JPS62153307A - Ethlene copolymer - Google Patents

Ethlene copolymer

Info

Publication number
JPS62153307A
JPS62153307A JP29727385A JP29727385A JPS62153307A JP S62153307 A JPS62153307 A JP S62153307A JP 29727385 A JP29727385 A JP 29727385A JP 29727385 A JP29727385 A JP 29727385A JP S62153307 A JPS62153307 A JP S62153307A
Authority
JP
Japan
Prior art keywords
ethylene
copolymer
olefin
alpha
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29727385A
Other languages
Japanese (ja)
Inventor
Satoru Hosoda
覚 細田
Hiroyuki Harada
博之 原田
Junpei Kojima
児嶋 順平
Hideaki Yamada
秀昭 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP29727385A priority Critical patent/JPS62153307A/en
Publication of JPS62153307A publication Critical patent/JPS62153307A/en
Pending legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

PURPOSE:To obtain an ethylene/alpha-olefin random copolymer having a specified orientation coefficient, etc., and excellent transparency, impact strength, tear strength, etc., by copolymerizing ethylene with an alpha-olefin. CONSTITUTION:Ethylene is copolymerized with 1.0-30wt% 3-12C alpha-olefin at -80-100 deg.C and atmospheric pressure to an elevated pressure in the presence of a catalyst system comprising 1 mol of a V compound and 1-100 mol of an organoaluminum compound and a solvent by using, if necessary, a MW modifier such as H2. In this way, an ethylene/(3-12C) alpha-olefin random copoly mer which has a density of 0.890-0.940g/cm<3>, an intrisic viscosity of 1.0-3.5dl/g (as measured in tetrachlorobenzene at 135 deg.C and in which the orientation func tion of an amorphous chain, fam, upon cold drawing satisfies the relationship of formula I (wherein lambda is a draw ratio of sample), which, when analyzed by differential scanning calorimetry, shows a single sharp melting peak and satisfies the relationship of formula II (wherein Tm is the melting peak temperature and DELTAm is the melting enthalpy) and has an average spherulite radius <=4mm (as measured by laser beam small angle scattering method).

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明はエチレン共重合体に関する。更に詳しくは、エ
チレンとα−オレフィンのランダム共重合体に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to ethylene copolymers. More specifically, it relates to a random copolymer of ethylene and α-olefin.

〈従来の技術〉 近年、エチレンとα−オレフィンの共重合体は、種々の
重合法で製造され、直鎖状低密度ポリエチレン(以下1
−LLDPEJと称す場合もある。)、低密度ポリエチ
レン(以下「LDPE」と称す場合もある。)、軟質樹
脂あるいはエラストマーとして広汎に利用され7〜)5
゜ て44日ヒシ これらのうち、直鎖状低密度ポリエチレンや軟質樹脂は
、主としてチーグラー系触媒を用いて、気相法、スラリ
ー法、溶液法および高圧イオン重合法などによシ製造さ
れている口これらの組成分布は一般に広く、高結晶性成
分が存在するために透明性が劣ること、低結晶性または
非晶性成分のために成形品の粘着、べとつきがあること
などの問題をかかえている。
<Prior art> In recent years, copolymers of ethylene and α-olefins have been produced using various polymerization methods, and linear low-density polyethylene (hereinafter referred to as
- Sometimes referred to as LLDPEJ. ), low-density polyethylene (hereinafter sometimes referred to as "LDPE"), widely used as a soft resin or elastomer7~)5
Of these, linear low-density polyethylene and soft resins are mainly produced using Ziegler catalysts by gas phase methods, slurry methods, solution methods, and high-pressure ionic polymerization methods. These compositional distributions are generally wide, and there are problems such as poor transparency due to the presence of highly crystalline components, and adhesion and stickiness of molded products due to low crystallinity or amorphous components. There is.

一方、高圧ラジカル重合法による低密度ポリエチレンは
一般に透明性に優れた樹脂であるが、引裂強度や衝撃強
度、耐環境応力亀裂性(E8CR)など機械的性質が劣
っている0また、チタン系チーグフ型触媒を用いて製造
したエチレン−α−オレフィン共重合体は、高圧ラジカ
ル重合法による低密度ポリエチレンと同程度またはそれ
以下の密度を持つものでも透明性が劣る等の問題点を有
している0 〈発明が解決しようとする間朗点〉 斯かる現状下において、発明が解決しようとする問題点
、即ち本発明の目的は、透明性、衝撃強度、引裂強度等
に優れたエチレン−α−オレフィンランダム共重合体を
提供することにあるO 〈問題点を解決する為の手段〉 本発明者らは、各種の重合条件で得られた種々のエチレ
ン−α−オレフィン共重合体の詳細な構造解析を行ない
、開披的性質や光学的性質が、共重合体の高次構造(結
晶状態)の均一性に大きく左右されること、また高次構
造はよシ基本的な分子′WS造およびその分子間での均
一性に直接対応するものであることを見出し本発明に到
った。
On the other hand, low-density polyethylene produced by high-pressure radical polymerization is generally a resin with excellent transparency, but it has poor mechanical properties such as tear strength, impact strength, and environmental stress cracking resistance (E8CR). Ethylene-α-olefin copolymers produced using type catalysts have problems such as poor transparency, even if they have a density comparable to or lower than that of low-density polyethylene produced by high-pressure radical polymerization. 0 <Problems to be solved by the invention> Under such current circumstances, the problems to be solved by the invention, that is, the purpose of the present invention, are to improve the ethylene-α- The purpose of the present invention is to provide olefin random copolymers. <Means for solving the problems> The present inventors have developed detailed structures of various ethylene-α-olefin copolymers obtained under various polymerization conditions. The analysis revealed that the optical properties and optical properties are greatly influenced by the uniformity of the higher-order structure (crystalline state) of the copolymer, and that the higher-order structure is based on the basic molecular structure and WS structure. The inventors have discovered that this directly corresponds to the uniformity between molecules, leading to the present invention.

即ち本発明は、密度0.890ないし0.940f凧極
限粘度[y](185℃、テトラクロルベンゼン中で測
定)1.0ないし3.5 dll?、かつ冷延伸したと
きの非晶鎖の配向関数famが次の関係を満足するエチ
レンと1ないし20重量%の炭素数が8ないし12のα
−オレフィンとのフンダム共重合体に関するものである
That is, the present invention provides a kite with a density of 0.890 to 0.940 f and a kite with an intrinsic viscosity [y] (measured at 185° C. in tetrachlorobenzene) of 1.0 to 3.5 dll? , and ethylene and α having 1 to 20% by weight of carbon atoms of 8 to 12 whose orientation function fam of amorphous chains when cold-stretched satisfies the following relationship:
- Concerning fundum copolymers with olefins.

fam≧0.05λ+0.20(λ≧2)ただし、ここ
にλは試料の延伸倍率を示す0本発明は、以下の知見に
基づくものである0共重合体を構造的な側面からみると
その機械的性質の優劣を決定しているのは主として組成
分布である0即ち、チタン系チーグフー触媒で製造した
共重合体は一般に組成の分子間分布が広く、コモノマ一
単位を少量しか含まない高結晶性のポリマーから、非常
に多くのコモノマ一単位を含んだ低結晶性ポリマーまで
1本のポリマーに含まれるコモノマー含量が幅広い範囲
に分布している。このため結晶化度の幅広い分布を生み
出し、これが原因となって、本来均質なポリマーが有し
ているだけの機械的な強度を発揮し得ない結果をもたら
している0 機械的性質には結晶間を貫くタイ分子が大きな影響を持
っているといわれている。すなわち、ポリエチレン変形
時に応力の集中する非晶部を構成する各種連鎖つまり、
タイ分子、結晶から出て再び同じ結晶に戻っていくルー
プ分子()t−μド分子)、および分子端のうち、変形
時に最もよく配向して応力を担うのはタイ分子である〇 従って、タイ分子が多いほど、また変形時にそれらが均
等に配向するほど機械的な強度が強いと考えられる。
fam≧0.05λ+0.20 (λ≧2) However, here λ indicates the stretching ratio of the sample.0 The present invention is based on the following knowledge. It is mainly the composition distribution that determines the superiority or inferiority of mechanical properties.In other words, copolymers produced with titanium-based Tigue-Fu catalysts generally have a wide intermolecular composition distribution and are highly crystalline, containing only a small amount of one comonomer unit. The comonomer content contained in a single polymer is distributed over a wide range, from high-strength polymers to low-crystalline polymers containing a very large number of comonomer units. This creates a wide distribution of crystallinity, which causes the polymer to be unable to exhibit the mechanical strength that originally homogeneous polymers possess. It is said that the tie molecule that runs through the core has a major influence. In other words, the various chains that make up the amorphous part where stress is concentrated during polyethylene deformation,
Among the tie molecules, the loop molecules ()t-μ de molecules that leave the crystal and return to the same crystal, and the molecular ends, the tie molecules are the ones that are most oriented and bear the stress during deformation. Therefore, It is thought that the more tie molecules there are, and the more uniformly they are oriented during deformation, the stronger the mechanical strength will be.

タイ分子は未配向試料においては特に、異方性を持たな
いが、変形時には緊張して応力を支えるべくよシ安定な
トランス型のコンフォメーン璽ンをとるとともに延伸方
向に非晶鎖の中で最もよく配向するはずである〇 このようなことから非晶部のトランス連鎖の配向性は直
接タイ分子に関する情報を与えると考えられる◎偏光赤
外スペクトμによる非晶トランス連鎖の配向度およびそ
の濃度は、試料の結晶化度に大きく形管される( S−
Homeda。
Tie molecules do not have anisotropy, especially in unoriented samples, but when they are deformed, they become tense and take on a more stable trans-type conformational structure to support the stress, and also form amorphous chains in the stretching direction. 〇For this reason, it is thought that the orientation of the trans chains in the amorphous part directly provides information about the tie molecules. ◎The degree of orientation of the amorphous trans chains and its concentration according to the polarized infrared spectrum μ is greatly influenced by the crystallinity of the sample (S-
Homeda.

Makromol*kular* Chemfe、18
L787(1984))。
Makromol*kular* Chemfe, 18
L787 (1984)).

つまり結晶化度が変わると同じ変形率でも配向度は異な
る。
In other words, when the degree of crystallinity changes, the degree of orientation changes even with the same deformation rate.

したがって、結晶化度が幅広い分布をもっているポリエ
チレン試料では、変形時、タイ分子の不均一な配向をも
たらし、一部のタイ分子に応力が集中する結果、高い強
度は得られないのである0 言い換えるならば、組成分布が狭く、従って結晶化度の
分布も狭いエチレン系共重合体ではタイ分子の緊張度が
一様であシ、実際に応力を支える有効タイ分子濃度が高
いために、機械的強度が高くなると考えられる0 本発明者らは、このような考え方に従って鋭意検討した
結果、一定の範囲の密度を有し、一定の分子量以上のエ
チレン−α−オレフィン共重合体で、結晶厚みが均一で
、非晶トランス連鎖の配向度がある値以上のものが、従
来の市販のポリエチレンと比較して極めて高い機械的強
度を有し、また透明性にも優れていることを見出したの
である◇ 以下、本発明を具体的に説明する0 本発明の共重合体は通常の共重合体に比較し、同程度の
密度、極限粘度のもので、非晶トランス連鎖が大きな配
向度を示すことが特徴である0これは、本発明の共重合
体では、変形時に応力を支える有効なタイ分子の濃度が
高いことを表わしておシ、優れた機械的強度を発現する
原因となっている0非晶トランス連鎖の配向度は以下の
ようにして求める仁とができる(S、 Ho5odae
Dle  Makroml@kulare  Ch@m
1ee  185−787(1984))。
Therefore, in a polyethylene sample with a wide distribution of crystallinity, when deformed, the tie molecules become non-uniformly oriented, stress is concentrated on some tie molecules, and high strength cannot be obtained. For example, in an ethylene copolymer with a narrow composition distribution and therefore a narrow distribution of crystallinity, the tension of the tie molecules is uniform, and the concentration of effective tie molecules that actually support stress is high, resulting in poor mechanical strength. As a result of intensive studies based on this idea, the present inventors found that an ethylene-α-olefin copolymer having a density within a certain range and a molecular weight above a certain level has a uniform crystal thickness. They discovered that amorphous trans chains with a certain degree of orientation have extremely high mechanical strength and excellent transparency compared to conventional commercially available polyethylene. The present invention will be explained in detail below. The copolymer of the present invention has similar density and intrinsic viscosity compared to ordinary copolymers, and the amorphous trans chains exhibit a large degree of orientation. This characteristic indicates that the copolymer of the present invention has a high concentration of effective tie molecules that support stress during deformation. The degree of orientation of crystalline trans chains can be determined as follows (S,
Dle Makroml@kulare Ch@m
1ee 185-787 (1984)).

つまシ偏光赤外7ベクトルを用いて、J35Q5cIn
−’の内部基準バンドと2Q15cm−’および139
4m−’のトランス連鎖のバンドについて、それぞれ吸
収強度A、。>s t At5saと、二色性D2゜I
II ” D1114を測定する(ここにDは延伸方向
に対して垂直偏光による吸収強度と平行偏光によるそれ
との比である:A///A工 )0 トランス連鎖の配向度に対して、結晶、非晶部の加成性
を仮定する0 f(tot)=μef”r)+(1−/jc) f””
)ココニf(tot)ハ全体、f(er)ハ結晶部、f
(am)は非晶部のトランス連鎖の配向関数であシ、μ
Cは次式で表わされる全トランスメチレン連鎖のうち結
晶部分に存在する割合である。
Using 7 polarized infrared vectors, J35Q5cIn
-' internal reference band and 2Q15cm-' and 139
Absorption intensity A, respectively for the 4m-' trans-linked band. >s t At5sa and dichroism D2゜I
II'' D1114 is measured (here, D is the ratio of the absorption intensity of light polarized perpendicular to the stretching direction to that of light polarized parallel to it: A///A). Assuming additivity of the amorphous part, 0 f(tot)=μef"r)+(1-/jc) f""
) Coconi f(tot) ha whole, f(er) ha crystal part, f
(am) is the orientation function of the trans chain in the amorphous part, μ
C is the proportion of all transmethylene chains present in the crystal part expressed by the following formula.

μe−1/(”k1185AtatsALF”Alm−
に≦、%F W、anl) )ここにkは添字の波数の
バンドの七μ吸光係数であり、5teinらの報告値を
使うことができる( B、E、Reed、 R,S、 
St@In、Macromolecul@s、 1゜1
16(1968))o試料を赤外線のビームバス中に置
き、一定速度で延伸し、試料を延伸状態に保ったtま、
赤外スペクト〃を測定し、配向関数を求める。本発明の
共重合体は従来の高圧法LDPEや市販のLLDPIに
比べて高い非晶トランス連鎖の配向関数(fam)を有
し、延伸倍率をλとするとfamとλは次の関係を満足
する。仁の関係を fam≧0.05λ+0.20 (λ≧2)満足する共
重合体は、高圧法LDPEや市販のLLDPEよシも引
張り強度や衝撃強度がはるかに強い〇−示famが一定
倍率λにおいて0.05λ+ 0.20よりも小さなも
のは市販のI、LDPKと同等かそれ以下であり、強度
に特に新しい特徴を見出せない0 本発明の共重合体は組成分布が狭いこと、したがって結
晶の厚み分布も狭いことが特徴であシ、その結果として
示差走査熱分析における融解ピーク温度と吸熱量との関
係にもその特徴を見出すことができる。
μe-1/("k1185AtatsALF"Alm-
≦, %FW, anl) where k is the 7μ extinction coefficient of the subscript wavenumber band, and the value reported by Tein et al. can be used (B, E, Reed, R, S,
St@In, Macromolecule@s, 1゜1
16 (1968)) The sample was placed in an infrared beam bath, stretched at a constant speed, and kept in the stretched state.
Measure the infrared spectrum and find the orientation function. The copolymer of the present invention has a higher amorphous trans chain orientation function (fam) than conventional high-pressure LDPE or commercially available LLDPI, and when the stretching ratio is λ, fam and λ satisfy the following relationship: . A copolymer that satisfies the relationship fam≧0.05λ+0.20 (λ≧2) has much stronger tensile strength and impact strength than high-pressure LDPE or commercially available LLDPE. Those smaller than 0.05λ + 0.20 are equivalent to or lower than commercially available ILDPK, and no new characteristics can be found in the strength. It is characterized by a narrow thickness distribution, and as a result, this characteristic can also be seen in the relationship between melting peak temperature and endothermic amount in differential scanning calorimetry.

本発明の共重合体は単一のシャープな融解ピークを有し
、かつ、そのピーク温度(’Trn:℃)と吸熱jl(
ΔHm:CaJt/f)  とが次の関係を満足する0
ΔHm≦0.75Tm−56 (Tm≧80)一般に市
販のLLDPI は複数の融解ピークを持つか、見かけ
上融解ピークが1本でも低温側に長く裾を引いたブロー
ドな融解カーブを示す0また、見かけ上の最高融点は1
20℃以上にあシながら全体の吸熱量はそれほど高くな
い。
The copolymer of the present invention has a single sharp melting peak, and its peak temperature ('Trn: °C) and endotherm jl (
ΔHm:CaJt/f) is 0 that satisfies the following relationship.
ΔHm≦0.75Tm-56 (Tm≧80) Generally, commercially available LLDPI has multiple melting peaks, or even if there is only one apparent melting peak, it shows a broad melting curve with a long tail on the low temperature side. The apparent highest melting point is 1
Although the temperature is over 20°C, the overall heat absorption is not so high.

とのようなことは、市販のLLDPHの結晶厚みが非常
に幅広く分布していることを示唆するものである〇 また高圧法LDPKは一般にシャープな1本の融解ピー
クを有するが、低温側への裾引きによって全体の吸熱量
は本発明の共重合体よシ大き〈なシ、上式を満足しない
0 すなわち、熱分析的にみれば、本発明の共重合体は高圧
法LDPEよりもさらに結晶厚み分布が狭いものである
0 上式を満足する共重合体は結晶厚み分布が狭く、したが
って前述の考え方によシ変形時にタイ分子が一様に緊張
することから機械的弾度に優れる。
This suggests that the crystal thickness of commercially available LLDPH has a very wide distribution.Also, high-pressure LDPK generally has one sharp melting peak, but the melting peak towards the low temperature side Due to the skirting, the total endothermic amount is larger than that of the copolymer of the present invention, which does not satisfy the above formula.In other words, from a thermal analysis point of view, the copolymer of the present invention is more crystallized than the high-pressure LDPE. A copolymer that satisfies the above formula has a narrow crystal thickness distribution and therefore has excellent mechanical elasticity because the tie molecules are uniformly tensed during deformation according to the above-mentioned concept.

その他本発明の共重合体の特徴として市販LLDPEに
比べて、結晶化速度が遅く、球晶サイズが小さいことが
挙げられる。市販LLDPEは、前述のように組成分布
が広く、高結晶性成分を含むために結晶化に際してこの
成分が核となシ結晶化が促進され、球晶サイズも大きく
なる0本発明の共重合体はLLDPEのような高結晶性
成分を含まないため、LLDPIと同一密度の共重合体
でもLLDPIに比べて結晶化速度が遅く、球晶も大き
く成長しない。結晶化速度、球晶サイズは一般に結晶化
条件によって変わるが、本発明の共重合体の球晶半径は
通常4μm以下である0本発明の共重合体の密度は0.
890ないし0.940t7crA、  好ましくは0
.900ないしQ、985 f//ctAの範囲にある
。密度が0.890 f/d未満のものは成形品の粘着
性のために好ましくない。0.940PAを越えるもの
は結晶性が高いために衝撃強度が低下し、本発明の共重
合体の高い機械的強度という特徴を充分発揮し得ないし
、成形品の透明性にも劣るので好ましくない。
Other characteristics of the copolymer of the present invention include a slower crystallization rate and a smaller spherulite size than commercially available LLDPE. As mentioned above, commercially available LLDPE has a wide composition distribution and contains a highly crystalline component, so this component acts as a core during crystallization, promoting crystallization and increasing the spherulite size. Since it does not contain a highly crystalline component like LLDPE, the crystallization rate is slower than that of LLDPI even if the copolymer has the same density as LLDPI, and the spherulites do not grow as large. Although the crystallization rate and spherulite size generally vary depending on the crystallization conditions, the spherulite radius of the copolymer of the present invention is usually 4 μm or less, and the density of the copolymer of the present invention is 0.
890 to 0.940t7crA, preferably 0
.. In the range of 900 to Q, 985 f//ctA. If the density is less than 0.890 f/d, it is not preferred because of the stickiness of the molded product. If it exceeds 0.940 PA, the impact strength will decrease due to high crystallinity, and the high mechanical strength characteristic of the copolymer of the present invention cannot be fully exhibited, and the transparency of the molded product will also be poor, so it is not preferable. .

一方、共重合体の極限粘度〔勇は1.0ないし3.5d
i/fの範囲にあることが望ましい。(3)が1.0未
満のものは分子量が小さいために組成分布が狭くても、
高い機械的強度をもたない@3.5を越えるものは、分
子量が高いために単体としては種々の加工に適さない。
On the other hand, the intrinsic viscosity of the copolymer [value is 1.0 to 3.5 d]
It is desirable that it be in the range of i/f. If (3) is less than 1.0, even if the composition distribution is narrow due to the small molecular weight,
Those with a molecular weight exceeding @3.5, which do not have high mechanical strength, are not suitable for various processing as a single substance due to their high molecular weights.

共重合のコモノマー成分としては、炭素数8ないし12
のα−オレフィンを使用することができる。具体的には
プロピレン、1−ブテン、1−ペンテン、1−ヘキセン
、1−オクテン、1−デセン、l−ドデセン、8−メチ
ル−1−ブテン、4−メチ/L/−1−ペンテン、5−
メチル−1−ヘキセン、5−メチ/L/−1−ヘプテン
、8−メチ/l/−1−ペンテン、8−メチ/L/ −
1−ヘキセン、4−メチ/L’−1−ヘキセン、8−メ
チ/l/−1−ヘプテンなどかあシ、これらの混合物を
用いることもできる。
The comonomer component for copolymerization has 8 to 12 carbon atoms.
of α-olefins can be used. Specifically, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 8-methyl-1-butene, 4-methy/L/-1-pentene, 5 −
Methyl-1-hexene, 5-methy/L/-1-heptene, 8-methy/L/-1-pentene, 8-methy/L/-
1-hexene, 4-methy/L'-1-hexene, 8-methy/l/-1-heptene, and mixtures thereof can also be used.

さらに好ましくは、1−ブテン、l−ヘキセ:/、1−
オクテン、3−メチル−1−ペンテン、4−メチ1v−
1−ペンテンが用いられる。これらの成分は、上記密度
の共重合体とするために、共重合体中に通常1.0ない
し80重蓋%、好ましくは3.0ないし20重量%含有
することが望ましい。
More preferably, 1-butene, l-hexe:/, 1-
octene, 3-methyl-1-pentene, 4-methy1v-
1-pentene is used. It is desirable that these components be contained in the copolymer in an amount of usually 1.0 to 80% by weight, preferably 3.0 to 20% by weight, in order to obtain a copolymer having the above density.

本共重合体の製造には、触媒および重合条件を適当に選
ばなければならない0触謀としては、バナジウム化合物
と有機アルミニウム化合物トからなる触媒系を用いる。
In the production of this copolymer, the catalyst and polymerization conditions must be selected appropriately.A catalyst system consisting of a vanadium compound and an organoaluminum compound is used as the catalyst.

従来、エチレン共重合体の製造にはいわゆるチーブツー
型触媒が特に有効であるが、その中でも重合溶媒に可溶
な3〜δ価のバナジウム化合物(例えばオキシ三塩化バ
ナジウムなど)と有機アルミニウム化合物とからなる触
媒がエチレンとα−オレフィンとの共重合に極めて優れ
た効果を持つことはよく知られている。こO触媒系を几
いてエチレンとプロピレンやブテン−1とを共1合させ
てエフ7トマーを製造することが工業的に広く行なわれ
ている(例えば特公昭44−96 G 8号公報、特公
昭46−11028号公報、特公昭47−26185号
公報)0 しかし、この触媒系は、エチレン含有量の多い共重合体
(エチレン含有量が70重量%以上)を製造する場合や
、20℃より高い温度で重合を進行させる場合には、共
重合体の分子量分布および組成分布が広くなシ、均質な
共重合体かあ 得られ難いという欠点がざる。
Conventionally, so-called chib-two type catalysts have been particularly effective in producing ethylene copolymers, but among them, catalysts made from trivalent to delta-valent vanadium compounds (such as vanadium oxytrichloride) and organoaluminum compounds that are soluble in the polymerization solvent are used. It is well known that this catalyst has an extremely excellent effect on the copolymerization of ethylene and α-olefin. It is widely practiced industrially to produce F-7 tomer by co-merging ethylene with propylene or butene-1 using an O catalyst system (for example, Japanese Patent Publication No. 44-96 G8, (Japanese Patent Publication No. 46-11028, Japanese Patent Publication No. 47-26185) 0 However, this catalyst system is used when producing a copolymer with a high ethylene content (ethylene content of 70% by weight or more), or when the temperature is lower than 20°C. When polymerization is allowed to proceed at high temperatures, there are disadvantages in that the molecular weight distribution and composition distribution of the copolymer are wide and it is difficult to obtain a homogeneous copolymer.

例えば、エフストマーの溶液重合において、高分子量成
分や高結晶性成分が重合溶媒に不溶になって重合中に析
出し、工業的規模での重合装置においてポリマー液の抜
出しフィンが閉塞するなどの運転上の支障を生じやすい
For example, in the solution polymerization of FSTMER, high molecular weight components and highly crystalline components become insoluble in the polymerization solvent and precipitate during polymerization, resulting in operational problems such as blockage of polymer liquid extraction fins in industrial scale polymerization equipment. This can easily cause problems.

そこで本発明の共重合体を得るための触媒としては、三
塩化バナジウムとアルコールとlj応させて得たバナジ
ウム化合物を有機アルミニウム化合物との組合せが特に
有効である。
Therefore, as a catalyst for obtaining the copolymer of the present invention, a combination of a vanadium compound obtained by reacting vanadium trichloride with an alcohol and an organoaluminum compound is particularly effective.

この触媒系は、前述の可溶性触媒系よりも重合性が肯い
上に、20℃よシも高い温度での重合においても、また
共重合体中のエチレン含量が7orm%ヲ越えるエチレ
ン−α−オレフィン共重合体を製造する場合においても
、組成分布と分子量分布が狭く、均質な共重合体を与え
るという特徴を有している。
This catalyst system has higher polymerizability than the above-mentioned soluble catalyst systems, and can also be used in polymerization at temperatures higher than 20°C, and the ethylene content in the copolymer exceeds 7 orm%. Even when producing an olefin copolymer, it has the characteristics of providing a homogeneous copolymer with narrow composition distribution and molecular weight distribution.

一方、有機アルミニウム化合物は、一般式Y、−pAj
Xp (ここでYは炭化水素基、Xはハロゲンもしくは
アルコキク基、pは1〈pく2で表わされるa)で表わ
され、アルキルアルミニウムセスキハライド、アルキル
アルミニウムシバライドなどで実施可能であるが、なか
でもアルミニウムセスキクロライドが好ましい。
On the other hand, organoaluminum compounds have the general formula Y, -pAj
Xp (where Y is a hydrocarbon group, X is a halogen or alkoxy group, p is a expressed as 1 < p × 2), and it can be carried out with alkylaluminum sesquihalides, alkylaluminum cybarides, etc. Among them, aluminum sesquichloride is preferred.

該バナジウム化合物と該有機アルミニウム化合物を用い
てエチレン共重合体を製造するにあたって、バナジウム
化合物と有機アルミニウム化合物のモル比は、通常1:
1から1:100で来施し得るが、好ましくは1:2か
ら1:30である。
When producing an ethylene copolymer using the vanadium compound and the organoaluminum compound, the molar ratio of the vanadium compound and the organoaluminum compound is usually 1:
It can be applied at a ratio of 1 to 1:100, preferably 1:2 to 1:30.

重合はl1合触媒と1合溶媒の共存下、ヌラリー重合法
で行なうことができる01(合溶媒としテハへキサン、
ヘプタン、オクタンのような飽和炭化水素が好ましい。
Polymerization can be carried out by the nullary polymerization method in the coexistence of a 11 catalyst and a 1 solvent.
Saturated hydrocarbons such as heptane and octane are preferred.

また、炭化水素溶媒の不存在下でO本発明の触m系を用
いて液状のα−オレフィン中でエチレンを共重合させる
事もできる◇ 重合温度は広い範囲で変化させ得るが通算は一80〜1
’O0℃で実施され、特に−80〜80℃の範囲が好ま
しい〇 重合は、大気圧下もしくは加圧下で実施され、バッチ重
合でも連続重合でも可能である。
It is also possible to copolymerize ethylene in a liquid α-olefin using the catalyst system of the present invention in the absence of a hydrocarbon solvent ◇ The polymerization temperature can be varied within a wide range, but the total ~1
〇The polymerization is carried out at 00°C, and particularly preferably in the range of -80 to 80°C.〇The polymerization is carried out under atmospheric pressure or under pressure, and can be either batch polymerization or continuous polymerization.

本発明の方法で共重合体を製造するにあたり、任意の分
子量をもった共重合体を得るために、通常用いられる分
子量調節剤を用いることができる◎即ち、分子量調節剤
としてジエチル亜鉛、アリールクロフィト、ピリジン−
N−オキサイド、水素等がよく用いられるが、特に水素
が好ましい◇ 次に諸物性の測定方法を示す・ (1)密度: JIB K6760−1981に準処し
て求めた。
In producing a copolymer by the method of the present invention, commonly used molecular weight regulators can be used in order to obtain a copolymer with an arbitrary molecular weight. In other words, diethylzinc, arylchloride, Phyto, pyridine-
N-oxide, hydrogen, etc. are often used, and hydrogen is particularly preferred◇ Next, methods for measuring various physical properties are shown. (1) Density: Determined according to JIB K6760-1981.

(匂極限粘f:185℃でトリクロルベンゼン中で測定
した。
(Odor limiting viscosity f: Measured in trichlorobenzene at 185°C.

は室温で、延伸速度は24 mVminで行なった。The stretching was carried out at room temperature and at a stretching speed of 24 mVmin.

(4)コモノマー−ra:共重合体の赤外吸収スペクト
ルから計算した。
(4) Comonomer-ra: Calculated from the infrared absorption spectrum of the copolymer.

(5)融解温度、吸熱量:バーキン・エルマー社(Pe
rkin E1m@r社)製示差走査熱量計DSC2型
を用いて、まず試料 を150℃で5分間保持した後、 5℃/分の速度で降温し、30℃に 達したら5℃々で昇温し、融解力 −ブのピーク温度を読みとった。
(5) Melting temperature, endothermic amount: Birkin-Elmer Co. (Pe
Using a differential scanning calorimeter DSC2 model (manufactured by RKIN E1m@r), the sample was first held at 150°C for 5 minutes, then lowered at a rate of 5°C/min, and when it reached 30°C, the temperature was increased in 5°C steps. Then, the peak temperature of the melting power was read.

吸熱量は、インジウム標準試料を 用いてカーブ面積よシ計算した。The amount of endotherm is calculated using the indium standard sample. The curve area was calculated using

(6)分子量分布:オルトジクロルベンゼンを溶媒とし
、140℃で測定り、東洋曹達 側ゲyバーミエーシ替ンクロマト グラフィー811を使用した〇 (7)球晶サイズ:試料を160℃で100 Kv’o
Aの圧力下で厚さ約100urnの急冷プ レスシートを作製し、レーザー光 小角散乱(5ALS )により求めた◇すなわち、入射
光を垂直偏光、散 乱光を水平偏光の検光子を通して 得られるHマ散乱像の強度分布の極 大値を与える散乱角θから、R,S。
(6) Molecular weight distribution: Measured at 140°C using orthodichlorobenzene as a solvent, and using Toyo Soda's Geyvermic Exchange Chromatography 811. (7) Spherulite size: Measured at 100 Kv' at 160°C. o
A quenched press sheet with a thickness of about 100 urns was prepared under the pressure of A, and it was determined by small-angle laser light scattering (5ALS). ◇That is, H-mass scattering obtained by passing the incident light through an analyzer with vertical polarization and the scattered light with horizontal polarization. R, S from the scattering angle θ that gives the maximum value of the image intensity distribution.

St@inの式を用いて球晶半径Rを 求めた。Using the formula St@in, the spherulite radius R is I asked for it.

θ=2sin−’(λ/*R) ここにλはレーザー光の波長 (6328A)である。θ=2sin-'(λ/*R) Here λ is the wavelength of the laser light (6328A).

(8)引張り強度、伸びなど: JIS K−6760
に準処して求めた〇 (9)テンサイルインパクト強度: A8TM D−1
822に準処して求めた0 〈実施例〉 次に本発明を実施例によって具体的に説明するが、本発
明は要旨を逸脱しない限シ、実施例に限定されるもので
はない0 実施例1〜4 囚 バナジウム化合物の合成 アルゴン置換された1 09mJフラスコ中に三塩化バ
ナジウム0.029モルとエチルアルコ−/’0.21
6モ/I’を加え、攪拌下に50℃で1時間反応させた
後、n−へブタン40mjを加えて攪拌下、室温で減圧
乾燥を行い、n−へブタンに不溶の淡緑色固体粉末状バ
ナジウム化合物を得た。
(8) Tensile strength, elongation, etc.: JIS K-6760
〇(9) Tensile impact strength determined according to: A8TM D-1
0 obtained in accordance with 822 <Example> Next, the present invention will be specifically explained by examples, but the present invention is not limited to the examples as long as it does not depart from the gist.0 Example 1 ~4 Capacity Synthesis of Vanadium Compound 0.029 mol of vanadium trichloride and ethyl alcohol/'0.21 in an argon-substituted 109 mJ flask.
After adding 6 mo/I' and reacting at 50°C for 1 hour with stirring, 40 mj of n-hebutane was added and dried under reduced pressure at room temperature with stirring to obtain a pale green solid powder insoluble in n-hebutane. A vanadium compound was obtained.

このバナジウム化合物を純水で分解して組成を分析する
と、バナジウム原子が21重量%、塩素原子が48重量
%、C,H,OHが40重量%検出された0また、この
バナジウム化合物をDlo(重水)で分解し、GC−M
Sで分析したところC,H,00は検出されなかった。
When this vanadium compound was decomposed with pure water and its composition analyzed, 21% by weight of vanadium atoms, 48% by weight of chlorine atoms, and 40% by weight of C, H, OH were detected. decomposed with heavy water) and GC-M
When analyzed with S, C, H, and 00 were not detected.

従ってこのバナジウム化合物はVCj、−2,IC,H
,OH(一般式V (OR)rnCJ、!n−nROH
Omおよびnが0および2,1)で示される化合物であ
った。
Therefore, this vanadium compound is VCj, -2,IC,H
,OH (general formula V (OR)rnCJ,!n-nROH
It was a compound where Om and n are 0 and 2,1).

このバナジウム化合物のX線粉末スペクトルは、AST
M15−882 に報告されている三塩化/<ナジウム
と全く異な)、三塩化バナジウム特有のスペクトlv(
すなわちd=5.75A、 d −2,67A、 d=
1.74λなどの回折線)は認められなかった〇 (B)  エチレン−ブテン−1の共重合2Jのセバフ
プルフラスコに撹拌機、温度計、滴下ロート、還流斥却
管をつけて減圧にした後、窒素で置換する。このフラス
コに乾燥したn−ヘキサンlIを入れて80℃の恒温に
保ち、実施例1の仏)で得られたバナジウム化合物(r
A酸成分と略す。)を所定i添加し、これに所定の混合
ガスを10 N115’)の流量で10分間流し、混合
ガスを溶解させた。
The X-ray powder spectrum of this vanadium compound is AST
M15-882 reports trichloride/< completely different from sodium), spectra specific to vanadium trichloride lv (
That is, d=5.75A, d-2,67A, d=
(Diffraction lines such as 1.74λ) were not observed 〇(B) Copolymerization of ethylene-butene-1 A 2J Sebafupur flask was equipped with a stirrer, a thermometer, a dropping funnel, and a reflux repulsion tube, and the pressure was reduced. After that, replace with nitrogen. Dry n-hexane lI was put into this flask and kept at a constant temperature of 80°C, and the vanadium compound (r) obtained in Example 1 was added.
It is abbreviated as A acid component. ) was added thereto for 10 minutes at a flow rate of 10 N115') to dissolve the mixed gas.

次いで、エチルアルミニウムセスキクロライド(rn成
分と略す)を所定量(以下、分子式(ClH8)1.I
 AI”10mで七〃数を計算)添加し、共重合を開始
した。攪拌に15分間上記混合ガスを流して80℃で重
合させた。
Next, a predetermined amount of ethylaluminum sesquichloride (abbreviated as rn component) (hereinafter, molecular formula (ClH8) 1.I
AI" was added (calculated as 7 for 10 m) to start copolymerization. The above mixed gas was flowed for 15 minutes while stirring, and polymerization was carried out at 80°C.

本重合条件下では、重合反応の進行とともにポリマーが
析出した。一方、n−ヘキサン溶媒の一部を大量のメタ
ノール中に投入してもポリマーは全く析出せず、重合し
たポリマーは全てn−ヘキサンに不溶部となっているこ
とが分った0重合後、析出したポリマーをメタノール−
塩酸で数回洗浄したのち減圧乾燥した0第1表に重合条
件、ポリマー収量を第2表には得られた共重合体の諸物
性を示したO 比較例1 実施例1〜4で用いたバナジウム化合物の代りに重合溶
媒に可溶なオキシ三塩化バナジウム(「A′成分」と略
す。)を0.2ミリ七μと、エチルアルミニウムセスキ
クロライド(rB酸成分と略す。)2.0ミリモル用い
、実施例8と同一組成の混合ガスを80℃で溶解させた
後、B成分および^成分を添加する方法をとった以外は
実施例1〜4の(B)と同様にして共重合を行った0結
果を実施例1〜4と共に、第1表及び第2表に示した0
また、市販のポリエチレンの物性を比較の為に第2表に
併せて示した〇 得られた共重合体は実施例1〜4と比較すると組成的に
不均質であシ、機械的強度が劣っていた〇 5!施例5 囚 バナジウム化合物の合成 アルゴン置換された2 00mjフフスコ中に三塩化バ
ナジウム0.068モルとn−へブタン56mJを加え
て50℃に昇温し、メチルアル:I−/170.25モ
ルを加えて、アルゴン気流中で攪拌下、50℃で1時間
反応させ九0反応後、上澄液をガラスフィルターで抜出
し、50mjのn−へブタンで8回洗浄し、減圧乾燥を
行って、n−へブタンに不溶の暗緑色固体粉末状バナジ
ウム化合物を得た0 このバナジウム化合物の組成を実施例1〜4の囚と同様
にして分析するとバナジウム原子が21重量%、塩素原
子が42重重量、CHOHが40重量%でCH,ODは
検出されなかコ った◇従って、このバナジウム化合物はVCIx−8,
OCR,0H(一般式V (OR)−Cj s”m @
 nROHのmおよびnがOおよび3.0)で示される
化合物であった。また、この化合物のX線粉末スペクト
〜は実施例1〜4の囚で得たバナジウム化合物と同様に
、ミ塩化バナジウム特有のスペクトルは認められなかっ
た。
Under the present polymerization conditions, the polymer precipitated as the polymerization reaction progressed. On the other hand, even when a part of the n-hexane solvent was poured into a large amount of methanol, no polymer was precipitated at all, and all of the polymerized polymer was found to be insoluble in n-hexane. The precipitated polymer was mixed with methanol.
Table 1 shows the polymerization conditions and polymer yield, and Table 2 shows the physical properties of the obtained copolymer. Comparative Example 1 Used in Examples 1 to 4. Instead of the vanadium compound, 0.2 mmol of vanadium oxytrichloride (abbreviated as "A'component") which is soluble in the polymerization solvent and 2.0 mmol of ethylaluminum sesquichloride (abbreviated as rB acid component). Copolymerization was carried out in the same manner as in (B) of Examples 1 to 4, except that the mixed gas having the same composition as in Example 8 was dissolved at 80°C, and then the B component and the ^ component were added. The 0 results are shown in Tables 1 and 2 together with Examples 1 to 4.
In addition, the physical properties of commercially available polyethylene are also shown in Table 2 for comparison. Compared with Examples 1 to 4, the obtained copolymers were compositionally heterogeneous and had inferior mechanical strength. It was 〇5! Example 5 Synthesis of vanadium compound 0.068 mol of vanadium trichloride and 56 mJ of n-hebutane were added to argon-substituted 200 mJ fufusco, and the temperature was raised to 50°C, and 170.25 mol of methylalyl:I was added. In addition, the reaction was carried out for 1 hour at 50°C under stirring in an argon stream, and after the reaction, the supernatant liquid was extracted with a glass filter, washed 8 times with 50mj of n-hebutane, and dried under reduced pressure. - A dark green solid powdered vanadium compound insoluble in hebutane was obtained.0 The composition of this vanadium compound was analyzed in the same manner as in Examples 1 to 4: 21% by weight of vanadium atoms, 42% by weight of chlorine atoms, CHOH was 40% by weight, and CH and OD were not detected ◇ Therefore, this vanadium compound was VCIx-8,
OCR, 0H (general formula V (OR)-Cj s”m @
It was a compound in which m and n of nROH are O and 3.0). Further, in the X-ray powder spectrum of this compound, similar to the vanadium compounds obtained in Examples 1 to 4, no spectrum peculiar to vanadium dichloride was observed.

(B)  エチレン−ブテン−1の共重合ルゴンで置換
後、乾燥したn−へブタン200m1と上記囚で得られ
たバナジウム化合物0.150ミリモルを加え、温度計
、攪拌機をつけてフラスコ内温を60℃に!+温した。
(B) Copolymer of ethylene-butene-1 After replacing with rugone, add 200 ml of dried n-hebutane and 0.150 mmol of the vanadium compound obtained in the above solution, and adjust the internal temperature of the flask with a thermometer and a stirrer. To 60℃! +It was warm.

これにエチレンが97モル%、ブテン−1が8七p%の
混合ガスをI Nl1分の流量で15分間流し、混合ガ
スを溶解させた。
A mixed gas containing 97 mol % of ethylene and 87 p% of butene-1 was flowed through this at a flow rate of 1 Nl for 15 minutes to dissolve the mixed gas.

次いで、エチルアルミニウムセスキクロライド2.90
ミリモルを添加し、共重合を開始した◎攪拌下に80分
間上記混合ガスを流して80℃で重合を行い、ポリマー
液を大量のメタノールに投入して共重合体を全量回収し
たO 得られた共重合体は3.70fであり、重合活性をバナ
ジウム原子1ミリモル当りの共重合体の重合量(f)(
以下、rPolym@r/vIと略す。)で表わすと、
P o 1 ym@r/V= 58であった0実施例1
〜4と同様にポリマーは全jin−へキサンに不溶であ
った◇ 第8表に重合条件、ポリマー収最を、第4表には得られ
た共重合体の諸物性を示した〇比較例2 実施例50バナジウム化合物の代シに重合溶媒に可溶な
オキシ三塩化バナジウムを0.15ミリモルト、エチル
アルミニウムセスキクロライドを1.65ミリモル用い
た以外は実施例5と同様にして共重合を行い、5.92
の共重合体を得たo Po1yrner/V x 89
であった。共重合体の示差走査熱分析によれば融解カー
ブは、実施例5で得られた共重合体と比較して、@解ピ
ーク温度は同程度でも全体にブロードになっておシ、組
成分布が広いものであった。
Then ethylaluminum sesquichloride 2.90
mmol was added to start copolymerization.◎The above mixed gas was flowed for 80 minutes while stirring to perform polymerization at 80℃, and the polymer solution was poured into a large amount of methanol to recover the entire amount of copolymer.O Obtained The copolymer has a molecular weight of 3.70f, and the polymerization activity is determined by the polymerization amount (f) of the copolymer per 1 mmol of vanadium atoms (
Hereinafter, it will be abbreviated as rPolym@r/vI. ) is expressed as
Example 1 where P o 1 ym@r/V=58
As in ~4, the polymer was insoluble in total jin-hexane ◇ Table 8 shows the polymerization conditions and polymer yield, and Table 4 shows the physical properties of the obtained copolymer 〇 Comparative example 2 Example 50 Copolymerization was carried out in the same manner as in Example 5, except that 0.15 mmol of vanadium oxytrichloride and 1.65 mmol of ethylaluminum sesquichloride, which were soluble in the polymerization solvent, were used instead of the vanadium compound. , 5.92
A copolymer of o Polyrner/V x 89 was obtained.
Met. According to the differential scanning calorimetry analysis of the copolymer, the melting curve was broader overall than that of the copolymer obtained in Example 5, even though the melting peak temperature was about the same, and the composition distribution was different. It was spacious.

tfS8表、第4表に重合条件、結果等を実施例5と併
せて示し九〇 実施例6〜8 実施例5の囚で得たバナジウム化合物とエチルアルミニ
ウムセスキクロフィトを用いて、実施例5(B)と同様
の反応装置を用いてエチレンとヘキセン−1との共重合
を行なった■ ヘキセンー1は0.88 tAj、エチレンは5Njt
上の一定速度で同時に反応系に15分間供給し、水素濃
度を変えてエチレン−ヘキセン−1共重合体を得九〇共
重合体は全量n−ヘキサンに不溶で、Polymerh
148〜77であった。
Table tfS8 and Table 4 show the polymerization conditions, results, etc. together with Example 5. 90 Examples 6 to 8 Example 5 Copolymerization of ethylene and hexene-1 was carried out using the same reactor as in (B).■ Hexene-1 was 0.88 tAj, and ethylene was 5Njt.
The above was simultaneously supplied to the reaction system at a constant rate for 15 minutes, and the hydrogen concentration was changed to obtain an ethylene-hexene-1 copolymer.
It was 148-77.

第5表に重合条件、ポリマー収量等を、第6表には得ら
れた共重合体の諸物性を示した。
Table 5 shows polymerization conditions, polymer yield, etc., and Table 6 shows various physical properties of the obtained copolymer.

比較例8 バナジウム化合物として、重合溶媒に可溶なオキシ三塩
化バナジウムを0.20ミリ七μ、アルミニウムセスキ
クロリド2.00ミリ七μ用いた他は、実施例6と同条
件でエチレンとヘキセン−1との共重合を行ない、n−
へキサンに不溶の共重合体を13.84 F得た( P
o 1)ryn@r/V−91)。
Comparative Example 8 Ethylene and hexene were prepared under the same conditions as in Example 6, except that as the vanadium compound, 0.20 mm7μ of vanadium oxytrichloride and 2.00 mm7μ of aluminum sesquichloride, which are soluble in the polymerization solvent, were used. Copolymerization with 1 and n-
A copolymer insoluble in hexane was obtained at 13.84 F (P
o 1) ryn@r/V-91).

このものは示差走査熱量分析によれば組成分布が広く、
第5表、第6表に示すように、高い(5)をもつにもか
かわらず、機械的性質は実施例6で得られた共重合体よ
シ劣る仁とがわかった・また、市販のLLDPEの物性
値を比較の為、第6表に併せて示した〇 実施例9 囚 バナジウム化合物の合成 滴下ロートを付けた1jフラスコをアルゴンで置換後、
=塩化バナジウム0.852モルとh−ヘゲタン500
mJを加え60℃に昇温し、滴下ロートからエチルアル
コール1.82モルを10分間で滴下した0次いで、オ
イルパスを120℃に昇温しアルゴン気流中攪拌下で2
時間反応後、上澄液を力゛フスフイ〃ターで抜出し、2
50mJのn−へブタンで8回洗浄し、減圧乾燥を行っ
て、n−へブタンに不溶の固体粉末状バナジウム化合物
を得た。
According to differential scanning calorimetry, this material has a wide composition distribution;
As shown in Tables 5 and 6, despite having a high (5), the mechanical properties were inferior to that of the copolymer obtained in Example 6. For comparison, the physical properties of LLDPE are also shown in Table 6. Example 9 Synthesis of vanadium compound After replacing the 1j flask with a dropping funnel with argon,
= 0.852 mol of vanadium chloride and 500 mol of h-hegetane
mJ was added, the temperature was raised to 60°C, and 1.82 mol of ethyl alcohol was added dropwise from the dropping funnel over 10 minutes.Next, the oil path was heated to 120°C, and the temperature was raised to 60°C under stirring in an argon stream.
After the reaction for several hours, remove the supernatant using a force filter, and
It was washed 8 times with 50 mJ of n-hebutane and dried under reduced pressure to obtain a solid powdered vanadium compound insoluble in n-hebutane.

このバナジウム化合物の組成を実施例1〜4の囚と同様
にして分析するとバナジウム原子が19重重量、塩素原
子が81重量%、C,H,OHが85重量%、C,Hl
ODが8重量%であった。従って、このバナジウム化合
物はV(QC,H,)。、、C1□、、・2. OC,
H,OHて示される化合物であった。また、この化合物
のX線粉末スペクトルは実施例1〜4の(5)で得たバ
ナジウム化合物と同様に三塩化バナジウム特有のスペク
トルは認められなかった0 (B)  エチレン−デセン−1の共重合上記囚で得ら
れたバナジウム化合物をo、i t tミリモル、エチ
μアμミニウムセスキクロツイドを2.28ミリ七μ用
いた以外は実施例6〜8と同様にして、デセン−1は0
.8897分、エチレンは5 NJ/分の速度で4分間
、供給して共重合を行った@ 重合中、ポリマーは析出し、n−へキサン可溶部は存在
しなかったO Polymerハ190であった〇 第7表に重合条件、ポリマー収量等を、第8表に得られ
た共重合体の諸物性を示した。
The composition of this vanadium compound was analyzed in the same manner as in Examples 1 to 4. Vanadium atoms were 19% by weight, chlorine atoms were 81% by weight, C, H, OH were 85% by weight, C, Hl
The OD was 8% by weight. Therefore, this vanadium compound is V(QC,H,). ,,C1□,,・2. OC,
It was a compound represented by H,OH. In addition, in the X-ray powder spectrum of this compound, similar to the vanadium compounds obtained in Examples 1 to 4 (5), no spectra specific to vanadium trichloride were observed.0 (B) Copolymerization of ethylene-decene-1 The procedure was repeated in the same manner as in Examples 6 to 8, except that 0, it t mmol of the vanadium compound obtained above and 2.28 mmol of ethamium sesquiculotide were used, and decene-1 was 0.
.. 8897 minutes, ethylene was supplied at a rate of 5 NJ/min for 4 minutes to perform copolymerization. During the polymerization, the polymer precipitated and no n-hexane soluble portion was present. Table 7 shows the polymerization conditions, polymer yield, etc., and Table 8 shows the physical properties of the obtained copolymer.

比較例4 バナジウム化合物としてオキシ三塩化バナジウムを0.
200ミリモル用いた他は実施例9と同様にしてエチレ
ンとデセン−1との共重合を行々い、n−ヘキサンに不
溶の共重合体を13.08 f得たo Pa l ym
@r/Y = 90で 実施例9と同様であったが、こ
の共重合体は組成分布が広く、実施例9の共重合体よシ
機械的性質が劣った〇第7表、第8表に重合条件、共重
合体の物性等を実施例9と併せて示し九〇 〈発明の効果〉 本発明によシ透明性、衝撃強度、引裂強度等ニ優れたエ
チレン−α−オレフィンランダム共重合体が提供される
Comparative Example 4 Vanadium oxytrichloride was used as a vanadium compound at a concentration of 0.
Copolymerization of ethylene and decene-1 was carried out in the same manner as in Example 9 except that 200 mmol was used, and 13.08 f of a copolymer insoluble in n-hexane was obtained.
@r/Y = 90, which was the same as Example 9, but this copolymer had a wide composition distribution and had inferior mechanical properties to the copolymer of Example 9. Tables 7 and 8 The polymerization conditions, physical properties of the copolymer, etc. are shown in conjunction with Example 9. Effects of the Invention The present invention provides an ethylene-α-olefin random copolymer with excellent transparency, impact strength, tear strength, etc. Coalescing is provided.

Claims (1)

【特許請求の範囲】 (1)密度0.890ないし0.940g/cm^3、
極限粘度〔η〕(135℃、テトラクロルベンゼン中で
測定)1.0ないし3.5dl/g、かつ冷延伸したと
きの非晶鎖の配向関数famが次の関係を満足するエチ
レンと1ないし30重量%の炭素数が3ないし12のα
−オレフィンとのランダム共重合体。 fam≧0.05λ+0.20(λ≧2) ただし、λは試料の延伸倍率を示す。 (2)示差走査熱分析において、単一のシャープな融解
ピークを有し、その融解ピーク温度 (Tm)と、融解熱量(ΔHm)とが次の関係を満足す
る特許請求の範囲第1項記載のエチレン共重合体。 ΔHm≦0.75Tm−56(Tm≧80)(3)レー
ザー光小角散乱法によって得られる平均球晶半径が4μ
m以下である特許請求の範囲第1項記載の共重合体。 (4)密度が0.900ないし0.935g/cm^3
である特許請求の範囲第1項記載の共重合体。 (5)α−オレフィンが炭素数4ないし10である特許
請求の範囲第1項記載の共重合体。
[Claims] (1) Density 0.890 to 0.940 g/cm^3,
Ethylene having an intrinsic viscosity [η] (measured at 135°C in tetrachlorobenzene) of 1.0 to 3.5 dl/g and an amorphous chain orientation function fam satisfying the following relationship when cold-stretched. α with 30% by weight of carbon atoms from 3 to 12
- Random copolymers with olefins. fam≧0.05λ+0.20 (λ≧2) where λ indicates the stretching ratio of the sample. (2) Claim 1, which has a single sharp melting peak in differential scanning calorimetry, and whose melting peak temperature (Tm) and heat of fusion (ΔHm) satisfy the following relationship: ethylene copolymer. ΔHm≦0.75Tm-56 (Tm≧80) (3) The average spherulite radius obtained by small-angle laser light scattering method is 4μ
The copolymer according to claim 1, which has a molecular weight of not more than m. (4) Density is 0.900 to 0.935g/cm^3
The copolymer according to claim 1, which is (5) The copolymer according to claim 1, wherein the α-olefin has 4 to 10 carbon atoms.
JP29727385A 1985-12-27 1985-12-27 Ethlene copolymer Pending JPS62153307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29727385A JPS62153307A (en) 1985-12-27 1985-12-27 Ethlene copolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29727385A JPS62153307A (en) 1985-12-27 1985-12-27 Ethlene copolymer

Publications (1)

Publication Number Publication Date
JPS62153307A true JPS62153307A (en) 1987-07-08

Family

ID=17844385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29727385A Pending JPS62153307A (en) 1985-12-27 1985-12-27 Ethlene copolymer

Country Status (1)

Country Link
JP (1) JPS62153307A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0341091A2 (en) * 1988-05-06 1989-11-08 The Dow Chemical Company Linear low density polyethylene of ultra low density
EP0495099A1 (en) * 1988-12-26 1992-07-22 Mitsui Petrochemical Industries, Ltd. Olefin copolymer and production thereof
EP0955321A2 (en) * 1988-12-26 1999-11-10 Mitsui Chemicals, Inc. Olefin copolymers and processes for preparing same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60226514A (en) * 1984-04-25 1985-11-11 Sumitomo Chem Co Ltd Production of ethylenic copolymer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60226514A (en) * 1984-04-25 1985-11-11 Sumitomo Chem Co Ltd Production of ethylenic copolymer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0341091A2 (en) * 1988-05-06 1989-11-08 The Dow Chemical Company Linear low density polyethylene of ultra low density
EP0495099A1 (en) * 1988-12-26 1992-07-22 Mitsui Petrochemical Industries, Ltd. Olefin copolymer and production thereof
EP0955321A2 (en) * 1988-12-26 1999-11-10 Mitsui Chemicals, Inc. Olefin copolymers and processes for preparing same
EP0955322A2 (en) * 1988-12-26 1999-11-10 Mitsui Chemicals, Inc. Olefin copolymers and processes for preparing same
EP0955321A3 (en) * 1988-12-26 1999-12-08 Mitsui Chemicals, Inc. Olefin copolymers and processes for preparing same
EP0955322A3 (en) * 1988-12-26 1999-12-08 Mitsui Chemicals, Inc. Olefin copolymers and processes for preparing same

Similar Documents

Publication Publication Date Title
CA2202402C (en) Long-chain branched polymers and their production
KR100281368B1 (en) An ethylene polymer having excellent transparency, enhanced toughness, low extractability, and ease of processing
US7049372B2 (en) Propylene alpha-olefin polymer blends
DE19722104B4 (en) Propylene / ethylene-α-olefin block copolymer and method of improving impact resistance
EP3020736B1 (en) Ultra-high-molecular-weight polyethylene particles and molded body comprising same
FI75581C (en) Heterogeneous copolymers of ethylene, their preparation and use for making films
CN103228685A (en) An ethylene/alpha-lefin interpolymer suitable for use in shrinkage film applications, and articles made therefrom
ITMI960357A1 (en) PROCESS FOR THE PREPARATION OF RANDOM PROPYLENE COPOLYMERS AND PRODUCTS SO OBTAINED
SA515360262B1 (en) Sponge polymer with controlled long chain branching and broad molecular weight distribution
JP2006307138A (en) ETHYLENE-alpha-OLEFIN COPOLYMER
JP7238135B2 (en) Olefin polymerization catalyst and olefin polymer prepared using the same
JP7175741B2 (en) Multicomponent Polar Group-Containing Olefin Copolymer
JPH0796633B2 (en) Olefin copolymer composition
JPH04285607A (en) Production of ethylene-alpha-olefin copolymer
JPS62121711A (en) Lowly crystalline ethylene random copolymer and its production
JPS62153307A (en) Ethlene copolymer
Santos et al. [(η5‐C5Me4) SiMe2 (NtertBu)] TiCl2 as Pre‐Catalyst for the Copolymerisation of Ethylene with 5, 7‐Dimethylocta‐1, 6‐diene and with 3, 7‐Dimethylocta‐1, 6‐diene
Canetti et al. Structure and thermal properties of ethylene/4-methyl-1-pentene copolymers: Effect of comonomer and monomer sequence distribution
JPH01131210A (en) Ethylene copolymer film and molded article
JPH0816133B2 (en) Butene-1 copolymer
JPH0816132B2 (en) Butene-1 copolymer
JPH0816131B2 (en) Butene-based copolymer
Wang et al. Copolymerization of 4-methyl-1-pentene with α, ω-alkenols
US7868104B2 (en) Crystallizable propylene copolymers
Can et al. H-Bonding Effect in Radical Terpolymerization of Maleic anhydride, Acrylic acid Methyl acrylate and Vinyl acetate