JPH02105612A - Schmitt circuit - Google Patents

Schmitt circuit

Info

Publication number
JPH02105612A
JPH02105612A JP25870188A JP25870188A JPH02105612A JP H02105612 A JPH02105612 A JP H02105612A JP 25870188 A JP25870188 A JP 25870188A JP 25870188 A JP25870188 A JP 25870188A JP H02105612 A JPH02105612 A JP H02105612A
Authority
JP
Japan
Prior art keywords
mosfet
circuit
voltage
schmitt
threshold voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25870188A
Other languages
Japanese (ja)
Inventor
Masayuki Takori
田古里 眞行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP25870188A priority Critical patent/JPH02105612A/en
Publication of JPH02105612A publication Critical patent/JPH02105612A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electronic Switches (AREA)

Abstract

PURPOSE:To stably operate a circuit to a low voltage as twice as the threashold voltage VT of a MOSFET by changing the size of a p-MOSFET and an n- MOSFET in a CMOS inversion circuit by the MOSFET being controlled by the output of a Schmitt circuit and operated as a switch. CONSTITUTION:The p-MOSFET 2 and the p-MOSFET 4, and the n-MOSFET 3 and the n-MOSFET 7 are connected in parallel, respectively by the p-MOSFET 5 and the n-MOSFET 6 controlled by the output signal of the Schmitt circuit to generate Schmitt width. In some cases, a difference is generated between a threshold voltage VTL and a threshold voltage VTU. Thereby, it is possible to operate the circuit with a source voltage up to the voltage VDD as twice the threshold voltage VT of the MOSFET since the source potential of the p-MOSFETs 2 and 4 and the n-MOSFETs 3 and 7 are directly connected to power sources VDD and VSS even when the voltage of the power source VDD is decreased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はシュミット回路に関し、特にCM08FETで
構成されたシュミット回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a Schmitt circuit, and more particularly to a Schmitt circuit constructed of CM08FETs.

〔従来の技術〕[Conventional technology]

従来、0MOSFETで構成されたシーミツト回路は、
第3図に示すように、pチャネルMOSFET(以下p
−MOSFETと記す)15.16とnチャネルMOS
FET(以下n−MOSFET)17.18によシ構成
された反転回路と、スイッチ素子19.20を制御する
インバータ21とによシ構成されていた。
Conventionally, a seamit circuit composed of 0 MOSFETs is
As shown in Fig. 3, p-channel MOSFET (hereinafter p
- MOSFET) 15.16 and n-channel MOS
It was composed of an inverter circuit composed of FETs (hereinafter referred to as n-MOSFETs) 17 and 18, and an inverter 21 that controlled switch elements 19 and 20.

この回路は、出力端子22に出力される出力信号Vou
tが高レベルから低レベルに変化するしきい値電圧Vt
t、と、低レベルから高レベルに変化するしきい値電圧
vttrの2つのしきい値電圧を有し、しきい値電圧V
ttrとしきい値電圧VTLの差電圧VTυ−■〒Lが
この回路のシュミット幅となっている。そこで、このシ
ュミット幅を作るために、しきい値電圧Vttはn−M
OSFETI7のソース電位をn−MOSFET20の
スイッチ動作により変化させることによ3、p−MOS
FET16のドレイン電流とn −MO8F E T 
17のドレイン電流が等しくなる電圧を一般的なCM0
8FET反転回路のしきい値電圧■DD/2より下げて
いる。
This circuit has an output signal Vou output to the output terminal 22.
Threshold voltage Vt at which t changes from high level to low level
t, and a threshold voltage vttr that changes from a low level to a high level, and the threshold voltage V
The difference voltage VTυ-■〒L between ttr and threshold voltage VTL is the Schmitt width of this circuit. Therefore, in order to create this Schmitt width, the threshold voltage Vtt is n-M
By changing the source potential of OSFETI7 by switching operation of n-MOSFET20, p-MOS
Drain current of FET16 and n-MO8FET
The voltage at which the drain currents of 17 and 17 are equal is the general CM0
The threshold voltage of the 8FET inversion circuit is lower than ■DD/2.

同様に、しきい値電圧VTUはp−MOSFET16の
ソース電位をp−MOSFET19のスイッチ動作によ
シ変化させることによj)、p−MOSFET16のド
レイン電流とn−MOSFET17のドレイン電流が等
しくなる電圧を■DD/2よシ上げている。
Similarly, the threshold voltage VTU is determined by changing the source potential of the p-MOSFET 16 by the switching operation of the p-MOSFET 19j), at which the drain current of the p-MOSFET 16 and the drain current of the n-MOSFET 17 become equal. is higher than ■DD/2.

これによシしきい値電圧7丁Uとしきい値電圧VTLに
差電圧が生じこれがシュミット幅となシ、シュミット回
路として動作する。
As a result, a voltage difference is generated between the threshold voltage 7U and the threshold voltage VTL, which has a Schmitt width and operates as a Schmitt circuit.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来のシュミット回路は、シュミット幅を作る
ため、p−MOSFET16及びn−MOSFET17
のソース電位を変化させているので、電源VDDが低下
してくると、入力端子1に入力される入力信号Vinと
電源■DD v ■8Bの差電圧が低下して、p−MO
SFET16とn−MOSFETI70ンース電位が直
接電源VDD t vssに接続されてない分、p−M
OSFET16とn−MO8FBT17のゲート・ソー
ス間電圧の余裕がそれぞれなくなシ、電源電圧の低下に
よシ早く動作しなくなる(MOSFETのしきい値電圧
7丁の2倍の電圧まで動作しない)。
The conventional Schmitt circuit described above has p-MOSFET 16 and n-MOSFET 17 to create the Schmitt width.
Since the source potential of the p-MO is changed, when the power supply VDD decreases, the differential voltage between the input signal Vin input to the input terminal 1 and the power supply ■DD v ■8B decreases, and the p-MO
Since the ground potential of SFET16 and n-MOSFETI70 is not directly connected to the power supply VDD t vss, p-M
The OSFET 16 and the n-MO8FBT 17 each have no margin for gate-source voltage, and they quickly stop operating due to a drop in the power supply voltage (they do not operate up to a voltage twice as high as the threshold voltage of the MOSFET).

又、低電圧動作をある程度保証しようとした場合、p−
MOSFET16とn−MOSFET17のソースと電
源■DD、■s8の電圧降下を下げるため、低電圧での
シュミット幅がとれないという欠点があった。
Also, when trying to guarantee low voltage operation to some extent, p-
In order to lower the voltage drop between the sources of MOSFET 16 and n-MOSFET 17 and the power supplies DD and s8, there was a drawback that the Schmitt width could not be maintained at low voltages.

〔課題を解決するための手段〕[Means to solve the problem]

本発明のシュミット回路は、pチャネルMOSFETと
nチャネルMOSFETとで構成される第1の反転回路
と、pチャネルMOSFETとnチャネルMOSFET
とで構成されかつ入力端子が前記第1の反転回路に接続
される第2の反転回路と、前記第1の反転回路の出力端
子と前記第2の反転回路の出力端子との間に接続される
スイッチ素子と、入力端子が前記第1の反転回路の出力
端子に接続され出力信号の一部を前記スイッチ素子に帰
還して前記スイッチ素子の開閉を制御する少くとも一つ
のインバータとを含んで構成される。
The Schmitt circuit of the present invention includes a first inverting circuit composed of a p-channel MOSFET and an n-channel MOSFET, and a first inverting circuit composed of a p-channel MOSFET and an n-channel MOSFET.
a second inverting circuit comprising: a second inverting circuit having an input terminal connected to the first inverting circuit; and a second inverting circuit connected between an output terminal of the first inverting circuit and an output terminal of the second inverting circuit. at least one inverter having an input terminal connected to an output terminal of the first inverting circuit and feeding back a part of an output signal to the switching element to control opening/closing of the switching element. configured.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の第1の実施例の回路図である。FIG. 1 is a circuit diagram of a first embodiment of the present invention.

この実施例のシュミット回路は、p−MOSFET2と
n −MOS F E T 3とで構成される第1の反
転回路と、p−MOSFET4とn−MOSFET7と
で構成されかつ入力端子が第1の反転回路の入力端子I
K接続される第2の反転回路と、第1の反転回路の出力
端子と第2の反転回路の出力端子との間に接続されるス
イッチ素子5.6と、入力端子が第1の反転回路の出力
端子に接続され出力信号Voutの一部をスイッチ素子
5,6のゲートに帰還してスイッチ素子5,6の開閉を
制御するインバータ8とを含んで構成される。
The Schmitt circuit of this embodiment is composed of a first inverting circuit consisting of p-MOSFET2 and n-MOSFET3, and p-MOSFET4 and n-MOSFET7, and the input terminal is connected to the first inverting circuit. Input terminal I of the circuit
a second inverting circuit that is K-connected; a switch element 5.6 connected between the output terminal of the first inverting circuit and the output terminal of the second inverting circuit; and a switch element 5.6 whose input terminal is connected to the first inverting circuit. The inverter 8 is connected to the output terminal of the inverter 8 and returns a part of the output signal Vout to the gates of the switch elements 5 and 6 to control opening and closing of the switch elements 5 and 6.

次に、この実施例の動作について説明する。Next, the operation of this embodiment will be explained.

この実施例のシュミット回路は、出力信号Voutが高
レベルから低レベルに変化するしきい値電圧■τLと、
低レベルから高レベルに変化するしきい値電圧VTUの
2つのしきい値電圧を有しておシ、しきい値電圧v、L
’としきい値電圧vttrO差電圧vtu + v’r
t、がこの回路のシュミット幅となっている。そこで、
このシュミット幅を作るために、しきい値電圧VTLは
スイッチとして動作するn−MOSFETeKよりて、
n−MOSFET3に並列にn−MOSFET7を接続
することによシ、p−MOSFET2のドレイン電流と
n−MOSFET3.7のドレイン電流が等しく々る電
圧をVDD / 2よシ下げている。
The Schmitt circuit of this embodiment has a threshold voltage ■τL at which the output signal Vout changes from a high level to a low level,
It has two threshold voltages, VTU, which changes from a low level to a high level, and the threshold voltages v and L.
' and threshold voltage vttrO difference voltage vtu + v'r
t is the Schmidt width of this circuit. Therefore,
In order to create this Schmitt width, the threshold voltage VTL is set by the n-MOSFETeK that operates as a switch.
By connecting n-MOSFET 7 in parallel to n-MOSFET 3, the voltage at which the drain current of p-MOSFET 2 and the drain current of n-MOSFET 3.7 are equal is lowered to VDD/2.

同様に、しきい値電圧■Tυ′はスイッチとして動作す
るp−MO8FBT5によって、p−MOSFET2に
並列にp−MOSFET4を接続することによシ、p−
MOSFET2.4のドレイン電流とn−MOSFET
3のドレイン電流が等しくなる電圧をVDD / 2よ
シ上げている。これによシ、シきい値電圧vTtyとし
きい値電圧V’rLに差電圧が生じ、これがシュミット
幅となシ、シュミット回路として動作する。
Similarly, the threshold voltage ■Tυ' can be adjusted by connecting p-MOSFET4 in parallel to p-MOSFET2 by p-MO8FBT5 which operates as a switch.
Drain current of MOSFET2.4 and n-MOSFET
The voltage at which the drain currents of 3 and 3 are equal is raised to VDD/2. As a result, a voltage difference is generated between the threshold voltage vTty and the threshold voltage V'rL, which has a Schmitt width and operates as a Schmitt circuit.

又、しきい値電圧■TL、■テUは次式で示される。Further, the threshold voltages TL and TE are expressed by the following equations.

ただし、VTP:p−MOSFET しきい値電圧VT
N : n  MOSFET シきい値電圧辱 :p−
MOSFET導伝係数 KN  :n  M08FET導伝係数W、、W8.W
4.W、:MOSFETのチャネル幅L2.L3.L4
.L、:MOSFETのチャネル長このように本発明の
シュミット回路は、シュミット幅を作るためにp−MO
SFET2とp−MOSFET4及びn−MOSFET
3とn−MOSFET7をシュミット回路の出力信号V
outで制御されるp−MOSFETsとn−MOSF
ET6にヨっテ、ツレ(TL並列に接続されることによ
シ、シきい値電圧vTLとしきい値電圧VTUの電圧に
差を生じさせているので、電源VDDの電圧が低下して
もp−MOSFET2.4とn−MOSFET3.7の
ソース電位が直接電源■DD、■s8に接続されておシ
、MOSFEToしきい値電圧V丁の2倍の電源電圧V
DD’tでは動作する0又−シュミット幅は(1) 、
 (2)式よj5p−MOSFETとn−MOSFET
のサイズ比で決まるので、電圧が低下した時に、動作範
囲においてシュミット幅がなくなることはない。
However, VTP: p-MOSFET threshold voltage VT
N: n MOSFET threshold voltage: p-
MOSFET conduction coefficient KN:n M08FET conduction coefficient W,, W8. W
4. W,: MOSFET channel width L2. L3. L4
.. L,: MOSFET channel length In this way, the Schmitt circuit of the present invention uses p-MOSFET to create the Schmitt width.
SFET2, p-MOSFET4 and n-MOSFET
3 and n-MOSFET7 to output signal V of Schmitt circuit.
p-MOSFETs and n-MOSFs controlled by out
By connecting ET6 in parallel, a difference is created between the threshold voltage vTL and the threshold voltage VTU, so even if the voltage of the power supply VDD drops, -The source potentials of MOSFET2.4 and n-MOSFET3.7 are directly connected to the power supplies ■DD and ■s8, and the power supply voltage V is twice the threshold voltage V of the MOSFETTo.
The operating zero-Schmidt width in DD't is (1),
(2) According to the formula, j5p-MOSFET and n-MOSFET
Since it is determined by the size ratio of , the Schmidt width does not disappear in the operating range when the voltage decreases.

第2図は本発明の第2の実施例を示す回路図である。FIG. 2 is a circuit diagram showing a second embodiment of the present invention.

構成としては第1の実施例のシュミット回路と基本的に
同じであるが、シーミツト回路の出力で制御され、スイ
ッチとして動作するMOSFETがp−MOSFET5
 、10とn−MOSFET6 、11の並列接続とな
っておシ、よシスイッチとしての動作が安定となってい
る。シュミット回路としての動作及び効果は第1の実施
例と同様である。
The configuration is basically the same as the Schmitt circuit of the first embodiment, but the MOSFET that is controlled by the output of the Schmitt circuit and operates as a switch is p-MOSFET5.
, 10 and n-MOSFETs 6 and 11 are connected in parallel to ensure stable operation as a switch. The operation and effect as a Schmitt circuit are the same as in the first embodiment.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は、シュミット回路の出力
で制御されスイッチとして動作するMOSFETによっ
て、CMO8反転回路のp−MOf9FETとn−MO
SFETのサイズを変えることによって、シュミット幅
を生じさせて一番おシ、CMO8反転回路のp−MOS
FETとn−MOSFETのソース電位が直接電源VD
D * 78gに接続しているので、MOSFETのし
きい値電圧V丁の2倍の低電圧まで安定して動作するシ
ュミット回路を得ることができるという効果を有する。
As explained above, in the present invention, the p-MOf9FET and n-MOFET of the CMO8 inverting circuit are controlled by the output of the Schmitt circuit and operate as a switch.
By changing the size of the SFET, the Schmitt width can be created and the p-MOS of the CMO8 inverting circuit can be
The source potential of FET and n-MOSFET is directly connected to the power supply VD.
Since it is connected to D*78g, it is possible to obtain a Schmitt circuit that operates stably up to a voltage as low as twice the threshold voltage of the MOSFET.

1・・・入力端子、2,4.5・・・p−MOSFET
、3゜6.7・−n−MOSFET、8−インバータ、
9・・・出力端子、10 ・−n −MOS F E 
T、11,15,16゜19−p−MOSFET、17
,18.20・・・n−MOSFET、■DD r ■
8B・・・電源。
1...Input terminal, 2,4.5...p-MOSFET
, 3゜6.7・-n-MOSFET, 8-inverter,
9...Output terminal, 10 ・-n-MOS F E
T, 11, 15, 16° 19-p-MOSFET, 17
, 18.20...n-MOSFET, ■DD r ■
8B...Power supply.

代理人 弁理士  内 原   晋Agent: Patent Attorney Susumu Uchihara

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例を示す回路図、第2図は
本発明の第2の実施例を示す回路図、第3図は従来のシ
ュミット回路の一例を示す回路図である。 あ [ 困 あj )3因
Fig. 1 is a circuit diagram showing a first embodiment of the present invention, Fig. 2 is a circuit diagram showing a second embodiment of the invention, and Fig. 3 is a circuit diagram showing an example of a conventional Schmitt circuit. . A [ trouble j ] 3 reasons

Claims (1)

【特許請求の範囲】[Claims] pチャネルMOSFETとnチャネルMOSFETとで
構成される第1の反転回路と、pチャネルMOSFET
とnチャネルMOSFETとで構成されかつ入力端子が
前記第1の反転回路に接続される第2の反転回路と、前
記第1の反転回路の出力端子と前記第2の反転回路の出
力端子との間に接続されるスイッチ素子と、入力端子が
前記第1の反転回路の出力端子に接続され出力信号の一
部を前記スイッチ素子に帰還して前記スイッチ素子の開
閉を制御する少くとも一つのインバータとを含むことを
特徴とするシュミット回路。
A first inverting circuit composed of a p-channel MOSFET and an n-channel MOSFET, and a p-channel MOSFET
and an n-channel MOSFET, the input terminal of which is connected to the first inverting circuit, and the output terminal of the first inverting circuit and the output terminal of the second inverting circuit. and at least one inverter whose input terminal is connected to the output terminal of the first inverting circuit and which feeds back a part of the output signal to the switch element to control opening and closing of the switch element. A Schmitt circuit comprising:
JP25870188A 1988-10-13 1988-10-13 Schmitt circuit Pending JPH02105612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25870188A JPH02105612A (en) 1988-10-13 1988-10-13 Schmitt circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25870188A JPH02105612A (en) 1988-10-13 1988-10-13 Schmitt circuit

Publications (1)

Publication Number Publication Date
JPH02105612A true JPH02105612A (en) 1990-04-18

Family

ID=17323899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25870188A Pending JPH02105612A (en) 1988-10-13 1988-10-13 Schmitt circuit

Country Status (1)

Country Link
JP (1) JPH02105612A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05272730A (en) * 1992-03-27 1993-10-19 Kubota Corp Incinerator
US5767728A (en) * 1996-09-05 1998-06-16 International Business Machines Corporation Noise tolerant CMOS inverter circuit having a resistive bias

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05272730A (en) * 1992-03-27 1993-10-19 Kubota Corp Incinerator
US5767728A (en) * 1996-09-05 1998-06-16 International Business Machines Corporation Noise tolerant CMOS inverter circuit having a resistive bias

Similar Documents

Publication Publication Date Title
JP4768300B2 (en) Voltage level conversion circuit and semiconductor integrated circuit device
US4825106A (en) MOS no-leak circuit
KR100310493B1 (en) Ring oscillator and delay circuit
US7443200B2 (en) Capacitor-coupled level shifter with duty-cycle independence and supply referenced bias configuration
US6064229A (en) Voltage translating buffer based on low voltage technology
JPS59212009A (en) Current amplifying device
US8228111B2 (en) Bias voltage generation for capacitor-coupled level shifter with supply voltage tracking and compensation for input duty-cycle variation
JPH02188024A (en) Level shifting circuit
EP0654903B1 (en) Driver circuits
JPH03192915A (en) Flip-flop
JP2001127615A (en) Division level logic circuit
KR960702698A (en) Electronic circuits (CMOS input with Vcc compensated dynamic threshold)
JPH02105612A (en) Schmitt circuit
JPH0677804A (en) Output circuit
JP2001068978A (en) Level shifter circuit
US6975168B2 (en) Drive circuit
JPH02179121A (en) Inverter circuit
KR960026787A (en) Integrated Circuit with Current Mode Sense Amplifier
US20230336176A1 (en) Level shifter circuit, corresponding device and method
JPH01159897A (en) Sense amplifier
JP2003101405A (en) Level shifting circuit
JPH02123826A (en) Cmos inverter circuit
JPH06161581A (en) Constant voltage generating circuit
JPH0746108A (en) Cmos analog switch
JP3077664B2 (en) Input circuit