JPS6215086B2 - - Google Patents

Info

Publication number
JPS6215086B2
JPS6215086B2 JP54137929A JP13792979A JPS6215086B2 JP S6215086 B2 JPS6215086 B2 JP S6215086B2 JP 54137929 A JP54137929 A JP 54137929A JP 13792979 A JP13792979 A JP 13792979A JP S6215086 B2 JPS6215086 B2 JP S6215086B2
Authority
JP
Japan
Prior art keywords
ethylene
propylene
amount
weight
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54137929A
Other languages
Japanese (ja)
Other versions
JPS5661416A (en
Inventor
Shinichi Saito
Noryuki Sekine
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP13792979A priority Critical patent/JPS5661416A/en
Publication of JPS5661416A publication Critical patent/JPS5661416A/en
Publication of JPS6215086B2 publication Critical patent/JPS6215086B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Graft Or Block Polymers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、剛性、衝撃強度、光沢の物性バラン
スが良好なプロピレン―エチレンブロツクコポリ
マーの製造方法に関する。 アイソタクチツクポリプロピレンは優れた剛
性、耐熱性、表面光沢等を有し、かつ安価である
ため、多くの産業分野で使用されているが、耐衝
強度が低いため強い機械的衝撃を受ける用途には
使用できなかつた。 ポリプロピレンの耐衝撃性を改良する方法とし
ては、例えば(1)ポリプロピレンにポリエチレンあ
るいはエチレン―プロピレンエラストマーを機械
的にブレンドする方法、(2)第1段でプロピレンを
重合し、第2段でプロピレン―エチレンを共重合
させる、いわゆるブロツクコポリマーの製法など
が知られている。特に(2)の方法については特公昭
39−1836を始めとして、種々の濃度のエチレンを
含有するプロピレン―エチレン共重合体が各種の
割合で結合したブロツクコポリマーが提案されて
いる。 これらのブロツクコポリマーは、いずれも耐衝
撃性は著るしく改良されるが、ポリプロピレンの
特徴である優れた表面光沢が損なわれるという欠
点を有している。しかるに、近年、プロピレン―
エチレンブロツクコポリマーの用途の多様化に伴
い要求性能も変化しており、衝撃強度および剛性
が大きいだけではなく、成型品の表面光沢の良い
ことなど外観特性が重要性を増している。 最近に至り、プロピレン―エチレンブロツクコ
ポリマーの物性改良を目的として、第1段におい
て少量のエチレンを共重合させる方法が行われる
ようになつた。例えば、特開昭47−25291は、第
1段でエチレン含有率0.1〜10重量%となるよう
にプロピレン―エチレンを共重合させ、第2段で
エチレン含有率70重量%以上となるようにプロピ
レン―エチレンを共重合させる方法であり、成型
時におけるウエルド強度の改良を目的としている
が、ブロツクコポリマーとして期待されるほどの
衝撃強度が得られない欠点がある。 特開昭49−120986においては、第1段でエチレ
ン含有率1〜10モル%のプロピレン―エチレン共
重合体を生成させ、第2段でエチレン含有率1〜
30モル%のプロピレン―エチレン共重合体を生成
させることにより、フイルムにした場合の収縮率
および透明性の改良をはかつているが、ブロツク
コポリマーとして期待されるほどの衝撃強度が得
られない。 本発明者達は、自動車部品、家庭電気器具部
品、レジヤー用品などの新らしい用途向けとし
て、剛性、衝撃強度、光沢の物性バランスが良好
なプロピレン―エチレンブロツクコポリマーの開
発に鋭意取組み、2段階重合法においてもプロピ
レンとエチレンの反応比率の限られた領域におい
て、物性バランスの優れたブロツクコポリマーが
得られることを発見した。 本発明は、立体規則性触媒を使用して、第1段
でエチレン含有率0.4〜1.4重量%のプロピレン―
エチレン混合物を全重量の70〜90重量%の範囲で
共重合させ、第2段でエチレン含有率30〜50重量
%のプロピレン―エチレン混合物を全重量の10〜
30重量%の範囲で共重合させることを特徴とする
プロピレン―エチレンブロツクコポリマーの製造
方法に関するものである。 本発明をさらに詳細に説明すると、本発明の重
合はヘキサン、ヘプタン、トルエン、メチルシク
ロヘキサンなどの炭化水素溶剤中で、生成重合体
が懸濁したスラリー状態で行われる。触媒として
は、アイソタクチツクポリプロピレンを製造する
各種立体規則性触媒の適用が可能であるが、通
常、三塩化チタンとジエチルアルミニウムモノク
ロリドの組合せ、あるいはこれらに立体規則性向
上を目的とした第3成分を組合せた触媒系が好適
に使用される。三塩化チタンの中でも、四塩化チ
タンを金属アルミニウムあるいは有機金属化合物
で還元し、さらに極性物質で処理した立体規則性
の高い触媒が特に好ましい。重合温度は40〜80℃
の範囲、重合圧力は1〜35気圧の範囲で行われ
る。 本発明の重合は2段階からなり、第1段におい
てはエチレン含有率0.4〜1.4重量%のプロピレン
―エチレン混合物を全重合量の70〜90重量%の範
囲で共重合させる。第1段のエチレン含有率が
0.4重量%以下であると成形品の表面光沢が悪化
する。1.4重量%であるとプロピレン―エチレン
