JPS62139816A - Manufacture of high tension and toughness steel plate - Google Patents

Manufacture of high tension and toughness steel plate

Info

Publication number
JPS62139816A
JPS62139816A JP28106985A JP28106985A JPS62139816A JP S62139816 A JPS62139816 A JP S62139816A JP 28106985 A JP28106985 A JP 28106985A JP 28106985 A JP28106985 A JP 28106985A JP S62139816 A JPS62139816 A JP S62139816A
Authority
JP
Japan
Prior art keywords
cooling
temperature
steel
toughness
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28106985A
Other languages
Japanese (ja)
Other versions
JPH0366367B2 (en
Inventor
Yoshiyuki Saito
斉藤 良行
Shuzo Ueda
上田 修三
Eiji Sugie
杉江 英司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP28106985A priority Critical patent/JPS62139816A/en
Publication of JPS62139816A publication Critical patent/JPS62139816A/en
Publication of JPH0366367B2 publication Critical patent/JPH0366367B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To manufacture nontempered high tension steel plate superior in toughness, by controlling heating rolling condition and cooling condition to specified ranges, at working plate material by hot rolling slab of carbon steel or low alloy steel. CONSTITUTION:Carbon steel or low alloy steel contains by weight 0.01-0.20% C, 0.1-0.5% Si, 0.6-2.0% Mn or further 0.003-0.08% rare earth element, 0.003-0.06% Zr and regulated quantities of 0.005-0.05% Al, <0.005% N. Slab of the carbon steel or low alloy steel is heated to 930-1,060 deg.C range to finely precipitate AlN, and to refine and uniformize austenite structure, then rolled to thick plate at uncrystallized austenite range by >=70% draft, and rolling is discontinued at time point when temp. at center part in plate thickness reaches 750-850 deg.C range. When the temp. at center part in plate thickness reaches >=750 deg.C temp., the plate is cooled so that cooling rate at center part in plate thickness attains 1-8 deg.C, and cooling is stopped at 200-500 deg.C.

Description

【発明の詳細な説明】 (産業上の利用分野) じん性のすぐれた非調質高張力鋼板の製造方法に関し、
とくに加熱圧延条件と冷却条件を制御することにより、
じん性の劣化なしに高強度化して、しかも板表面から中
心まで均一な機械的性質を具備させることについての開
発研究の成果を以下に述べる。
[Detailed Description of the Invention] (Industrial Application Field) Regarding a method for manufacturing a non-tempered high tensile strength steel plate with excellent toughness,
In particular, by controlling hot rolling conditions and cooling conditions,
The results of our research and development efforts to increase strength without deteriorating toughness and provide uniform mechanical properties from the surface to the center of the plate are described below.

(従来の技術) 加熱圧延条件及び冷却条件の適当な組合せにより非調質
高張力鋼板を製造する方法についてはよく知られている
。たとえば特公昭55−30047号公報に示すところ
によればC: 0.03〜0.20wt%(以下単に%
と示す) 、St : 0.05〜0.60%、Mn二
0.50〜1.8%を基本成分とし、これに特殊元素を
添加する場合には0.10%以下のAl.0.50%以
下のCu、1%以下の旧、0.50%以下のCr、0.
03%以下のMOlo、20%以下の■、0.10%以
下のNb、0.10%以下のTiを1 、fffi又は
2種含有させ残部は鉄および不可避的不純物よりなる鋼
を800〜■000°Cの温度範囲に加熱後50%以上
の加工度を施し800℃以下の温度で熱間圧延終了後直
ちに2・〜15°C/secの冷却速度で600°C以
下の任意の温度まで冷却することによりじん性を劣化さ
せず高強度を附与した非3I]i高張力鋼板が製造でき
るとしている。
(Prior Art) A method for producing a non-thermal high tensile strength steel plate by appropriately combining hot rolling conditions and cooling conditions is well known. For example, according to Japanese Patent Publication No. 55-30047, C: 0.03 to 0.20 wt% (hereinafter simply %
), St: 0.05-0.60%, Mn2: 0.50-1.8% as basic components, and when special elements are added to this, Al. 0.50% or less Cu, 1% or less old, 0.50% or less Cr, 0.
Steel containing 0.03% or less MOlo, 20% or less ■, 0.10% or less Nb, and 0.10% or less Ti, with the balance consisting of iron and inevitable impurities. After heating in the temperature range of 000°C, the degree of working is 50% or more, and immediately after hot rolling at a temperature of 800°C or less, the cooling rate is 2-15°C/sec to any temperature below 600°C. It is said that by cooling, it is possible to produce a non-3I]i high-strength steel sheet that has high strength without deteriorating its toughness.

(発明が解決しようとする問題点) しかし上掲公報の開示に代表される公知の製造方法を工
業的規模の鋼板製造ラインに適用した場合に、下記に示
すような技術的問題点があり、必ずしも目的とする高張
力高靭性鋼板が製造できるとはかぎらないことが解明さ
れた。
(Problems to be Solved by the Invention) However, when the known manufacturing method as typified by the disclosure in the above publication is applied to an industrial scale steel sheet manufacturing line, there are technical problems as shown below. It has become clear that it is not always possible to produce the desired high-tensile, high-toughness steel plate.

(1)加熱温度がAc3近傍であっても完全にオーステ
ナイト化を完了しない限り、圧延・冷却後に異常組織が
出現し、じん性が劣化すること。
(1) Even if the heating temperature is around Ac3, unless austenitization is completely completed, an abnormal structure will appear after rolling and cooling, and the toughness will deteriorate.

(2)全加工度を大きくしたとしてもとくに未再結晶域
での加工度が小さい場合には変態後の結晶粒径が十分微
細化せず、十分なしん性が得られないこと。
(2) Even if the total working degree is increased, especially if the working degree in the non-recrystallized region is small, the crystal grain size after transformation will not be sufficiently refined and sufficient toughness will not be obtained.

(3)圧延終了温度、冷却開始温度の管理が不十分な場
合には強度上昇量の制御ができず、特に板厚が厚(なる
と冷却速度が異なる板表面と中心に大きな強度差を生じ
ること。
(3) If the rolling end temperature and cooling start temperature are insufficiently controlled, the amount of increase in strength cannot be controlled, and especially when the plate thickness is thick (the cooling rate differs, a large strength difference will occur between the plate surface and the center). .

(4)冷却停止温度が高すぎる場合には十分な強度上昇
効果が得られず、また逆に低すぎる場合には低温変態組
織を生成しじん性が劣化すること。
(4) If the cooling stop temperature is too high, a sufficient strength-increasing effect cannot be obtained; on the other hand, if it is too low, a low-temperature transformed structure is generated and the toughness is deteriorated.

したがって加熱条件、圧延条件、冷却条件の管理を厳密
に行い、加熱時のオーステナイト粒成長挙動の制御、オ
ーステナイト低温域圧延によるフェライト変態の促進、
及び冷却時の第2相変態挙動の制御による、じん性にす
ぐれとくに厚さ方向に均一な強度を有する高張力鋼板の
製造技術を確立することが必要であり、しかも工業的規
模での生産を考えた場合多少の条件変動があっても強度
・じん性の変化が小さくなるような制御圧延・制御冷却
方法が望まれるわけ、である。
Therefore, heating conditions, rolling conditions, and cooling conditions are strictly controlled to control austenite grain growth behavior during heating, promote ferrite transformation by rolling austenite in a low temperature range,
It is necessary to establish a manufacturing technology for high-strength steel sheets with excellent toughness and uniform strength in the thickness direction by controlling the second phase transformation behavior during cooling. Considering this, it is desirable to have a controlled rolling/cooling method that minimizes changes in strength and toughness even if there are slight variations in conditions.

(問題点を解決するための手段) この発明は炭素鋼または低合金を930〜1060°C
の温度範囲に加熱後、未再結晶オーステナイト域で70
%以上の加工度を施し、板厚中心部の温度が750〜8
50°Cの温度範囲にて熱間圧延を終了し、板厚中心部
で750℃以上の温度から、板厚中心部における1〜8
°C/秒の冷却速度範囲で冷却を行い、板厚中心部の温
度が200〜500°Cの温度範囲にて冷却を停止する ことを特徴とする高張力高じん性鋼板の製造方法である
(Means for Solving the Problems) This invention heats carbon steel or low alloy at a temperature of 930 to 1060°C.
70 in the unrecrystallized austenite region after heating to a temperature range of
The temperature at the center of the plate thickness is 750~8.
Hot rolling is completed in a temperature range of 50°C, and from a temperature of 750°C or higher at the center of the plate thickness, 1 to 8 at the center of the plate thickness.
A method for producing a high tensile strength steel sheet, characterized in that cooling is performed at a cooling rate range of °C/sec, and cooling is stopped when the temperature at the center of the sheet thickness is in the temperature range of 200 to 500 °C. .

この製造方法は炭素鋼又は低合金鋼が化学成分としてA
l:0.005〜0.08wt%、N :0.005w
t%以下を含有するか又は炭素鋼又は低合金鋼が化学成
分としてAl:0.005〜0.08wt%、N:0.
005ivt%以下を含有しさらに全希土類元素:0.
003〜0.03wt%及び/又はZr:0.003〜
0.06wt%を含有する場合においてとくに好適であ
り、またこれらの成分以外の一般的な鋼中成分の組成範
囲については次のとおりである。
This manufacturing method uses carbon steel or low alloy steel as a chemical component.
l: 0.005-0.08wt%, N: 0.005w
t% or less, or carbon steel or low alloy steel contains Al: 0.005 to 0.08 wt%, N: 0.
0.005ivt% or less, and further contains total rare earth elements: 0.
003~0.03wt% and/or Zr: 0.003~
It is particularly suitable when the content is 0.06 wt%, and the composition ranges of general components in steel other than these components are as follows.

C:o、oi〜0.20wt%  Si:0.1〜0.
5 wt%Mn : 0.6〜2.Owt% 発明者らは種々の加熱条件、圧延条件、冷却条件での加
工熱処理実験をくりかえした結果炭素鋼または低合金鋼
の組織、強度しん性の変化について以下のような知見を
得た。
C: o, oi~0.20wt% Si: 0.1~0.
5 wt%Mn: 0.6-2. Owt% As a result of repeated processing heat treatment experiments under various heating conditions, rolling conditions, and cooling conditions, the inventors obtained the following findings regarding changes in the structure and strength toughness of carbon steel or low alloy steel.

(1)加熱温度を930℃〜1060°Cに制御するこ
とにより加熱時の組織は完全にオーステナイト化し、し
かもオーステナイト粒の粗大化も起こらない。
(1) By controlling the heating temperature to 930°C to 1060°C, the structure during heating is completely austenitized, and no coarsening of austenite grains occurs.

また特に970〜1030℃の温度範囲においては均一
なオーステナイト粒が得られる。
Moreover, uniform austenite grains can be obtained especially in the temperature range of 970 to 1030°C.

(2)  フェライト粒核形成サイトとなるオーステナ
イト中への変形帯を必要量生成させるためには未再結晶
域での累積圧下率を70%以上にする必要がある。
(2) In order to generate the necessary amount of deformation bands in austenite that serve as ferrite grain nucleation sites, the cumulative reduction rate in the non-recrystallized region must be 70% or more.

(3)  板厚中心部が未再結晶オーステナイト、表層
部がオーステナイト+フェライト状態から強制冷却する
と、水量、冷却時間を適正に制御することにより、表層
部は微細フェライト士パーライト、中心部は微細フェラ
イト+ベイナイト組織となり、均一な強度が得られる。
(3) When forced cooling is performed from a state where the central part of the plate thickness is unrecrystallized austenite and the surface part is austenite + ferrite, by appropriately controlling the amount of water and cooling time, the surface part becomes fine ferrite or pearlite, and the center part becomes fine ferrite. + It becomes a bainite structure, and uniform strength is obtained.

この発明は以上の発見事実に立脚している。この発明で
は、熱間圧延終了温度、冷却開始温度、冷却速度及び冷
却停止温度につき、板厚中心部における値をもって、制
御要因とし、そのためこれらの値は のようにして正しく把握することが重要である。
This invention is based on the above findings. In this invention, the values at the center of the plate thickness are used as control factors for the hot rolling end temperature, cooling start temperature, cooling rate, and cooling stop temperature, and it is therefore important to correctly understand these values as follows. be.

(作 用) 圧延条件について、 大量生産の場において、加熱時に綱片の各部で完全にオ
ーステナイト化するためには加熱温度の下限を930″
Cとする必要がある。また加熱時のオーステナイト粒の
粗大化を防止するためには加熱温度の上限を1060℃
にする必要がある。またそのうち炭窒化物が固溶し均一
で微細なオーステナイト粒を得ることができる970〜
1030℃の加熱範囲がとくにのぞましい。
(Function) Concerning rolling conditions, in mass production, in order to completely austenite each part of the strip during heating, the lower limit of the heating temperature should be set to 930".
It needs to be C. In addition, in order to prevent the austenite grains from becoming coarse during heating, the upper limit of the heating temperature should be set to 1060°C.
It is necessary to In addition, carbonitrides are dissolved in solid solution and uniform and fine austenite grains can be obtained from 970~
A heating range of 1030°C is particularly desirable.

次に十分な低温じん性を得るためには、加熱時のオース
テナイト粒の微細化のみでは不十分であり、オーステナ
イト粒界以外にもフェライトの核形成サイトを導入して
、フェライト核形成能を高める必要がある。このために
は未再結晶域加工度を70%以上としオーステナイト中
の変形帯密度を冑くする必要がある。
Next, in order to obtain sufficient low-temperature toughness, it is not sufficient to refine the austenite grains during heating, but to increase the ferrite nucleation ability by introducing ferrite nucleation sites other than the austenite grain boundaries. There is a need. For this purpose, it is necessary to increase the degree of working in the non-recrystallized region to 70% or more and to reduce the density of deformation bands in austenite.

未再結晶域の加工度が70%以下では変形帯密度の十分
高い値が得られない。
If the working degree of the non-recrystallized region is 70% or less, a sufficiently high value of the deformation band density cannot be obtained.

板厚方向の強度変動を小さくし均一な鋼板を得るために
は圧延終了温度、そしてさらには冷却開始温度を制御し
表面と中心部の冷却速度差にともなう強度変動量を冷却
前の組織の差にともなう焼入性の違いにより補償する必
要がある。
In order to reduce strength fluctuations in the thickness direction and obtain a uniform steel sheet, the rolling end temperature and even the cooling start temperature are controlled to reduce the strength fluctuations due to the difference in cooling rate between the surface and the center by controlling the difference in the structure before cooling. It is necessary to compensate for the difference in hardenability caused by the difference in hardenability.

これらの温度の制御は、冷却速度のもっとも遅い板厚中
心部で行う必要がある。
These temperatures must be controlled at the center of the plate thickness, where the cooling rate is slowest.

十分な低温じん性を得るための圧延終了温度は板厚中心
部の温度の上限を850℃にする必要がありそれという
のは850’Cをこえると未再結晶域圧延の硬化が十分
発揮されずじん性が劣化する。また冷却による強度上昇
効果を十分に発揮させるためには圧延終了時の板厚中心
部の温度の下限を750℃にする必要があり、750℃
よりも低くなった場合にはオーステナイト−フェライト
域でのフェライト加工により変態が起こりやすくなり、
焼入性が低下し十分な強度上昇効果は得られない。
In order to obtain sufficient low-temperature toughness, the upper limit of the rolling end temperature at the center of the plate thickness must be 850°C, because if the temperature exceeds 850°C, the hardening of the rolling in the non-recrystallized region will be fully exerted. The toughness deteriorates. In addition, in order to fully demonstrate the strength increasing effect of cooling, the lower limit of the temperature at the center of the plate thickness at the end of rolling must be 750°C.
If the value is lower than , transformation is likely to occur due to ferrite processing in the austenite-ferrite region,
Hardenability deteriorates and a sufficient strength increase effect cannot be obtained.

とくに板厚が厚い場合には表層部はオーステナイト−フ
ェライト2相域となるが、冷却速度を速くして焼入性の
低下を補償できる。この場合には表層部は微細フェライ
ト+パーライト、中心部は微細なフェライト+ベイナイ
トとなるが、両者のフェライト強度の差とパーライト、
ベイナイト強度差は中心部の圧延終了温度が750℃以
上ではうまくバランスし板厚方向に均一な強度分布が得
られることによる。
In particular, when the plate thickness is thick, the surface layer becomes an austenite-ferrite two-phase region, but the decrease in hardenability can be compensated for by increasing the cooling rate. In this case, the surface layer will be fine ferrite + pearlite, and the center will be fine ferrite + bainite, but due to the difference in ferrite strength between the two, pearlite,
The difference in bainite strength is due to the fact that when the rolling end temperature in the center is 750° C. or higher, it is well balanced and a uniform strength distribution in the thickness direction is obtained.

