JPS62142370A - Manufacture of optical semiconductor device - Google Patents

Manufacture of optical semiconductor device

Info

Publication number
JPS62142370A
JPS62142370A JP60283928A JP28392885A JPS62142370A JP S62142370 A JPS62142370 A JP S62142370A JP 60283928 A JP60283928 A JP 60283928A JP 28392885 A JP28392885 A JP 28392885A JP S62142370 A JPS62142370 A JP S62142370A
Authority
JP
Japan
Prior art keywords
linear
laser
groove
projected
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60283928A
Other languages
Japanese (ja)
Other versions
JPH065778B2 (en
Inventor
Takeshige Ichimura
市村 剛重
Yukimi Ichikawa
幸美 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Corporate Research and Development Ltd
Priority to JP60283928A priority Critical patent/JPH065778B2/en
Publication of JPS62142370A publication Critical patent/JPS62142370A/en
Publication of JPH065778B2 publication Critical patent/JPH065778B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To improve processing speed strikingly in comparison with the case where a groove is machined by sweeping a spotted laser beam, by forming a linear beam from high-energy short-wavelength laser light through an optical system, and machining a groove in each layer of an optical semiconductor device. CONSTITUTION:Light is projected on a film forming substrate 1 from a lateral discharge type excimer laser 2 utilizing ArF or KrF, XeCl and the like. The energy distribution of ultraviolet laser light 3 from said laser is uniform in the lateral direction and forms a Gaussian distribution in the longitudinal direction. The light is converted into a linear laser beam 6 by using two circular cylinder lenses 4 having two curved surfaces and a flat mirror 5. The beam 6 is projected on the film forming substrate 1. The projected part is cut and a groove can be formed in the film in a linear shape. Then the projection is stopped, and the film forming substrate 1 is moved in the direction of an arrow 7 by the required amount. The beam is projected again by the same way, and the linear groove is formed. By repeating this procedure, the machining of strip shaped thin films can be carried out efficiently on the large-area substrate.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の属する技術分野】[Technical field to which the invention pertains]

本発明は、絶縁基板上に積層された半導体層とそれをは
さむ少なくとも一方が透明である導体層の各層にそれぞ
れ開溝加工を施し、単位光半導体装置を直列接続してな
る光半導体装置を製造する方法に関する。
The present invention manufactures an optical semiconductor device in which unit optical semiconductor devices are connected in series by forming grooves in each layer of a semiconductor layer stacked on an insulating substrate and a conductor layer sandwiching the semiconductor layer, at least one of which is transparent. Regarding how to.

【従来技術とその問題点】[Prior art and its problems]

上述のような光半導体装置としては、半導体膜に非晶質
シリコン (以下a−Siと記す)層を用いて、例えば
第2図に示すような構造をとる太陽電池が知られている
。すなわち、ガラス基板等の透明絶縁基板10上に透明
電極21.22.23.24・・・を短冊状に形成し、
その上に光起電力発生部であるa−5i層31.32.
33.34・・・、金属電極41.42.43゜44・
・・の順に形成する。一つの単位セルの透明電極がその
横の単位セルの金属T!X極と一部接触する構造となる
ように電極およびa−5ijiJのパターンを構成する
。最近、こうしたパターンの形成にレーザ加工技術が用
いられるようになってきている。 この方法により、従来のフォトエツチングを用いる場合
に比べてパターニングの工程数がσ友り、コストの低減
がはかれるという利点が生ずる。 従来のレーザビームを用いたパターニングでは、まず基
板10の全面に形成された透明導電膜上に通常YAGレ
ーザを用いて集光されたレーザビームを掃引し、短冊状
の透明電極21.22.23.・・・を形成する。その
上にa  5iJiを全面に形成し、そののち同様に集
光されたレーザビームを11■引することにより、切断
して短冊状のa −Si層31.32.33・・・を形
成する。ひきつづいて金属層を全面に形成し、そののち
同様に集光されたレーザビームを掃引することにより、
切断して短冊状の金属’Wi41゜42、43・・・を
形成して第2図のような直列接続構造を、得る。 ところカベこの方法においてはレーザビームを掃引する
ことにより加工を行うので、処理速度に限界があり、多
重ビームなどの工夫が必要であるが、W ”IIが?j
f91tになるなどの問題をかかえている。 特に大面積の太陽電池においては、実用上重要な問題で
ある。また金属層の切断の際には、レーザビームの反射
する量が多く、高いエネルギーのレーザビームが必要で
あり、薄い金属膜を下層に影響を与えることなく切断す
るのは困難であった。
As the above-mentioned optical semiconductor device, a solar cell is known which uses an amorphous silicon (hereinafter referred to as a-Si) layer as a semiconductor film and has a structure as shown in FIG. 2, for example. That is, transparent electrodes 21, 22, 23, 24, etc. are formed in a strip shape on a transparent insulating substrate 10 such as a glass substrate,
A-5i layers 31, 32.
33.34..., metal electrode 41.42.43°44.
Form in the order of... The transparent electrode of one unit cell is connected to the metal T of the unit cell next to it! The electrode and a-5ijiJ patterns are configured to have a structure that partially contacts the X pole. Recently, laser processing technology has come to be used to form such patterns. This method has the advantage of reducing the number of patterning steps and reducing costs compared to the case of using conventional photoetching. In conventional patterning using a laser beam, first, a laser beam focused using a YAG laser is swept over a transparent conductive film formed on the entire surface of the substrate 10, and a rectangular transparent electrode 21, 22, 23 is formed. .. ... to form. A 5iJi is formed on the entire surface, and then the same focused laser beam is applied to the substrate to cut it to form strip-shaped a-Si layers 31, 32, 33, etc. . By subsequently forming a metal layer on the entire surface and then sweeping the focused laser beam in the same way,
This is cut to form metal strips 41, 42, 43, . . . to obtain a series connection structure as shown in FIG. However, in this method, processing is performed by sweeping the laser beam, so there is a limit to processing speed, and devices such as multiple beams are required.
I am facing problems such as becoming f91t. This is a practically important problem, especially in large-area solar cells. Furthermore, when cutting a metal layer, a large amount of the laser beam is reflected and a high-energy laser beam is required, making it difficult to cut a thin metal film without affecting the underlying layer.

【発明の目的】[Purpose of the invention]

本発明は、上記の問題点を解決し、直列接続型光電変換
装置における各層の開溝加工を能率よく行うことのでき
る方法を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method that can solve the above-mentioned problems and efficiently cut grooves in each layer in a series-connected photoelectric conversion device.

【発明の要点】[Key points of the invention]

本発明は、光学系によってエキシマレーザ光のような短
波長レーザ光を少なくとも被加工層の幅と同じ長さの線
状ビームとし、この線状ビームを照射して開溝加工する
ことにより、ビームを掃引する必要をなくし、加工に時
間を短縮して上述の目的を達成するものである。
The present invention uses an optical system to convert a short wavelength laser beam such as an excimer laser beam into a linear beam having at least the same length as the width of the layer to be processed, and irradiates the linear beam to process the groove. This eliminates the need for sweeping, shortens processing time, and achieves the above objectives.

【発明の実施例】[Embodiments of the invention]

第1図は本発明の加工法を実施するための装置の一例で
ある。ガラスなどの絶縁基板上に導体または半導体膜、
あるいはこれらの積i膜を形成した膜形成基板1に、^
「FあるいはKrF、XeClなどの横方向放電型のエ
キシマレーザ2からの光を照射する。これらのレーザか
らの紫外レーザ光3はエネルギー分布が横方向が均一で
縦方向がガウンアン分布となっているので、二つの二曲
面円柱レンズ4と平面鏡5を用いて線状のレーザビーム
6に変換して膜形成基板1に照射し、この部分を焼き切
ることにより膜を線状に開溝することができる。 次に照射を中断し、矢印7の方向に膜形成基板1を必’
Itだけ移動し、再び同様の照射を行って線状の開溝を
行う、これの繰り返しによって大面積基板上の薄膜の短
冊状の加工が効率よくでき量産に適する。 30X40cjの絶縁基板上に透明導電膜と1JJ1a
膜厚のa−3i膜を積層したものについてa −511
1gを開溝する場合、エキシマレーザ2としてXeCl
エキシマレーザ (操り返し周波数165pps、出力
30W)を用いて長さ30cmの線状で幅20−の波長
308r+n+のレーザビームを形成し、パルス状に1
0回繰り返して11α肘することにより、a −5i膜
に20−幅で30cmの開溝加工ができた。 30X40calの絶縁基板上に透明導電j模と、a 
−5i半導体膜と、500nmの厚さのアルミニウム膜
を積層したものについて、アルミニウム1模を開溝する
場合は、エキシマレーザ2としてArFエキシマレーザ
 (繰り返し周波数150pps 、出力22W)を用
いて、30cmの線状で幅20.ymの波長19,3n
mのレーザビームを形成し、パルス状にlO[!]I2
り返して照射することにより、アルミニウム膜に20p
m幅で30c+sの開溝加工ができた。エキシマレーザ
は短波長で高エネルギーであるため、このような薄い金
属膜の加工が容易である。 以上は紫外光源としてエキシマレーザを用いた実施例に
ついて述べたが、エキシマレーザに限定される訳ではな
(、これらと同等の出力を存する短波長レーザであれば
、同様に使用できることはいうまでもない。 【発明の効果] 本発明によれば、エネルギーの高い短波長レーザ光を光
学系により線状ビームとして光半導体装置の各層の開溝
加工を行うもので、点状のレーザビームを掃引して開溝
加工する場合に比べて処理速度が飛躍的に向上するほか
、従来加工困難であった金属薄膜の加工も可能になり、
特に太陽電池などの大面積光半導体装置の製造において
その効果は著しい。
FIG. 1 shows an example of an apparatus for carrying out the processing method of the present invention. A conductor or semiconductor film on an insulating substrate such as glass,
Alternatively, on the film forming substrate 1 on which these i-layer films are formed,
Light from a horizontal discharge type excimer laser 2 such as F, KrF, or XeCl is irradiated.The ultraviolet laser light 3 from these lasers has an energy distribution that is uniform in the horizontal direction and has a Gaunian distribution in the vertical direction. Therefore, by using two bicurved cylindrical lenses 4 and a plane mirror 5 to convert the laser beam into a linear laser beam 6, irradiate it onto the film forming substrate 1, and burn off this portion, it is possible to open the film in a linear groove. Next, interrupt the irradiation and move the film forming substrate 1 in the direction of the arrow 7.
By repeating this process of moving by It, and performing the same irradiation again to open a linear groove, it is possible to efficiently process a thin film into strips on a large-area substrate, making it suitable for mass production. Transparent conductive film and 1JJ1a on 30X40cj insulating substrate
Regarding the laminated film of a-3i film thickness a-511
When opening a groove of 1g, use XeCl as the excimer laser 2.
Using an excimer laser (return frequency 165 pps, output 30 W), a linear laser beam with a length of 30 cm and a width of 20 - and a wavelength of 308 r + n + is formed, and it is pulsed with 1
By repeating 0 times and applying 11α strokes, a groove with a width of 20 cm and a width of 30 cm was formed in the a-5i film. Transparent conductive j pattern and a on 30x40 cal insulating substrate
-5i semiconductor film and an aluminum film with a thickness of 500 nm, when trenching the aluminum 1 pattern, use an ArF excimer laser (repetition frequency 150 pps, output 22 W) as the excimer laser 2. Linear and width 20. Wavelength of ym 19.3n
m laser beam is formed and pulsed lO[! ]I2
By repeating irradiation, 20p was applied to the aluminum film.
It was possible to open a groove of 30c+s with a width of m. Since the excimer laser has a short wavelength and high energy, it is easy to process such thin metal films. Although the above example uses an excimer laser as the ultraviolet light source, it is not limited to excimer lasers (it goes without saying that any short wavelength laser with an output equivalent to these can be used in the same way). [Effects of the Invention] According to the present invention, trenches are formed in each layer of an optical semiconductor device by using a high-energy, short-wavelength laser beam as a linear beam using an optical system. The processing speed is dramatically improved compared to the process of opening grooves using a method, and it is also possible to process thin metal films, which were previously difficult to process.
The effect is particularly remarkable in the manufacture of large-area optical semiconductor devices such as solar cells.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例におけるレーザ加工の斜視図
、第2図は本発明を製造に実権することのできる太陽電
池の断面図である。 1:膜形成基板、2:エキシマレーザ、3:レーザ光、
4:円柱レンズ、5:平面鏡、6:線状ビーム。 第1図
FIG. 1 is a perspective view of laser processing according to an embodiment of the present invention, and FIG. 2 is a sectional view of a solar cell to which the present invention can be manufactured. 1: film formation substrate, 2: excimer laser, 3: laser light,
4: Cylindrical lens, 5: Plane mirror, 6: Linear beam. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 1)絶縁基板上に積層された半導体層とそれをはさむ少
なくとも一方が透明である導体層の各層にそれぞれ開溝
加工を施し、単位光半導体装置を直列接続してなる光半
導体装置を製造する際に、光学系によって短波長レーザ
光を少なくとも被加工層の幅と同じ長さの線状ビームと
し、該線状ビームを照射して開溝加工することを特徴と
する光半導体装置の製造方法。
1) When manufacturing an optical semiconductor device in which a semiconductor layer laminated on an insulating substrate and a conductor layer sandwiching the semiconductor layers, at least one of which is transparent, are grooved and unit optical semiconductor devices are connected in series. A method of manufacturing an optical semiconductor device, characterized in that an optical system converts the short wavelength laser beam into a linear beam having at least the same length as the width of the layer to be processed, and irradiates the linear beam to perform groove cutting.
JP60283928A 1985-12-17 1985-12-17 Method for manufacturing optical semiconductor device Expired - Fee Related JPH065778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60283928A JPH065778B2 (en) 1985-12-17 1985-12-17 Method for manufacturing optical semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60283928A JPH065778B2 (en) 1985-12-17 1985-12-17 Method for manufacturing optical semiconductor device

Publications (2)

Publication Number Publication Date
JPS62142370A true JPS62142370A (en) 1987-06-25
JPH065778B2 JPH065778B2 (en) 1994-01-19

Family

ID=17672025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60283928A Expired - Fee Related JPH065778B2 (en) 1985-12-17 1985-12-17 Method for manufacturing optical semiconductor device

Country Status (1)

Country Link
JP (1) JPH065778B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02187342A (en) * 1989-01-13 1990-07-23 Canon Inc Ink jet recording head
JPH02198857A (en) * 1989-01-28 1990-08-07 Canon Inc Manufacture of ink-jet recording head and ink-jet recording head manufactured through said method
US5849043A (en) * 1992-03-26 1998-12-15 Semiconductor Energy Laboratory Co., Ltd. Apparatus for laser ion doping
US7303980B2 (en) 1995-07-25 2007-12-04 Semiconductor Energy Laboratory Co., Ltd. Laser annealing method and apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5712568A (en) * 1980-06-02 1982-01-22 Rca Corp Method of producing solar battery
JPS5794482A (en) * 1980-12-05 1982-06-11 Hitachi Ltd Pattern forming device by laser
JPS6070722A (en) * 1983-09-26 1985-04-22 Rikagaku Kenkyusho Laser cvd method and device thereof
JPS61105885A (en) * 1984-10-29 1986-05-23 Semiconductor Energy Lab Co Ltd Photo-processing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5712568A (en) * 1980-06-02 1982-01-22 Rca Corp Method of producing solar battery
JPS5794482A (en) * 1980-12-05 1982-06-11 Hitachi Ltd Pattern forming device by laser
JPS6070722A (en) * 1983-09-26 1985-04-22 Rikagaku Kenkyusho Laser cvd method and device thereof
JPS61105885A (en) * 1984-10-29 1986-05-23 Semiconductor Energy Lab Co Ltd Photo-processing

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02187342A (en) * 1989-01-13 1990-07-23 Canon Inc Ink jet recording head
JPH02198857A (en) * 1989-01-28 1990-08-07 Canon Inc Manufacture of ink-jet recording head and ink-jet recording head manufactured through said method
US5849043A (en) * 1992-03-26 1998-12-15 Semiconductor Energy Laboratory Co., Ltd. Apparatus for laser ion doping
US6358784B1 (en) 1992-03-26 2002-03-19 Semiconductor Energy Laboratory Co., Ltd. Process for laser processing and apparatus for use in the same
US6655767B2 (en) 1992-03-26 2003-12-02 Semiconductor Energy Laboratory Co., Ltd. Active matrix display device
US7169657B2 (en) 1992-03-26 2007-01-30 Semiconductor Energy Laboratory Co., Ltd. Process for laser processing and apparatus for use in the same
US7781271B2 (en) 1992-03-26 2010-08-24 Semiconductor Energy Laboratory Co., Ltd. Process for laser processing and apparatus for use in the same
US7303980B2 (en) 1995-07-25 2007-12-04 Semiconductor Energy Laboratory Co., Ltd. Laser annealing method and apparatus
US7452788B2 (en) 1995-07-25 2008-11-18 Semiconductor Energy Laboratory Co., Ltd. Method of laser annealing using linear beam having quasi-trapezoidal energy profile for increased depth of focus

Also Published As

Publication number Publication date
JPH065778B2 (en) 1994-01-19

Similar Documents

Publication Publication Date Title
US4861964A (en) Laser scribing system and method
JP3436858B2 (en) Manufacturing method of thin film solar cell
EP1020934B1 (en) Laser processing of a thin film
US4874920A (en) Electronic device manufacturing methods
JP3414738B2 (en) Integrated laser patterning method for thin film solar cells
TWI332682B (en) Beam homogenizer and laser irradiation apparatus and method of manufacturing semiconductor device
US20050272175A1 (en) Laser structuring for manufacture of thin film silicon solar cells
TW201210731A (en) Laser processing with multiple beams and respective suitable laser optics head
JPH05218472A (en) Laser beam machining method of thin-film structure
JPH0472392B2 (en)
US20130270237A1 (en) Method for manufacturing and scribing a thin-film solar cell
JP3676202B2 (en) Method for manufacturing photovoltaic device
JP2010105012A (en) Laser beam machining apparatus
JPS62142370A (en) Manufacture of optical semiconductor device
JPS63215390A (en) Light machining method
JPH10125632A (en) Method and apparatus for laser etching
JP4078137B2 (en) How to set the laser beam pulse width
JP2000208798A (en) Processing of thin film constructed body
JP2000208799A (en) Method of processing thin-film body
JP2001119048A (en) Method for manufacturing integrated thin-film solar cell
JPH06292988A (en) Device and method for film processing
JP7418016B2 (en) Laser processing method, laser processing device, and solar cell manufacturing method
JPH0626207B2 (en) Light processing method
JP3286537B2 (en) Laser beam synthesis method
JPH0399479A (en) Manufacture of solar cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees