-hole with reinforcing bars, PC
By inserting and tightening connecting materials such as steel wires, they are mechanically connected to each other, and once a continuous cylinder of a predetermined length is installed in the borehole, grout is added to the gap between the continuous cylinder and the borehole wall. It is characterized by injection and backfilling.

「作用」 如上の施工により、筒体とグラウトとで一体となった構
造躯体の迅速な構築が可能となる。
``Operation'' By the above construction, it is possible to quickly construct a structural frame in which the cylindrical body and the grout are integrated.

「実施例」 第1図乃至第4図は、本発明の実施例を示している。"Example" 1 to 4 show embodiments of the invention.

第1図は、施工の手順を示すものであり、これをその順
序に従って説明すると、 次の通りである。
Figure 1 shows the construction procedure, which is explained in the following order.

1、まず、一方で、周壁に複数の透孔を縦貫させた多数
のコンクリート製筒体l・・・を造る。これらの筒体は
、第2図に示すように、例えば、8つの透孔12・・・
を周壁11に等間隔に配設する。筒体の直径や厚さは、
構造躯体の設計に基づいて決定し、高さは、重量、数量
等の作業性の要因を考慮して決める。特に第1段目の筒
体は有底に形成し、底面周縁にナイフエッヂの突片を突
設させる。なお、筒体には鉄筋篭を内蔵させるとよい。
1. First, on the one hand, a large number of concrete cylindrical bodies L... each having a plurality of through holes extending vertically through the peripheral wall are made. As shown in FIG. 2, these cylinders have, for example, eight through holes 12...
are arranged on the peripheral wall 11 at equal intervals. The diameter and thickness of the cylinder are
The height is determined based on the design of the structural frame, and the height is determined by considering workability factors such as weight and quantity. In particular, the first-stage cylinder is formed with a bottom, and a knife-edge protrusion is provided protruding from the periphery of the bottom. In addition, it is preferable to incorporate a reinforcing bar cage into the cylinder.

ヒユーム管を用いてもよい。Hume's canal may also be used.

他方、現場では、上記筒体1・・・の外径よりもやや大
径の深い掘削孔入を地下に穿設し、該掘削孔内に泥水B
を満す。
On the other hand, at the site, a deep excavation hole with a diameter slightly larger than the outer diameter of the cylinder 1 is drilled underground, and muddy water B is poured into the excavation hole.
satisfy.

■、?!Aに、掘削孔への周りで地上に作業架台Cを設
置すると共に、掘削孔の孔縁に挿入用ガイドDを装着す
る。
■、? ! At A, a work platform C is installed on the ground around the excavation hole, and an insertion guide D is attached to the edge of the excavation hole.

而して、その挿入用ガイド1〕に従がい有底の第1段口
の筒体lから掘削孔Δへ挿入し、泥水Bによる浮力で重
量を支えつつ作業架台Cに一時支持させて、その上に上
段の筒体lを連結する。この連結には、連結材として例
えばPC@線3・・・を用い、上下の筒体の透孔12・
・・、12・・・の1つおきにPC鋼線3・・・を通し
く第2図)、これらのPC鋼線を、第3図に示すように
、締め具4・・・により締めっける。この際、上下の、
筒体間にエポキシモルタル等の接着剤5を介在させる。
Then, the insertion guide 1] is inserted into the excavation hole Δ from the cylindrical body l of the first stage mouth with a follower and a bottom, and temporarily supported by the work platform C while supporting the weight by the buoyancy of the muddy water B. The upper cylindrical body l is connected thereon. For this connection, for example, PC@wire 3... is used as the connection material, and the through holes 12 and 12 of the upper and lower cylinders are used.
..., 12... through the PC steel wires 3... (Fig. 2), and tighten these PC steel wires with the fasteners 4... as shown in Fig. 3. Let's do it. At this time, the upper and lower
An adhesive 5 such as epoxy mortar is interposed between the cylinders.

連結後、筒体内に注水して所定位置まで沈降させる。After connection, water is poured into the cylinder and allowed to settle to a predetermined position.

また、その上段の筒体1の上に同様に次の筒体lを連結
するが、この際は、上段の筒体1とこれの上に重ねた筒
体1とを前回に使用しなかった残る1つおきの透孔12
・・・を利用して、PC鋼線3・・・及び締め具4・・
・で連結する。なお、PC鋼線3・・・は、前回の連結
時に上段の筒体lへ予め装着しておく。
Also, connect the next cylinder 1 on top of the upper cylinder 1 in the same way, but in this case, if the upper cylinder 1 and the cylinder 1 stacked on top of it were not used last time. Every other remaining hole 12
Using..., PC steel wire 3... and fastener 4...
・Connect with. Note that the PC steel wires 3... have been attached to the upper cylindrical body l in advance during the previous connection.

■、以下同様にして筒体l・・・を次々に連結しては掘
削孔A内へ送り込み、下端の突片を孔底へ突き刺して設
置する。
(2) In the same manner, the cylindrical bodies l... are connected one after another and sent into the excavated hole A, and the protrusions at the lower ends are inserted into the bottom of the hole.

■、続いて、筒体1・・・と掘削孔孔壁との隙間にトレ
ミー管Eを挿入し、グラウトポンプFを働かせてグラウ
ト2を注入し、硬化させる。
(2) Next, the tremie pipe E is inserted into the gap between the cylinder 1 and the wall of the borehole, and the grout 2 is injected and hardened by operating the grout pump F.

以上の実施例では、筒体相互をPC鋼線で連結したが、
これに代えて鉄筋を用いてもよく、この場合は、例えば
、第4図に示すように、筒体1・・・の一端に6孔12
・・・に通しるカプラー13・・・を設け、上下の鉄筋
6・・・、6・・・の端部を該カプラー内に位置させ、
カプラー内にモルタル7・・・等を充填硬化させて、筒
体の連結と鉄筋の連結を兼用させるとよい。
In the above embodiment, the cylinders were connected to each other with a PC steel wire, but
Instead of this, reinforcing bars may be used, and in this case, for example, as shown in FIG.
A coupler 13... that passes through is provided, and the ends of the upper and lower reinforcing bars 6..., 6... are located within the coupler,
It is preferable to fill the coupler with mortar 7, etc. and harden it so that it serves both the connection of the cylindrical bodies and the connection of the reinforcing bars.

なお、筒体は、3個以上を1単位にそれぞれを連結して
もよい。
Note that three or more cylindrical bodies may be connected as one unit.

「発明の効果」 本発明によれば、筒体とこれの周りに注入したグラウト
とで一体となった強固で安定な構造固体を迅速に構築で
き、止水性、仕上り精度を向上でき、高い品質を確保で
きる。
"Effects of the Invention" According to the present invention, it is possible to quickly construct a strong and stable structural solid that is integrated with the cylindrical body and the grout injected around it, and it is possible to improve water-stopping properties and finishing accuracy, and to achieve high quality. can be secured.

また、施工方法が簡単になり、コンクリートを低減でき
、大口径の構造1ii1体の施工が可能になり、しかも
、筒体の挿入に当たり掘削孔内の泥水による浮力を利用
することができるので、これにより大口径の筒体でも大
型の揚重機を必要としない。
In addition, the construction method is simplified, the amount of concrete can be reduced, and a single large-diameter structure 1II can be constructed.Furthermore, the buoyancy of muddy water in the excavation hole can be used when inserting the cylinder. This eliminates the need for a large lifting machine even for large-diameter cylinders.

勿論、鋼製のように腐蝕を生じることもない。Of course, unlike steel, it will not corrode.

更に、作業を全て地上で行えるので、安全性を確保でき
、かつ、筒体は上部での支持で垂直状態を維持できて高
い建込み精度を確保できる。
Furthermore, since all work can be done on the ground, safety can be ensured, and the cylindrical body can be maintained in a vertical state by being supported at the top, ensuring high construction accuracy.

加えて、超深層曝気槽のみならず、大口径中空杭、縦型
地中自動倉庫の構造l1体の施工にも適用でき、頗る有
益である。
In addition, it can be applied not only to ultra-deep aeration tanks, but also to the construction of large-diameter hollow piles and vertical underground automated warehouse structures, which is extremely beneficial.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第4図は、本発明の実施例を示し、第1図は
、工程説明図、第2図は、使用部材の平面図、第3図は
、使用部材の接続要領を示す拡大断面図、第4図は、同
接続要領の他の例を示す拡大断面図、第5図は、超深層
曝気法の説明図、第6図、第7図は、それぞれ従来の施
工法を示す説明図である。 ■・・・筒 体     2・・・グラウト3・・・P
C鋼線    4・・・締め具5・・・接着剤    
 6・・・鉄 筋7・・・モルタル    11・・・
周壁12・・・遇 孔      13・・・カプラー
八・・・掘削孔     B・・・泥 水C・・・作業
架台    D・・・ll11人用ガイドE・・・トレ
ミー管   F・・・グラウトポンプ1・・・筒 体 
    2・・・グラウト3・・・PC4博泉    
4・・・蹄め具5・・・接着剤     6・・・鉄 
筋7・・・モルタル    エト・・周壁12・・】δ
 孔      13・・カプラーA・・・wP肌  
   B・・・泥水C・・作業架台    D・・挿入
用ガイドE・・・トレミー管   F・・・グラウトポ
ンプ第2図 第3図  第4図 第6図 第7図
1 to 4 show examples of the present invention, FIG. 1 is an explanatory diagram of the process, FIG. 2 is a plan view of the members used, and FIG. 3 is an enlarged view showing the connection method of the members used. 4 is an enlarged sectional view showing another example of the same connection procedure, FIG. 5 is an explanatory diagram of the ultra-deep aeration method, and FIGS. 6 and 7 each show the conventional construction method. It is an explanatory diagram. ■... Cylinder body 2... Grout 3... P
C steel wire 4... Fastener 5... Adhesive
6...Rebar 7...Mortar 11...
Peripheral wall 12...Encounter hole 13...Coupler 8...Drilling hole B...Mud Water C...Work platform D...ll11 guide E...Tremy pipe F...Grout pump 1...Cylinder body
2... Grout 3... PC4 Hakusen
4... Hoof tool 5... Adhesive 6... Iron
Line 7...Mortar et...Peripheral wall 12...】δ
Hole 13...Coupler A...wP skin
B...Muddy water C...Working stand D...Insertion guide E...Tremy pipe F...Grout pump Figure 2 Figure 3 Figure 4 Figure 6 Figure 7

Claims (1)

【特許請求の範囲】[Claims] 周壁に複数の透孔を縦貫させた多数のコンクリート製筒
体を造り、また、地下に該筒体の外径よりもやや大径の
掘削孔を穿設して、該掘削孔に上記筒体を次々に挿入し
、この際上下の筒体相互を透孔に鉄筋、PC鋼線等の連
結材を挿入し締付けることにより互いに機械的に連結し
、かくして所定長さの連続筒体を掘削孔内に設置したな
ら該連続筒体と掘削孔孔壁との隙間にグラウトを注入し
裏込めすることを特徴とする地中縦型筒状構造物の施工
法。
A large number of concrete cylindrical bodies with a plurality of through holes penetrating the circumferential wall were constructed, and an excavation hole with a diameter slightly larger than the outer diameter of the cylindrical bodies was drilled underground, and the above-mentioned cylindrical bodies were inserted into the excavated holes. At this time, the upper and lower cylinders are mechanically connected to each other by inserting and tightening connecting materials such as reinforcing bars or prestressed steel wires into the through holes. 1. A construction method for an underground vertical cylindrical structure, which comprises backfilling the continuous cylindrical structure by injecting grout into the gap between the continuous cylindrical body and the borehole wall.
JP60296469A 1985-12-24 1985-12-24 Construction of underground vertical cylindrical structure Granted JPS62153488A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60296469A JPS62153488A (en) 1985-12-24 1985-12-24 Construction of underground vertical cylindrical structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60296469A JPS62153488A (en) 1985-12-24 1985-12-24 Construction of underground vertical cylindrical structure

Publications (2)

Publication Number Publication Date
JPS62153488A true JPS62153488A (en) 1987-07-08
JPH0566477B2 JPH0566477B2 (en) 1993-09-21

Family

ID=17833954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60296469A Granted JPS62153488A (en) 1985-12-24 1985-12-24 Construction of underground vertical cylindrical structure

Country Status (1)

Country Link
JP (1) JPS62153488A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06146310A (en) * 1992-11-10 1994-05-27 Takenaka Komuten Co Ltd Construction method of great depth shaft having large section
JPH0821180A (en) * 1994-07-06 1996-01-23 Nippon Komushisu Kk Construction of shaft
JP2008121258A (en) * 2006-11-10 2008-05-29 Jfe Metal Products & Engineering Inc Segment for vertical shaft
JP2009092359A (en) * 2007-10-12 2009-04-30 Showa Denko Kk Heat exchanger and method of manufacturing the same
CN109209387A (en) * 2018-09-17 2019-01-15 龙口矿业集团有限公司 Concrete grout cover construction method under deep water level

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5891293A (en) * 1981-11-26 1983-05-31 日立造船株式会社 Concrete placing method of shaft type buried hydraulic pressure iron pipe
JPS6035649U (en) * 1983-08-17 1985-03-12 パイオニア株式会社 Operation mode recognition device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5891293A (en) * 1981-11-26 1983-05-31 日立造船株式会社 Concrete placing method of shaft type buried hydraulic pressure iron pipe
JPS6035649U (en) * 1983-08-17 1985-03-12 パイオニア株式会社 Operation mode recognition device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06146310A (en) * 1992-11-10 1994-05-27 Takenaka Komuten Co Ltd Construction method of great depth shaft having large section
JPH0821180A (en) * 1994-07-06 1996-01-23 Nippon Komushisu Kk Construction of shaft
JP2008121258A (en) * 2006-11-10 2008-05-29 Jfe Metal Products & Engineering Inc Segment for vertical shaft
JP2009092359A (en) * 2007-10-12 2009-04-30 Showa Denko Kk Heat exchanger and method of manufacturing the same
CN109209387A (en) * 2018-09-17 2019-01-15 龙口矿业集团有限公司 Concrete grout cover construction method under deep water level

Also Published As

Publication number Publication date
JPH0566477B2 (en) 1993-09-21

Similar Documents

Publication Publication Date Title
JP2007126846A (en) Reinforcing cage, construction method for cast-in-place concrete pile, and cast-in-place concrete pile
JPS62153488A (en) Construction of underground vertical cylindrical structure
CN202187340U (en) Socketed pile with concrete-filled steel tube core column
JP4440497B2 (en) Construction method of underground continuous wall and construction method of underground structure
CN113356247B (en) Large deep foundation protection lock catch steel pipe pile cofferdam structure and construction method thereof
CN114059791A (en) Method for reinforcing and heightening circular structure pool by prestressed concrete technology
JP2004003306A (en) Sludge treatment method in prefabricated pile construction, and ground reinforcing structure obtained by method
CN102677679A (en) Cement-soil diaphragm wall with cast-in-situ special-shaped reinforced concrete pile cores for construction of foundation pits
KR20050011111A (en) The site other opinion picket spatial-temporal method which applies the meritorious metal tubing
CN112627188A (en) Deep foundation pit supporting structure and construction method thereof
JPS62242022A (en) Method for constructing underground vertical-type cylindrical structure
CN2661770Y (en) Behind inserting reinforcing cage for long screw pore-forming guncreting piling and conveying device therefor
CN1043482C (en) Retaining wall structure and method for constructing same
CN114232601B (en) Construction method of lower building envelope wall of pipeline
JPH07324341A (en) Construction method for reinforcing existing pile foundation building
CN221442184U (en) Building wall reinforcing structure without entering home
JPH06108476A (en) Construction of stud in steel frame structure
JPS62153489A (en) Construction of underground vertical cylindrical structure
JP2001173263A (en) Constructing method for tank
CN217500224U (en) Grouting device for improving bearing capacity of pile foundation
CN214614090U (en) Composite pre-stressed precast pile foundation pit supporting structure
CN216891934U (en) Steel trestle bridge anchoring pile for hard stratum of sea area tidal zone
JPS62153423A (en) Construction of underground vertical cylindrical structure
JPS62153422A (en) Construction of underground vertical type cylindrical structure
JPS6335767B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees