JPS62145917A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPS62145917A
JPS62145917A JP60288138A JP28813885A JPS62145917A JP S62145917 A JPS62145917 A JP S62145917A JP 60288138 A JP60288138 A JP 60288138A JP 28813885 A JP28813885 A JP 28813885A JP S62145917 A JPS62145917 A JP S62145917A
Authority
JP
Japan
Prior art keywords
channel
power supply
output
source
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60288138A
Other languages
Japanese (ja)
Inventor
Toshiaki Uehara
俊晃 上原
Kazuo Hayashi
和夫 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60288138A priority Critical patent/JPS62145917A/en
Publication of JPS62145917A publication Critical patent/JPS62145917A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electronic Switches (AREA)
  • Logic Circuits (AREA)

Abstract

PURPOSE:To obtain a large current output without increasing the occupied area of an output stage by adopting the constitution that a gate-source voltage of an open drain type output P-MOSFET of a complementary MOSFET integrated circuit is increased by other power voltage. CONSTITUTION:In applying an L level to a point 1 being an input terminal of an output stage from the complementary MOSFET integrated circuit, a high dielectric strength P-MOSFET 2 is conductive and a high dielectric strength P-MOSFET 5 is nonconductive, and an output terminal 6 is pulled down to the 3rd power supply potential fed to an external power terminal 8 lower than a ground potential by a resistor 7. In applying an H level to the point 1, the high dielectric strength P-MOSFET 2 is nonconductive and the high dielectric strength P-MOSFET 5 is conductive and a current flows from the 1st power supply 9 to the output terminal 6. Since the 3rd power potential lower than the ground potential is fed to the external power terminal 8 in this way, the said current is increased. Further, components having the same function as resistors 3, 7 may be used in place of them.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、pチャネル電界効果トランジスタとnチャ
ネル電界効果トランジスタから構成される相補型半導体
集積回路に係9、特にその出力段部に高耐圧pチャネル
電界効果トランジスタによるオープンドレイン型の出力
トランジスタを有する半導体集積回路に関するものであ
る。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a complementary semiconductor integrated circuit consisting of a p-channel field effect transistor and an n-channel field effect transistor, and particularly relates to a high breakdown voltage in the output stage thereof. The present invention relates to a semiconductor integrated circuit having an open-drain output transistor using a p-channel field effect transistor.

〔従来の技術〕[Conventional technology]

第4図は従来の半導体集積回路を示す出力段部の回路構
成図である。同図において、6は外部出力端子、7は外
部出力端子6と外部電源端子8との間にそれぞれ接続さ
れた抵抗である。また、5はドレインが外部出力端子6
に、ゲートが接点4に、ソースが第一の電源9にそれぞ
れ接続されたオープンドレイン型出力トランジスタとし
ての高耐圧pチャネル電界効果トランジスタ(以下MO
8FETと記す)である。2はドレインが接点4に、ソ
ースが第一の電源9にゲートが接点1にそれぞれ接続さ
れたpチャネルMO8FET、10はドレインが接点4
に、ソースが第二の電源11にゲートが接点1にそれぞ
れ接続されたnチャネルMO8FETであり、これらp
チャネルMO8FET2、nチャネルMO8FET1G
は出力トランジスタ前段の論理ゲートとしてのインバー
タを構成している。なお、第一および第二の電源9,1
1は前記論理ゲートの他に相補型MO8回路を構成する
pチャネル、nチャネルMO8FETのソースに同様の
電位をそれぞれ付与するものとなっている。
FIG. 4 is a circuit configuration diagram of an output stage section showing a conventional semiconductor integrated circuit. In the figure, 6 is an external output terminal, and 7 is a resistor connected between the external output terminal 6 and the external power supply terminal 8, respectively. In addition, the drain of 5 is the external output terminal 6
A high-voltage p-channel field effect transistor (hereinafter referred to as MO) is used as an open-drain output transistor whose gate is connected to the contact 4 and whose source is connected to the first power supply 9.
8FET). 2 is a p-channel MO8FET whose drain is connected to the contact 4, the source is connected to the first power supply 9, and the gate is connected to the contact 1, and 10 is a p-channel MO8FET whose drain is connected to the contact 4.
These are n-channel MO8FETs whose source is connected to the second power supply 11 and whose gate is connected to the contact 1.
Channel MO8FET2, n-channel MO8FET1G
constitutes an inverter as a logic gate before the output transistor. Note that the first and second power supplies 9, 1
1 applies similar potentials to the sources of p-channel and n-channel MO8FETs constituting the complementary MO8 circuit in addition to the logic gate.