ブロツクコポリマーの収率が低下し、かつ、剛性
が低下するので好ましくない。 第2段においてはエチレン含有量30〜50重量%
のプロピレン―エチレン混合物を全重合量の10〜
30重量%の範囲で共重合させる。第2段のエチレ
ン含有率が30重量%以下であると衝撃強度の低下
が著るしく、50重量%以上であると表面光沢が悪
化するので好ましくない。第2段における重合量
の全重合量に占める割合が10重量%以下であると
衝撃強度の低下が著るしく、30重量%以上である
と剛性が低下するので好ましくない。 本発明で言うエチレン含有率は重合に消費され
たモノマーのエチレン含有率を意味する。連続重
合の場合、たとえば供給モノマー量から溶剤に溶
解して第2段目へ持ち込まれるモノマー量を差引
いた値から求められる。第2段目の場合には第1
段目から持ち込まれるモノマー量も含めて、同様
に計算される。バツチ重合の場合たとえば供給モ
ノマー量から各段反応終了時の未反応モノマー量
を差引いて求められる。第2段目の場合には第1
段目から持ち込まれるモノマー量も含めて、同様
に計算される。 以上の方法により生成した重合体は触媒分解、
洗滌、溶剤可溶部の抽出分離など通常の後処理方
法により精製される。 以下、本発明を実施例により具体的に説明する
が、本発明はこれらに限定されるものではない。 測定方法 MI………ASTM―D―1238(条件L)に準拠す
る。 エチレン含量………赤外線吸収スペクトル法によ
り、13.58μおよび13.85μの吸収強度
より計算した。 アイゾツト衝撃強度………厚さ4mmのプレスシー
トを作成し、3枚重ねて20℃において
ASTM―D―256に準拠して測定し
た。 ステイフネス………厚さ1mmのプレスシートを作
成し、ASTM―D―747に準拠して20
℃において測定した。 表面光沢………厚さ1mm、半径111mmの円板状シ
ートを射出成形し、ASTM―D―523
に準拠して測定した。 実施例 1 内容積200の撹拌装置付きステンレススチー
ル製オートクレーブに脱水したn―ヘプタン100
を投入し、続いてジエチルアルミニウムクロリ
ド100gおよび東邦チタニウム社製TAC―132を
20g供給し、液相温度を60℃に保ちながらプロピ
レンおよびエチレンを加えて昇圧した。オートク
レーブ圧力が5Kg/cm2ゲージになつた後、その圧
力を保ちながらエチレン0.8重量%、プロピレン
99.2重量%の組成のモノマー供給を続け、8.0時
間重合を行つた。この間、水素は反応中気相水素
濃度が3.5モル%になるように調節した。その
後、プロピレン、エチレンおよび水素の供給を中
止し、オートクレーブの内圧を1度パージして液
相温度を50℃に下げた。パージされたガス量は気
相部組成およびあらかじめ求めておいた60℃、5
Kg/cm2ゲージにおけるn―ヘプタンの溶解平衡値
およびパージ後の液温、圧力におけるn―ヘプタ
ンの溶解平衡値から計算した。第2段への持込み
モノマー量は後者より求めた。 次に液相温度を50℃に保ちながらプロピレンお
よびエチレンを加えて2.3Kg/cm2にゲージに昇圧
した。その圧力を保ちながらプロピレン63重量
%、エチレン37重量%の組成のモノマー供給を続
け、4.0時間重合を行つた。この間、水素は反応
中気相水素濃度が2.4モル%になるように調節し
た。その後プロピレン、エチレンおよび水素の供
給を中止し、オートクレーブの内圧をパージし
た。未反応モノマー量は気相組成およびあらかじ
め求めておいた50℃、2.3Kg/cm2ゲージにおける
n―ヘプタンの溶解平衡値から計算した。各段の
重合量は供給モノマー量を補正して求めた。 生成した重合体スラリーに20重量%のn―ブタ
ノールを含むn―ヘプタン溶液を15加え、80℃
で1時間撹拌して触媒を失活した。遠心分離機に
より大部分の重合溶剤および溶剤可溶部を除去
し、真空乾燥して白色粉末状の結晶性重合体を得
た。この重合体に2.6―ジタ―シヤリ―ブチルパ
ラクレゾール0.2phrおよびステアリン酸カルシウ
ム0.2phrを添加し、65mm押出機にて溶解押出して
ペレツトを得た。 比較例 1 内容積200の撹拌装置付きステンレススチー
ル製オートクレーブに脱水したn―ヘプタン100
を投入し、続いてジエチルアルミニウムクロリ
ド100gおよび東邦チタニウム社製TAC―132を
20g供給し、液相温度を60℃に保ちながらプロピ
レンを加えて昇圧した。オートクレーブ圧力が5
Kg/cm2ゲージになつた後、その圧力を保ちながら
プロピレンの供給を続け、8.2時間重合を行つ
た。この間、水素は反応中気相水素濃度が3.5モ
ル%になるように調節した。その後、プロピレン
および水素の供給を中止し、オートクレーブの内
圧を1度パージして液相温度を50℃に下げた。パ
ージされたガス量は気相部組成およびあらかじめ
求めておいた60℃、5Kg/cm2ゲージにおけるn―
ヘプタンの溶解平衡値およびパージ後の液温、圧
力におけるn―ヘプタンの溶解平衡値から計算し
た。第2段への持込みモノマー量は後者より求め
た。 次に液相温度を50℃に保ちながらプロピレンお
よびエチレンを加えて2.3Kg/cm2ゲージに昇圧し
た。その圧力を保ちながらプロピレン63重量%、
エチレン37重量%の組成のモノマー供給を続け、
4.0時間重合を行つた。この間、水素は反応中気
相水素濃度が2.4モル%になるように調節した。
その後、プロピレン、エチレンおよび水素の供給
を中止し、オートクレーブの内圧をパージした。
未反応モノマー量は気相組成およびあらかじめ求
めておいた50℃、2.3Kg/cm2ゲージにおけるn―
ヘプタンの溶解平衡値から計算した。各段の重合
量は供給モノマー量から未反応モノマー量および
持込みモノマー量を補正して求めた。 後処理以降は実施例1と同様に行つた。 実施例 2 内容積200の撹拌装置付きステンレススチー
ル製オートクレーブに脱水したn―ヘプタン100
を投入し、続いてジエチルアルミニウムクロリ
ド100gおよび丸紅ソルヴエイ社製ソルヴエイ触
媒を6g供給し、液相温度を60℃に保ちながらプ
ロピレンおよびエチレンを加えて昇圧した。オー
トクレーブ圧力が5Kg/cm2ゲージになつた後、そ
の圧力を保ちながらエチレン0.5重量%、プロピ
レン99.5重量%の組成のモノマー供給を続け、
7.2時間重合を行つた。この間、水素は反応中気
相水素濃度が3.5モル%になるように調節した。
その後、プロピレン、エチレンおよび水素の供給
を中止し、オートクレーブの内圧を1度パージし
て液相温度を50℃に下げた。パージされたガス量
は気相部組成およびあらかじめ求めておいた60
℃、5Kg/cm2ゲージにおけるn―ヘプタンの溶解
平衡値およびパージ後の液温、圧力におけるn―
ヘプタンの溶解平衡値から計算した。第2段への
持込みモノマー量は後者より求めた。 次に液相温度を50℃に保ちながらプロピレンお
よびエチレンを加えて2.3Kg/cm2ゲージに昇圧し
た。その圧力を保ちながらプロピレン56重量%、
エチレン44重量%の組成のモノマー供給を続け、
5.0時間重合を行つた。この間、水素は反応中気
相水素濃度が2.6モル%になるように調節した。
その後プロピレン、エチレンおよび水素の供給を
中止し、オートクレーブの内圧をパージした。未
反応モノマー量は気相部組成およびあらかじめ求
めておいた50℃、2.3Kg/cm2ゲージにおけるn―
ヘプタンの溶解平衡値から計算した。各段の重合
量は供給モノマー量から未反応モノマー量および
持込みモノマー量を補正して求めた。 後処理以降は実施例1と同様に行つた。 比較例 2 内容積200の撹拌装置付きステンレススチー
ル製オートクレーブに脱水したn―ヘプタン100
を投入し、続いてジエチルアルミニウムクロリ
ド100gおよび丸紅ソルヴエイ社製ソルヴエイ触
媒を6g供給し、液相温度を60℃に保ちながらプ
ロピレンおよびエチレンを加えて昇圧した。オー
トクレーブ圧力が5Kg/cm2ゲージになつた後、そ
の圧力を保ちながらエチレン0.5重量%、プロピ
レン99.5重量%の組成のモノマー供給を続け、
7.2時間重合を行つた。この間、水素は反応中気
相水素濃度が3.5モル%になるように調節した。
この後、プロピレン、エチレンおよび水素の供給
を中止し、オートクレーブの内圧を1度パージし
て液相温度を50℃に下げた。パージされたガス量
は気相部組成およびあらかじめ求めておいた60
℃、5Kg/cm2ゲージにおけるn―ヘプタンの溶解
平衡値およびパージ後の液温、圧力におけるn―
ヘプタンの溶解平衡値から計算した。第2段への
持込みモノマー量は後者より求めた。 次に液相温度を50℃に保ちながらプロピレンお
よびエチレンを加えて2.3Kg/cm2ゲージに昇圧し
た。その圧力を保ちながらプロピレン38重量%、
エチレン62重量%の組成のモノマー供給を続け、
4.0時間重合を行つた。この間、水素は反応中気
相水素濃度が2.8モル%になるように調節した。
その後プロピレン、エチレンおよび水素の供給を
中止し、オートクレーブの内圧をパージした。未
反応モノマー量は気相部組成およびあらかじめ求
めておいた50℃、2.3Kg/cm2ゲージにおけるn―
ヘプタンの溶解平衡値から計算した。各段の重合
量は供給モノマー量から未反応モノマー量および
持込みモノマー量を補正して求めた。 後処理以降は実施例1と同様に行つた。 実施例 3 内容積200の撹拌装置付きステンレススチー
ル製オートクレーブに脱水したn―ヘプタン100
を投入し、続いてジエチルアルミニウムクロリ
ド100gおよび丸紅ソルヴエイ社製ソルヴエイ触
媒を6g供給し、液相温度を60℃に保ちながらプ
ロピレンおよびエチレンを加えて昇圧した。オー
トクレーブ圧力が5Kg/cm2ゲージになつた後、そ
の圧力を保ちながらエチレン1.3重量%、プロピ
レン9.87重量%の組成のモノマー供給を続け、
8.5時間重合を行つた。この間、水素は反応中気
相水素濃度が3.5モル%になるように調節した。
その後、プロピレン、エチレンおよび水素の供給
を中止し、オートクレーブの内圧を1度パージし
て液相温度を50℃に下げた。パージされたガス量
は気相部組成およびあらかじめ求めておいた60
℃、5Kg/cm2ゲージにおけるn―ヘプタンの溶解
平衡値およびパージ後の液温、圧力におけるn―
ヘプタンの溶解平衡値から計算した。第2段への
持込みモノマー量は後者より求めた。 次に液相温度を50℃に保ちながらプロピレンお
よびエチレンを加えて2.3Kg/cm2ゲージに昇圧し
た。その圧力を保ちながらプロピレン71重量%、
エチレン29重量%の組成のモノマー供給を続け、
3.0時間重合を行つた。この間、水素は反応中気
相水素濃度が2.2モル%になるように調節した。
その後プロピレン、エチレンおよび水素の供給を
中止し、オートクレーブの内圧をパージした。未
反応モノマー量は気相部組成およびあらかじめ求
めておいた50℃、2.3Kg/cm2ゲージにおけるn―
ヘプタンの溶解平衡値から計算した。各段の重合
量は供給モノマー量から未反応モノマー量および
持込みモノマー量を補正して求めた。 後処理以降は実施例1と同様に行つた。 比較例 3 内容積200の撹拌装置付きステンレススチー
ル製オートクレーブに脱水したn―ヘプタン100
を投入し、続いてジエチルアルミニウムクロリ
ド100gおよび丸紅ソルヴエイ社製ソルヴエイ触
媒を6g供給し、液相温度を60℃に保ちながらプ
ロピレンおよびエチレンを加えて昇圧した。オー
トクレーブ圧力が5Kg/cm2ゲージになつた後、そ
の圧力を保ちながらエチレン1.3重量%、プロピ
レン98.7重量%の組成のモノマー供給を続け、
8.5時間重合を行つた。この間、水素は反応中気
相水素濃度が3.5モル%になるように調節した。
その後、プロピレン、エチレンおよび水素の供給
を中止し、オートクレーブの内圧を1度パージし
て液相温度を50℃に下げた。パージされたガス量
は気相部組成およびあらかじめ求めておいた60
℃、5Kg/cm2ゲージにおけるn―ヘプタンの溶解
平衡値およびパージ後の液温、圧力におけるn―
ヘプタンの溶解平衡値から計算した。第2段への
持込みモノマー量は後者より求めた。 次に液相温度を50℃に保ちながらプロピレンお
よびエチレンを加えて2.3Kg/cm2ゲージに昇圧し
た。その圧力を保ちながらプロピレン80重量%、
エチレン20重量%の組成のモノマー供給を続け、
8.5時間重合を行つた。この間、水素は反応中気
相水素濃度が2.0モル%になるように調節した。
その後プロピレン、エチレンおよび水素の供給を
中止し、オートクレーブの内圧をパージした。未
反応モノマー量は気相部組成およびあらかじめ求
めておいた50℃、2.3Kg/cm2ゲージにおけるn―
ヘプタンの溶解平衡値から計算した。各段の重合
量は供給モノマー量から未反応モノマー量および
持込みモノマー量を補正して求めた。 後処理以降は実施例1と同様に行つた。 実施例1〜3および比較例1〜3の重合結果を
表1に、得られたペレツトの物性測定結果を表2
に示した。
The present invention relates to a method for producing a propylene-ethylene block copolymer having a good balance of physical properties such as rigidity, impact strength, and gloss. Isotactic polypropylene has excellent rigidity, heat resistance, surface gloss, etc., and is inexpensive, so it is used in many industrial fields, but its low impact resistance makes it suitable for applications that are subject to strong mechanical shock. could not be used. Examples of methods for improving the impact resistance of polypropylene include (1) mechanically blending polypropylene with polyethylene or ethylene-propylene elastomer, (2) polymerizing propylene in the first stage, and polymerizing propylene in the second stage. A method for producing so-called block copolymers by copolymerizing ethylene is known. Especially regarding method (2),
39-1836 and other block copolymers in which propylene-ethylene copolymers containing various concentrations of ethylene are combined in various proportions have been proposed. Although these block copolymers all have significantly improved impact resistance, they have the disadvantage that the excellent surface gloss characteristic of polypropylene is impaired. However, in recent years, propylene
As the applications of ethylene block copolymers become more diverse, the performance requirements are also changing, and in addition to high impact strength and rigidity, appearance characteristics such as high surface gloss of molded products are becoming increasingly important. Recently, for the purpose of improving the physical properties of propylene-ethylene block copolymers, a method has been used in which a small amount of ethylene is copolymerized in the first stage. For example, JP-A No. 47-25291 discloses that propylene-ethylene is copolymerized to have an ethylene content of 0.1 to 10% by weight in the first stage, and propylene is copolymerized to have an ethylene content of 70% by weight or more in the second stage. - This is a method of copolymerizing ethylene, and its purpose is to improve weld strength during molding, but it has the disadvantage that it does not provide the impact strength expected of a block copolymer. In JP-A-49-120986, a propylene-ethylene copolymer with an ethylene content of 1 to 10 mol% is produced in the first stage, and a propylene-ethylene copolymer with an ethylene content of 1 to 10 mol% is produced in the second stage.
By producing a 30 mol% propylene-ethylene copolymer, the shrinkage and transparency of the film were improved, but the impact strength expected from a block copolymer was not achieved. The inventors of the present invention have worked hard to develop a propylene-ethylene block copolymer with a good balance of physical properties such as rigidity, impact strength, and gloss for new applications such as automobile parts, household appliance parts, and leisure goods. It was discovered that even in a legal process, a block copolymer with an excellent balance of physical properties can be obtained in a limited range of reaction ratios of propylene and ethylene. The present invention uses a stereoregular catalyst to produce propylene with an ethylene content of 0.4-1.4% by weight in the first stage.
The ethylene mixture is copolymerized in a range of 70 to 90% by weight of the total weight, and in the second stage, a propylene-ethylene mixture with an ethylene content of 30 to 50% by weight is copolymerized in an amount of 10 to 90% of the total weight.
The present invention relates to a method for producing a propylene-ethylene block copolymer, which is characterized in that copolymerization is carried out in a range of 30% by weight. To explain the present invention in more detail, the polymerization of the present invention is carried out in a slurry state in which the produced polymer is suspended in a hydrocarbon solvent such as hexane, heptane, toluene, or methylcyclohexane. As a catalyst, various stereoregular catalysts for producing isotactic polypropylene can be applied, but usually a combination of titanium trichloride and diethylaluminum monochloride, or a third catalyst for improving stereoregularity is used. Catalyst systems with combinations of components are preferably used. Among titanium trichlorides, highly stereoregular catalysts obtained by reducing titanium tetrachloride with metal aluminum or an organometallic compound and further treating with a polar substance are particularly preferred. Polymerization temperature is 40-80℃
The polymerization pressure is carried out in the range of 1 to 35 atmospheres. The polymerization of the present invention consists of two stages, and in the first stage, a propylene-ethylene mixture with an ethylene content of 0.4 to 1.4% by weight is copolymerized in a range of 70 to 90% by weight of the total polymerization amount. The ethylene content of the first stage is
If it is less than 0.4% by weight, the surface gloss of the molded product will deteriorate. If it is 1.4% by weight, the yield of the propylene-ethylene block copolymer will decrease and the rigidity will decrease, which is not preferable. In the second stage, the ethylene content is 30-50% by weight.
Propylene-ethylene mixture of 10 to 10% of the total polymerization amount
Copolymerize in a range of 30% by weight. If the ethylene content in the second stage is less than 30% by weight, the impact strength will drop significantly, and if it is more than 50% by weight, the surface gloss will deteriorate, which is not preferable. If the ratio of the polymerization amount in the second stage to the total polymerization amount is less than 10% by weight, the impact strength will drop significantly, and if it is more than 30% by weight, the rigidity will decrease, which is not preferable. In the present invention, the ethylene content refers to the ethylene content of monomers consumed in polymerization. In the case of continuous polymerization, it is determined, for example, from the value obtained by subtracting the amount of monomer dissolved in the solvent and brought into the second stage from the amount of monomer supplied. In the case of the second stage, the first
It is calculated in the same way, including the amount of monomer brought in from the second stage. In the case of batch polymerization, it is determined, for example, by subtracting the amount of unreacted monomer at the end of each stage of reaction from the amount of monomer supplied. In the case of the second stage, the first
It is calculated in the same way, including the amount of monomer brought in from the second stage. The polymer produced by the above method undergoes catalytic decomposition,
It is purified by conventional post-processing methods such as washing and extraction and separation of solvent-soluble parts. EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited thereto. Measurement method MI: Conforms to ASTM-D-1238 (condition L). Ethylene content: Calculated from absorption intensities at 13.58μ and 13.85μ using infrared absorption spectroscopy. Izotsu impact strength...Made 4mm thick press sheets, stacked 3 sheets and heated at 20℃.
Measured in accordance with ASTM-D-256. Stiffness: A press sheet with a thickness of 1 mm is made, and the stiffness is 20 in accordance with ASTM-D-747.
Measured at ℃. Surface gloss: A disc-shaped sheet with a thickness of 1 mm and a radius of 111 mm is injection molded and meets ASTM-D-523.
Measured according to. Example 1 100% n-heptane dehydrated in a stainless steel autoclave with internal volume 200% stirrer
followed by 100g of diethylaluminum chloride and TAC-132 manufactured by Toho Titanium Co., Ltd.
20g was supplied, and while maintaining the liquidus temperature at 60°C, propylene and ethylene were added to increase the pressure. After the autoclave pressure reaches 5Kg/ cm2 gauge, add 0.8% by weight of ethylene and propylene while maintaining that pressure.
Monomer supply with a composition of 99.2% by weight was continued, and polymerization was carried out for 8.0 hours. During this time, hydrogen was adjusted so that the gas phase hydrogen concentration during the reaction was 3.5 mol%. Thereafter, the supply of propylene, ethylene, and hydrogen was stopped, and the internal pressure of the autoclave was purged once to lower the liquidus temperature to 50°C. The amount of purged gas was determined based on the gas phase composition and the predetermined 60℃, 5.
It was calculated from the solubility equilibrium value of n-heptane in Kg/cm 2 gauge and the solubility equilibrium value of n-heptane at the liquid temperature and pressure after purging. The amount of monomer carried into the second stage was determined from the latter. Next, propylene and ethylene were added while maintaining the liquid phase temperature at 50°C, and the pressure was increased to 2.3 Kg/cm 2 . While maintaining this pressure, monomers having a composition of 63% by weight of propylene and 37% by weight of ethylene were continued to be polymerized for 4.0 hours. During this time, hydrogen was adjusted so that the gas phase hydrogen concentration during the reaction was 2.4 mol%. Thereafter, the supply of propylene, ethylene, and hydrogen was stopped, and the internal pressure of the autoclave was purged. The amount of unreacted monomer was calculated from the gas phase composition and the dissolution equilibrium value of n-heptane at 50° C. and 2.3 Kg/cm 2 gauge. The amount of polymerization in each stage was determined by correcting the amount of monomer supplied. Add 15% of n-heptane solution containing 20% by weight n-butanol to the resulting polymer slurry and heat at 80°C.
The catalyst was deactivated by stirring for 1 hour. Most of the polymerization solvent and solvent-soluble portion were removed using a centrifuge, and the mixture was vacuum-dried to obtain a white powdery crystalline polymer. To this polymer were added 0.2 phr of 2,6-di-tert-butyl para-cresol and 0.2 phr of calcium stearate, and the mixture was melt-extruded using a 65 mm extruder to obtain pellets. Comparative Example 1 100% n-heptane dehydrated in a stainless steel autoclave with internal volume 200% stirrer
followed by 100g of diethylaluminum chloride and TAC-132 manufactured by Toho Titanium Co., Ltd.
20g was supplied, and propylene was added while maintaining the liquid phase temperature at 60°C to increase the pressure. Autoclave pressure is 5
After the pressure reached Kg/cm 2 gauge, propylene was continued to be supplied while maintaining the pressure, and polymerization was carried out for 8.2 hours. During this time, hydrogen was adjusted so that the gas phase hydrogen concentration during the reaction was 3.5 mol%. Thereafter, the supply of propylene and hydrogen was stopped, and the internal pressure of the autoclave was purged once to lower the liquidus temperature to 50°C. The amount of purged gas was determined based on the gas phase composition and the predetermined n-
It was calculated from the solubility equilibrium value of heptane and the solubility equilibrium value of n-heptane at the liquid temperature and pressure after purging. The amount of monomer carried into the second stage was determined from the latter. Next, propylene and ethylene were added while maintaining the liquid phase temperature at 50°C, and the pressure was increased to 2.3 Kg/cm 2 gauge. Propylene 63% by weight while maintaining that pressure.
Continuing to supply monomer with a composition of 37% by weight of ethylene,
Polymerization was carried out for 4.0 hours. During this time, hydrogen was adjusted so that the gas phase hydrogen concentration during the reaction was 2.4 mol%.
Thereafter, the supply of propylene, ethylene, and hydrogen was stopped, and the internal pressure of the autoclave was purged.
The amount of unreacted monomer was calculated based on the gas phase composition and the n-
Calculated from the solubility equilibrium value of heptane. The amount of polymerization in each stage was determined by correcting the amount of unreacted monomer and the amount of monomer carried in from the amount of monomer supplied. The post-treatment and subsequent treatments were carried out in the same manner as in Example 1. Example 2 100% n-heptane dehydrated in a stainless steel autoclave with internal volume 200% stirrer
Then, 100 g of diethylaluminum chloride and 6 g of Solvay catalyst manufactured by Marubeni Solvay were fed, and while maintaining the liquidus temperature at 60°C, propylene and ethylene were added to increase the pressure. After the autoclave pressure reached 5Kg/ cm2 gauge, while maintaining that pressure, continued to supply monomers with a composition of 0.5% by weight of ethylene and 99.5% by weight of propylene.
Polymerization was carried out for 7.2 hours. During this time, hydrogen was adjusted so that the gas phase hydrogen concentration during the reaction was 3.5 mol%.
Thereafter, the supply of propylene, ethylene, and hydrogen was stopped, and the internal pressure of the autoclave was purged once to lower the liquidus temperature to 50°C. The amount of purged gas is determined based on the gas phase composition and the predetermined 60
Dissolution equilibrium value of n-heptane at ℃, 5Kg/cm 2 gauge and n- at liquid temperature and pressure after purging
Calculated from the solubility equilibrium value of heptane. The amount of monomer carried into the second stage was determined from the latter. Next, propylene and ethylene were added while maintaining the liquid phase temperature at 50°C, and the pressure was increased to 2.3 Kg/cm 2 gauge. Propylene 56% by weight while maintaining that pressure,
Continuing to supply monomer with a composition of 44% by weight of ethylene,
Polymerization was carried out for 5.0 hours. During this time, hydrogen was adjusted so that the gas phase hydrogen concentration during the reaction was 2.6 mol%.
Thereafter, the supply of propylene, ethylene, and hydrogen was stopped, and the internal pressure of the autoclave was purged. The amount of unreacted monomer is determined by the gas phase composition and the n-
Calculated from the solubility equilibrium value of heptane. The amount of polymerization in each stage was determined by correcting the amount of unreacted monomer and the amount of monomer carried in from the amount of monomer supplied. The post-treatment and subsequent treatments were carried out in the same manner as in Example 1. Comparative Example 2 100% n-heptane dehydrated in a stainless steel autoclave with internal volume 200% stirring device
Then, 100 g of diethylaluminum chloride and 6 g of Solvay catalyst manufactured by Marubeni Solvay were fed, and while maintaining the liquidus temperature at 60° C., propylene and ethylene were added to increase the pressure. After the autoclave pressure reached 5Kg/ cm2 gauge, while maintaining that pressure, continued to supply monomers with a composition of 0.5% by weight of ethylene and 99.5% by weight of propylene.
Polymerization was carried out for 7.2 hours. During this time, hydrogen was adjusted so that the gas phase hydrogen concentration during the reaction was 3.5 mol%.
Thereafter, the supply of propylene, ethylene, and hydrogen was stopped, and the internal pressure of the autoclave was purged once to lower the liquidus temperature to 50°C. The amount of purged gas is determined based on the gas phase composition and the predetermined 60
Dissolution equilibrium value of n-heptane at ℃, 5Kg/cm 2 gauge and n- at liquid temperature and pressure after purging
Calculated from the solubility equilibrium value of heptane. The amount of monomer carried into the second stage was determined from the latter. Next, propylene and ethylene were added while maintaining the liquid phase temperature at 50°C, and the pressure was increased to 2.3 Kg/cm 2 gauge. Propylene 38% by weight while maintaining that pressure,
Continuing to supply monomer with a composition of 62% by weight of ethylene,
Polymerization was carried out for 4.0 hours. During this time, hydrogen was adjusted so that the gas phase hydrogen concentration during the reaction was 2.8 mol%.
Thereafter, the supply of propylene, ethylene, and hydrogen was stopped, and the internal pressure of the autoclave was purged. The amount of unreacted monomer is determined by the gas phase composition and the n-
Calculated from the solubility equilibrium value of heptane. The amount of polymerization in each stage was determined by correcting the amount of unreacted monomer and the amount of monomer carried in from the amount of monomer supplied. The post-treatment and subsequent treatments were carried out in the same manner as in Example 1. Example 3 100% n-heptane dehydrated in a stainless steel autoclave with internal volume 200% stirrer
Then, 100 g of diethylaluminum chloride and 6 g of Solvay catalyst manufactured by Marubeni Solvay were fed, and while maintaining the liquidus temperature at 60° C., propylene and ethylene were added to increase the pressure. After the autoclave pressure reached 5 Kg/cm 2 gauge, while maintaining that pressure, continued supply of monomers with a composition of 1.3% by weight of ethylene and 9.87% by weight of propylene.
Polymerization was carried out for 8.5 hours. During this time, hydrogen was adjusted so that the gas phase hydrogen concentration during the reaction was 3.5 mol%.
Thereafter, the supply of propylene, ethylene, and hydrogen was stopped, and the internal pressure of the autoclave was purged once to lower the liquidus temperature to 50°C. The amount of purged gas is determined based on the gas phase composition and the predetermined 60
Dissolution equilibrium value of n-heptane at ℃, 5Kg/cm 2 gauge and n- at liquid temperature and pressure after purging
Calculated from the solubility equilibrium value of heptane. The amount of monomer carried into the second stage was determined from the latter. Next, propylene and ethylene were added while maintaining the liquidus temperature at 50°C, and the pressure was increased to 2.3 Kg/cm 2 gauge. Propylene 71% by weight while maintaining that pressure.
Continuing to supply monomers with a composition of 29% by weight of ethylene,
Polymerization was carried out for 3.0 hours. During this time, hydrogen was adjusted so that the gas phase hydrogen concentration during the reaction was 2.2 mol%.
Thereafter, the supply of propylene, ethylene, and hydrogen was stopped, and the internal pressure of the autoclave was purged. The amount of unreacted monomer is determined by the gas phase composition and the n-
Calculated from the solubility equilibrium value of heptane. The amount of polymerization in each stage was determined by correcting the amount of unreacted monomer and the amount of monomer carried in from the amount of monomer supplied. The post-treatment and subsequent treatments were carried out in the same manner as in Example 1. Comparative Example 3 100% n-heptane dehydrated in a stainless steel autoclave with internal volume 200% stirrer
Then, 100 g of diethylaluminum chloride and 6 g of Solvay catalyst manufactured by Marubeni Solvay were fed, and while maintaining the liquidus temperature at 60° C., propylene and ethylene were added to increase the pressure. After the autoclave pressure reached 5 Kg/ cm2 gauge, while maintaining that pressure, the monomers with a composition of 1.3% by weight of ethylene and 98.7% by weight of propylene were continued.
Polymerization was carried out for 8.5 hours. During this time, hydrogen was adjusted so that the gas phase hydrogen concentration during the reaction was 3.5 mol%.
Thereafter, the supply of propylene, ethylene, and hydrogen was stopped, and the internal pressure of the autoclave was purged once to lower the liquidus temperature to 50°C. The amount of purged gas is determined based on the gas phase composition and the predetermined 60
Dissolution equilibrium value of n-heptane at ℃, 5Kg/cm 2 gauge and n- at liquid temperature and pressure after purging
Calculated from the solubility equilibrium value of heptane. The amount of monomer carried into the second stage was determined from the latter. Next, propylene and ethylene were added while maintaining the liquid phase temperature at 50°C, and the pressure was increased to 2.3 Kg/cm 2 gauge. 80% propylene by weight while maintaining that pressure.
Continue to supply monomer with a composition of 20% by weight of ethylene,
Polymerization was carried out for 8.5 hours. During this time, hydrogen was adjusted so that the gas phase hydrogen concentration during the reaction was 2.0 mol%.
Thereafter, the supply of propylene, ethylene, and hydrogen was stopped, and the internal pressure of the autoclave was purged. The amount of unreacted monomer was calculated based on the gas phase composition and the previously determined n-
Calculated from the solubility equilibrium value of heptane. The amount of polymerization in each stage was determined by correcting the amount of unreacted monomer and the amount of monomer carried in from the amount of monomer supplied. The post-treatment and subsequent treatments were carried out in the same manner as in Example 1. The polymerization results of Examples 1 to 3 and Comparative Examples 1 to 3 are shown in Table 1, and the physical property measurement results of the obtained pellets are shown in Table 2.
It was shown to.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 立体規則性触媒を使用して、第1段でエチレ
ン含有率0.4〜1.4重量%のプロピレン―エチレン
混合物を全重量の70〜90重量%の範囲で共重合さ
せ、第2段でエチレン含有率30〜50重量%のプロ
ピレン―エチレン混合物を全重量の10〜30重量%
の範囲で共重合させることを特徴とするプロピレ
ン―エチレンブロツクコポリマーの製造方法。
1 Using a stereoregular catalyst, in the first stage, a propylene-ethylene mixture with an ethylene content of 0.4 to 1.4% by weight is copolymerized in the range of 70 to 90% by weight of the total weight, and in the second stage, the ethylene content is copolymerized. 30-50% by weight of propylene-ethylene mixture, 10-30% by weight of total weight
A method for producing a propylene-ethylene block copolymer, which comprises copolymerizing within the range of .
JP13792979A 1979-10-24 1979-10-24 Preparation of propylene-ethylene block copolymer Granted JPS5661416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13792979A JPS5661416A (en) 1979-10-24 1979-10-24 Preparation of propylene-ethylene block copolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13792979A JPS5661416A (en) 1979-10-24 1979-10-24 Preparation of propylene-ethylene block copolymer

Publications (2)

Publication Number Publication Date
JPS5661416A JPS5661416A (en) 1981-05-26
JPS6215086B2 true JPS6215086B2 (en) 1987-04-06

Family

ID=15209979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13792979A Granted JPS5661416A (en) 1979-10-24 1979-10-24 Preparation of propylene-ethylene block copolymer

Country Status (1)

Country Link
JP (1) JPS5661416A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5670014A (en) * 1979-11-13 1981-06-11 Mitsui Toatsu Chem Inc Propylene copolymer for forming sheet
JP4568980B2 (en) * 1999-11-02 2010-10-27 チッソ株式会社 Propylene-based block copolymer composition
CN103958548B (en) * 2011-12-02 2016-05-18 住友化学株式会社 Use the manufacture method of the olefin block polymers of multiple transition-metal catalyst

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49120986A (en) * 1973-03-12 1974-11-19
JPS50115296A (en) * 1974-02-27 1975-09-09
JPS51133393A (en) * 1975-05-15 1976-11-19 Showa Denko Kk A process for manufacturing a propylene copolymer
JPS523684A (en) * 1975-06-27 1977-01-12 Showa Denko Kk Process for preparing ropylene copolymer
JPS5388049A (en) * 1977-01-13 1978-08-03 Mitsui Petrochem Ind Ltd Molding polymer composition and its preparation
JPS5424995A (en) * 1977-07-27 1979-02-24 Showa Denko Kk Production of propylene copolymer
JPS5632516A (en) * 1979-08-27 1981-04-02 Idemitsu Petrochem Co Ltd Production of propylene block copolymer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49120986A (en) * 1973-03-12 1974-11-19
JPS50115296A (en) * 1974-02-27 1975-09-09
JPS51133393A (en) * 1975-05-15 1976-11-19 Showa Denko Kk A process for manufacturing a propylene copolymer
JPS523684A (en) * 1975-06-27 1977-01-12 Showa Denko Kk Process for preparing ropylene copolymer
JPS5388049A (en) * 1977-01-13 1978-08-03 Mitsui Petrochem Ind Ltd Molding polymer composition and its preparation
JPS5424995A (en) * 1977-07-27 1979-02-24 Showa Denko Kk Production of propylene copolymer
JPS5632516A (en) * 1979-08-27 1981-04-02 Idemitsu Petrochem Co Ltd Production of propylene block copolymer

Also Published As

Publication number Publication date
JPS5661416A (en) 1981-05-26

Similar Documents

Publication Publication Date Title
CA1081899A (en) Method for the production of a low density polyethylene
JPH0378251B2 (en)
JPS6150088B2 (en)
US4291138A (en) Production of modified polypropylenes
US4550145A (en) Process for the production of propylene block copolymers by a three step method
JPH04337308A (en) Production of block copolymer
US3332921A (en) 1-butene-propylene copolymers
US3974236A (en) Process for producing modified polypropylene
CA1150883A (en) Process for producing propylene-ethylene block copolymers
US4254237A (en) Process for producing propylene-ethylene block copolymers
US3981849A (en) Low pressure process for the production of low density co- and terpolymers of ethylene
JPS6215086B2 (en)
CA1339025C (en) Block copolymer of propylene and a process for the production thereof
US3458598A (en) Process of preparing block copolypolymers from isobutylene polymers monomers
US3000870A (en) Alkyl and aryl bis (cyclopentadienyl) titanium-titanium tetrachloride polymerization catalysts and process for polymerizing olefins therewith
US3476830A (en) Production of stereo block butadiene polymer
JPS6035364B2 (en) Production method of propylene block copolymer
JPS629247B2 (en)
JPH0377806B2 (en)
JPH08231662A (en) Preparation of propylene/ethylene block copolymer
JPS6036203B2 (en) Method for producing propylene-ethylene block copolymer
JPH0432861B2 (en)
JPH0420003B2 (en)
JPH01217015A (en) Production of propylene polymer
JPH01272612A (en) Production of propylene copolymer composition