次に上記回路の動作を説明する。ここで、接点1は通常
第一電源9の高レベルの電位(以下Hレベルと記す)あ
るいは第二電源11の電位(以下Lレベルと記す)が加
えられる。接点1がLレベルの場合、pチャネルMO8
FET  2は導通状態、nチャネルMO8FETIO
は非導通状態となシ、接点4はHレベルとなる。この時
高耐圧pチャネルMO8FET5のゲート電圧とソース
電圧の差は無く、とのpチャネルMO8FET5は非導
通状態となシ、出力端子6は、抵抗7によって電源端子
8に印加された、第二電源11の電位よシ負の第三の電
源(図示せず)の電位にプルダウンされる。
Next, the operation of the above circuit will be explained. Here, the contact 1 is normally applied with a high level potential (hereinafter referred to as H level) of the first power source 9 or a potential of the second power source 11 (hereinafter referred to as L level). When contact 1 is at L level, p-channel MO8
FET 2 is conductive, n-channel MO8FETIO
is in a non-conductive state, and contact 4 becomes H level. At this time, there is no difference between the gate voltage and source voltage of the high voltage p-channel MO8FET 5, and the p-channel MO8FET 5 is not in a non-conducting state. It is pulled down to the potential of a third power supply (not shown) which is more negative than the potential of No. 11.

接点1がHレベルの場合は、pチャネルMO8FET2
は非導通状態nチャネルMO8FETIOは導通状態と
なシ、接点4はLレベルとなる。この時高耐圧pチャネ
ルMO8FET5は導通状態となシ、第一電源9から出
力端子6に向って電流が流出する。この電流IDSは、
第一電源9の電圧をVDD。
When contact 1 is at H level, p-channel MO8FET2
is non-conductive, n-channel MO8FETIO is not conductive, and contact 4 is at L level. At this time, the high voltage p-channel MO8FET 5 is not conductive, and a current flows from the first power supply 9 toward the output terminal 6. This current IDS is
The voltage of the first power supply 9 is VDD.

第二電源11の電圧をVS S、電源端子8に加える第
三電源の電圧をvl)sPチャネルMO8FE’l’5
の閾値電圧をvth、出力端子6の電圧をVOUTとす
ると、 Van−VOlJT (VDD−vss−vth)とき
l r Ds l =に−((vDn−vss−vth
)(vDn−VOCUT)一]スVDD votr’r
 )  )  m 11 @ a e  (11で表わ
される。ただしW、LはそれぞれpチャネルMO8FE
T5のチャネル幅、チャネル長で、Kているので、電流
を多く流す必要がある場合オーブンドレイン型出力トラ
ンジスタのチャネル幅Wを大きくしなければならず、し
たがってその出力トランジスタの占有面積が大きくなυ
、製造コストが高くつくなどの問題点があった。
The voltage of the second power supply 11 is VS S, and the voltage of the third power supply applied to the power supply terminal 8 is VL)sP channel MO8FE'l'5
Let vth be the threshold voltage of
)(vDn-VOCUT)-VDD votr'r
) ) m 11 @ a e (represented by 11. However, W and L are each p-channel MO8FE
Since the channel width and channel length of T5 are K, if it is necessary to flow a large amount of current, the channel width W of the oven-drain output transistor must be increased, and therefore the area occupied by that output transistor is υ
However, there were problems such as high manufacturing costs.

この発明は上記のような問題点を解消するためになされ
たもので、高耐圧pチャネルMO8FETによるオープ
ンドレイン出力トランジスタに流せる電流を増すことが
できるとともに、この出力トランジスタの占有面積を小
さくし製造コストを安くすることができる半導体集積回
路を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and it is possible to increase the current that can flow through the open-drain output transistor using a high-voltage p-channel MO8FET, and to reduce the manufacturing cost by reducing the area occupied by this output transistor. The objective is to obtain a semiconductor integrated circuit that can be made inexpensive.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る半導体集積回路は、高耐圧のpチャネル
MO8FETによるオープンドレイン型出力トランジス
タおよびそのゲートに出力が接続された前段の論理ゲー
トを具備し、かつpチャネルMO8FETのソースが接
続された第一の電源お工びnチャネルMO8FET の
ソースが接続された第二の電源を有する相補型半導体集
積回路において、前記論理ゲートは前記出力トランジス
タと同じ極性で高耐圧を有しかつソースが前記出力トラ
ンジスタのソースと同電位に、ドレインが前記出力トラ
ンジスタのゲートにそれぞれ接続された駆動用トランシ
タと、この駆動用トランジスタのドレインに一端が接続
された抵抗もしくはそれと同等の機能を有する第一の負
荷素子から構成してなり、前記出力トランジスタのドレ
インに前記第一の負荷素子と同じ機能を持つ第2の負荷
素子の一端を接続するとともに、該出力トランジスタの
ドレインに出力端子を接続し、前記第一および第二の負
荷素子の各他端を電源端子に共通に接続して、この電源
端子を、前記nチャネルMO3FET のソースに加え
る第二の電源よシ低い電圧を供給する第三の電源に接続
したものである。
A semiconductor integrated circuit according to the present invention includes an open-drain output transistor formed of a high-voltage p-channel MO8FET and a front-stage logic gate to which the output is connected to the gate thereof, and a first logic gate to which the source of the p-channel MO8FET is connected. In a complementary semiconductor integrated circuit having a second power source connected to the source of an n-channel MO8FET, the logic gate has the same polarity and high breakdown voltage as the output transistor, and the source is connected to the output transistor. Consisting of a driving transistor whose drain is connected to the gate of the output transistor at the same potential as the source, and a resistor or a first load element having an equivalent function whose one end is connected to the drain of the driving transistor. One end of a second load element having the same function as the first load element is connected to the drain of the output transistor, and an output terminal is connected to the drain of the output transistor, and the first and second load elements are connected to each other. The other ends of the two load elements are commonly connected to a power supply terminal, and this power supply terminal is connected to a third power supply that supplies a lower voltage than the second power supply applied to the source of the n-channel MO3FET. It is.

〔作用〕[Effect]

この発明における半導体集積回路は、高耐圧pチャネル
MO8FETによるオープンドレイン型出力トランジス
タにかかるゲート、ソース間電圧を大きくすることによ
シ、出力トランジスタの電流駆動能力を増加させること
ができる。
In the semiconductor integrated circuit according to the present invention, the current driving capability of the output transistor can be increased by increasing the voltage between the gate and source of the open drain type output transistor formed of a high voltage p-channel MO8FET.

〔実施例〕〔Example〕

以下、この発明の実施例を図について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図はこの発明の一実施例による半導体集積回路を示
す出力段部の回路構成図である。同図において、6は外
部出力端子、Tはこの外部出力端子6と外部電源端子8
との間にそれぞれ接続された抵抗であシ、5はドレイン
が外部出力端子6に、ゲートが接点4に、ソースが第一
電源9にそれぞれ接続されたオープンドレイン型出力ト
ランジスタとしての高耐圧pチャネルMO8FETであ
る。
FIG. 1 is a circuit configuration diagram of an output stage section showing a semiconductor integrated circuit according to an embodiment of the present invention. In the figure, 6 is an external output terminal, and T is this external output terminal 6 and external power supply terminal 8.
5 is a high breakdown voltage p as an open drain type output transistor whose drain is connected to the external output terminal 6, its gate is connected to the contact 4, and its source is connected to the first power supply 9. Channel MO8FET.

また、2はドレインが接点4に、ソースが第一電源9に
、ゲートが接点1にそれぞれ接続された高耐圧のpチャ
ネルMO8FET、3はこの高耐圧pチャネルMO8F
ET2と外部電源端子8との間にそれぞれ接続された抵
抗であシ、この外部電源端子8は、第二電源11(第4
図参照)つまシnチャネルMO8FETのソースに加え
るグランド電位(Vss)よシも低い負の電位(Vp 
)を供給する第三の外部電源(図示せず)に接続されて
いる。すなわち、第1図の実施例において第4図に示し
た従来例のものと異なる点は、高耐圧pチャネルMO8
FE’r5と同一極性を有しかつソースが第一電源9に
、ドレインが接点4を介して前記pチャネルMO3FE
T5のゲートにそれぞれ接続された駆動用トランジスタ
としての高耐圧pチャネルMO8FET2と、このMO
SFET 2のドレインに一端が接続された第一の抵抗
3から出力トランジスタ前段の論理ゲートを構成する。
Further, 2 is a high voltage p-channel MO8FET whose drain is connected to contact 4, source is connected to first power supply 9, and gate is connected to contact 1, and 3 is this high voltage p-channel MO8F.
A resistor is connected between the ET2 and the external power supply terminal 8, and the external power supply terminal 8 is connected to the second power supply 11 (the fourth
(See figure) A negative potential (Vp) that is lower than the ground potential (Vss) applied to the source of the n-channel MO8
) to a third external power source (not shown). That is, the difference between the embodiment shown in FIG. 1 and the conventional example shown in FIG. 4 is that the high breakdown voltage p-channel MO8
The p-channel MO3FE has the same polarity as FE'r5, has a source connected to the first power supply 9, and a drain connected to the p-channel MO3FE through the contact 4.
High-voltage p-channel MO8FET2 as a driving transistor connected to the gate of T5, and this MO
A first resistor 3, one end of which is connected to the drain of the SFET 2, constitutes a logic gate in front of the output transistor.

そして、高耐圧pチャネルMO8FET5のドレインに
第二の抵抗7の一端を接続するとともに、そのドレイン
に外部出力端子6を接続し、第一および第二の抵抗3,
7の各他端を共通にして外部電源端子8に接続すること
によシ、この電源端子8に前記第三の外部電源から第二
電源11よシも低い電圧(Vp)を加えてオープンドレ
イン型の高耐圧pチャネルMO8FET5を駆動するよ
うにしたことである。
Then, one end of the second resistor 7 is connected to the drain of the high voltage p-channel MO8FET 5, and the external output terminal 6 is connected to the drain, and the first and second resistors 3,
By connecting the other ends of 7 to an external power supply terminal 8, a voltage (Vp) lower than that of the second power supply 11 is applied to the power supply terminal 8 from the third external power supply, thereby forming an open drain. This is to drive a type of high breakdown voltage p-channel MO8FET5.

なお、高耐圧のpチャネルMO8FET 2.5は、相
補型MO8回路つま、9CMO8半導体チップ内の集積
回路を構成するMOS FETのソース、ドレイン間耐
圧よシ高い耐圧を持つものであシ、また第1図に示す外
部出力端子6および外部電源端子8を除くすべての回路
素子は前記半導体チップ内部に集積化されている。
Note that the high-voltage p-channel MO8FET 2.5 has a breakdown voltage higher than that between the source and drain of the MOS FET that constitutes the complementary MO8 circuit or the integrated circuit in the 9CMO8 semiconductor chip. All circuit elements except the external output terminal 6 and the external power supply terminal 8 shown in FIG. 1 are integrated inside the semiconductor chip.

次に上記実施例回路の動作を説明する。ここで、接点1
は通常第一電源9の高レベルの電位(以下Hレベルと記
す)あるいは半導体内部のCMO8論理回路のnチャネ
ルMO8FETのソース電位(以下Lレベル、またはグ
ランド電位と記す)が加えられる。接点1がLレベルの
場合、高耐圧pチャネルMO8FET2は導通状態とな
シ、接点4はHレベルとなる。この時高耐圧pチャネル
MO8FET5のゲート電圧とソース電圧の電位差(以
下、VGSと記す)は零で高耐圧pチャネルMO8FE
T5は非導通状態となシ、出力端子6は、抵抗7によっ
て外部電源端子8に加えられたグランド電位より負の第
三電源の電位にプルダウンされる。また、接点1がHレ
ベルの場合は、高耐圧pチャネルMO8FET2は非導
通状態になシ、 接点4は抵抗3によって外部電源端子
8に加えられたグランド電位よシ負の第三電源の電位V
pにプルダウンされる。これによυ高耐圧pチャネルM
O8FET 5は導通状態となり、第一電源9から出力
端子6に向って電流が流出する。この時流れる電流ID
Sは、ゲート電位をVINとし、第一電源9の電位VD
Dグランド電位VssXpチャネルMO8FET5の閾
値電圧をvth 、出力端子電圧をvOUTとすると、
VDD−VOUT (VDD−VIN−Vthのとき−
7(VDD−YouT))  6 ・・拳*  (21
で表わされる。ただしW、LはそれぞれpチャネルMO
8FET 5のチャネル幅、チャネル長で、Kはコンダ
クタンス定数である。したがって、上記(2)式より明
らかなように、IVDD−VINIが大きいほどl I
DS lは増大するから、VIN:VSSの時よりVI
N=vp  の場合の方が、外部電源端子8に加えられ
る。グランド電位とそれよシ負の第三電源の電位差の分
だけ1Ioslが増加することになる。
Next, the operation of the above embodiment circuit will be explained. Here, contact 1
Usually, the high level potential of the first power supply 9 (hereinafter referred to as H level) or the source potential of the n-channel MO8FET of the CMO8 logic circuit inside the semiconductor (hereinafter referred to as L level or ground potential) is applied. When contact 1 is at L level, high voltage p-channel MO8FET2 is not conductive, and contact 4 is at H level. At this time, the potential difference between the gate voltage and source voltage of the high voltage p-channel MO8FET5 (hereinafter referred to as VGS) is zero, and the high voltage p-channel MO8FE
T5 is in a non-conducting state, and the output terminal 6 is pulled down by the resistor 7 to the potential of the third power supply which is more negative than the ground potential applied to the external power supply terminal 8. In addition, when contact 1 is at H level, high voltage p-channel MO8FET2 is not in a non-conducting state, and contact 4 is at the third power supply potential V which is negative from the ground potential applied to external power supply terminal 8 by resistor 3.
It is pulled down to p. This allows υhigh voltage p-channel M
The O8FET 5 becomes conductive, and current flows out from the first power source 9 toward the output terminal 6. Current flowing at this time ID
S has a gate potential VIN and a potential VD of the first power supply 9.
D ground potential VssXp If the threshold voltage of channel MO8FET5 is vth and the output terminal voltage is vOUT, then
VDD-VOUT (When VDD-VIN-Vth-
7 (VDD-YouT)) 6...Fist* (21
It is expressed as However, W and L are each p-channel MO
In the channel width and channel length of 8FET 5, K is the conductance constant. Therefore, as is clear from the above equation (2), the larger IVDD-VINI, the more l I
Since DS l increases, VI
In the case where N=vp, the power is applied to the external power supply terminal 8. 1 Iosl increases by the potential difference between the ground potential and the third power supply which is more negative than the ground potential.

なお、上記実施例では負荷素子として抵抗3゜7を用い
たが、第2図のようにゲートを外部電源端子8に接続し
たpチャネルMO8FET12および13.あるいは第
3図のようにゲートをそれぞれ接点4.ドレイン側に接
続したデプレッション型pチャネルMO8FET 14
および15でもよく、抵抗と同じ機能をもつ素子または
回路であればよ以上のようにこの発明によれば、高耐圧
pチャネルMO8FETによるオープンドレイン型出力
トランジスタのゲート、ソース間電圧を第三の電源電圧
で大きくするように構成したので、大電流を流すことが
でき、しかも出力トランジスタの占有面積を小さくでき
るため、安価にできるなどのすぐれた効果がある。
In the above embodiment, a resistor 3.7 was used as the load element, but p-channel MO8FETs 12 and 13.7 whose gates were connected to the external power supply terminal 8 as shown in FIG. Alternatively, as shown in Figure 3, connect the gates to each contact 4. Depletion type p-channel MO8FET connected to the drain side 14
According to the present invention, the voltage between the gate and source of the open drain type output transistor formed by the high voltage p-channel MO8FET is set to the third power source. Since the output transistor is configured to be increased by voltage, a large current can flow, and the area occupied by the output transistor can be reduced, resulting in excellent effects such as low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による半導体集積回路を示
す回路図、第2図および第3図はこの発明の他の実施例
を示す回路図、第4図は従来の半導体集積回路の一例を
示す回路図である。 2 、5 II m 11 m高耐圧pチャネルMO8
FET。 3.7・・・・抵抗、6・・・・出力端子、8・・・・
外部電源端子、12.13・・・・pチャネルMO8F
ET、14.15−・・Φデプレッション型pチャネル
MO8FET0
FIG. 1 is a circuit diagram showing a semiconductor integrated circuit according to one embodiment of the invention, FIGS. 2 and 3 are circuit diagrams showing other embodiments of the invention, and FIG. 4 is an example of a conventional semiconductor integrated circuit. FIG. 2,5 II m 11 m high voltage p-channel MO8
FET. 3.7...Resistance, 6...Output terminal, 8...
External power supply terminal, 12.13...p channel MO8F
ET, 14.15-...Φ depression type p-channel MO8FET0

Claims (1)

【特許請求の範囲】[Claims] 高耐圧のpチャネル電界効果トランジスタによるオープ
ンドレイン型出力トランジスタおよびそのゲートに出力
が接続された前段の論理ゲートを具備し、かつpチャネ
ル電界効果トランジスタのソースが接続された第一の電
源およびnチャネル電界効果トランジスタのソースが接
続された第二の電源を有する相補型半導体集積回路にお
いて、前記論理ゲートは、前記出力トランジスタと同じ
極性で高耐圧を有しかつソースが前記出力トランジスタ
のソースと同電位に、ドレインが前記出力トランジスタ
のゲートにそれぞれ接続された駆動用トランジスタと、
この駆動用トランジスタのドレインに一端が接続された
抵抗もしくはそれと同等の機能を有する第一の負荷素子
から構成してなり、前記出力トランジスタのドレインに
前記第一の負荷素子と同じ機能を持つ第2の負荷素子の
一端を接続するとともに、該出力トランジスタのドレイ
ンに出力端子を接続し、前記第一および第二の負荷素子
の各他端を外部電源端子に共通接続して、この電源端子
を、前記nチャネル電界効果トランジスタのソースに加
える第二の電源より低い電圧を供給する第三の電源に接
続したことを特徴とする半導体集積回路。
A first power source and an n-channel, which are equipped with an open-drain output transistor formed of a high-voltage p-channel field effect transistor and a previous-stage logic gate to which the output is connected to the gate thereof, and to which the source of the p-channel field-effect transistor is connected. In a complementary semiconductor integrated circuit having a second power supply connected to a source of a field effect transistor, the logic gate has the same polarity as the output transistor and has a high breakdown voltage, and the source has the same potential as the source of the output transistor. a driving transistor whose drain is connected to the gate of the output transistor, respectively;
A resistor having one end connected to the drain of the driving transistor or a first load element having an equivalent function, and a second load element having the same function as the first load element connected to the drain of the output transistor. one end of the load element is connected, an output terminal is connected to the drain of the output transistor, the other ends of each of the first and second load elements are commonly connected to an external power supply terminal, and the power supply terminal is connected to A semiconductor integrated circuit, characterized in that the semiconductor integrated circuit is connected to a third power source that supplies a voltage lower than the second power source applied to the source of the n-channel field effect transistor.
JP60288138A 1985-12-19 1985-12-19 Semiconductor integrated circuit Pending JPS62145917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60288138A JPS62145917A (en) 1985-12-19 1985-12-19 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60288138A JPS62145917A (en) 1985-12-19 1985-12-19 Semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPS62145917A true JPS62145917A (en) 1987-06-30

Family

ID=17726300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60288138A Pending JPS62145917A (en) 1985-12-19 1985-12-19 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS62145917A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009039717A (en) * 2001-04-06 2009-02-26 Scott Nicol Carbonation system and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009039717A (en) * 2001-04-06 2009-02-26 Scott Nicol Carbonation system and method

Similar Documents

Publication Publication Date Title
US7554379B2 (en) High-speed, low-power level shifter for mixed signal-level environments
US7443200B2 (en) Capacitor-coupled level shifter with duty-cycle independence and supply referenced bias configuration
JP4618164B2 (en) Switch circuit
JPS6329854B2 (en)
EP0902517B1 (en) Circuit with hot-electron protection and method
JPH02188024A (en) Level shifting circuit
JPH07142990A (en) Level conversion circuit
JPH0766014B2 (en) CMOS power-on detection circuit
US20090261867A1 (en) Semiconductor device having voltage output circuit
JPS62145917A (en) Semiconductor integrated circuit
US6269042B1 (en) I/O circuit of semiconductor integrated device
US6198330B1 (en) Adaptive-load inverters and methods
JPH02179121A (en) Inverter circuit
KR950034763A (en) Semiconductor integrated circuit device
JPS62145916A (en) Semiconductor integrated circuit
JP2541289B2 (en) Output circuit
JPH0243204B2 (en)
US20020075043A1 (en) Push-pull amplifier for use in generating a reference voltage
JP3482026B2 (en) Exclusive NOR gate
JP2861717B2 (en) BiCMOS circuit
KR100281146B1 (en) CMOS NAND Circuit
JPH02105612A (en) Schmitt circuit
JPS58196727A (en) Logical circuit
JPH09270700A (en) Semiconductor device
JPS5922443A (en) Semiconductor input buffer device