従って板厚中心部での圧延終了温度は好ましくは800
〜850℃に限定され、この温度範囲においては冷却後
の組織が表面、中心ともに微細フェライト+ベイナイト
となり、強度のみならずU織も均一となる。
Therefore, the rolling end temperature at the center of the plate thickness is preferably 800.
The temperature is limited to ~850°C, and in this temperature range, the structure after cooling becomes fine ferrite + bainite on both the surface and center, and not only the strength but also the U weave becomes uniform.

冷却条件について 圧延終了温度の限定に関してのべたところと同し技術的
な意味合いで冷却開始温度は750℃以上、好ましくは
800°C以上に限定される。
Regarding the cooling conditions, the cooling start temperature is limited to 750°C or higher, preferably 800°C or higher, for the same technical reasons as described above regarding the limitation of the rolling end temperature.

冷却による強度上昇効果を十分発揮させるために板厚中
心部冷却速度の下限を1°C/秒にする必要がある。1
’C/秒未満では冷却による強度上昇効果が顕著でない
In order to fully exhibit the strength-increasing effect of cooling, it is necessary to set the lower limit of the cooling rate at the center of the plate thickness to 1°C/sec. 1
Below 'C/sec, the strength increasing effect due to cooling is not significant.

また本発明での冷却停止温度200〜500℃において
形状のすぐれた鋼板を製造するためには冷却速度の上限
を8℃/秒にする必要がある。8℃/秒超で200〜5
00℃まで冷却すると膜沸騰から核沸騰への遷移による
微妙な温度のバランスのくずれにより、ひずみを生じ形
状が悪くなる。
Further, in order to produce a steel plate with an excellent shape at a cooling stop temperature of 200 to 500°C in the present invention, it is necessary to set the upper limit of the cooling rate to 8°C/sec. 200-5 at over 8℃/sec
When cooled to 00°C, the delicate temperature balance is disrupted due to the transition from film boiling to nucleate boiling, causing distortion and deteriorating the shape.

板厚中心部での冷却停止温度を200〜500°Cに限
定したのは以下の理由による。
The reason why the cooling stop temperature at the center of the plate thickness was limited to 200 to 500°C is as follows.

冷却停止温度が500℃超では冷却による強度上昇効果
が顕著ではない。また冷却停止温度が200°C未満で
は低温変態組織が多量に生成されしん1生が劣化する。
When the cooling stop temperature exceeds 500°C, the effect of increasing strength due to cooling is not significant. Further, if the cooling stop temperature is less than 200°C, a large amount of low-temperature transformed structure is generated and the steel quality deteriorates.

板厚が厚い場合には表層部は一時的には室温付近まで冷
却されるが、復熱効果により温度が上昇するため、中心
部の温度が200°C以上であれば多量の低温変態組織
の生成をさけることができる。
When the plate is thick, the surface layer is temporarily cooled to around room temperature, but the temperature rises due to the recuperation effect, so if the temperature at the center is over 200°C, a large amount of low-temperature transformed structure will be formed. You can avoid generation.

この発明は特にこれまで板厚方向での均一な機械的性質
を得ることが困難であった板厚6011以上の鋼板に有
効である。
This invention is particularly effective for steel plates with a thickness of 6011 mm or more, for which it has been difficult to obtain uniform mechanical properties in the thickness direction.

この発明は炭素鋼または低合金鋼を対象とし、その成分
組成については次の技術的意義をもつ。
This invention targets carbon steel or low alloy steel, and its composition has the following technical significance.

Cは0.01wt%未満では鋼の強度が低下し、母材の
熱影響部(以下11AZと記す)の軟化が顕著となる一
方、0゜20wt%を越えると母材靭性の劣化および溶
接部の硬化、耐割れ性の劣化が大きくなることがらCの
適正範囲は0.01〜0.2.wt%である。
If C is less than 0.01wt%, the strength of the steel will decrease and the heat-affected zone (hereinafter referred to as 11AZ) of the base metal will become noticeably softened, while if it exceeds 0.20wt%, the toughness of the base metal will deteriorate and the weld zone will deteriorate. The appropriate range of C is 0.01 to 0.2. It is wt%.

Siは0.1 wt%未満では母材じん性の劣化を招き
、一方0.5 wt%を越えると綱の清浄度が低下して
じん性劣化をまねくことから、Siの適正範囲は0.1
〜0.5 wt%にする必要がある。
If Si is less than 0.1 wt%, it will cause a deterioration in the toughness of the base material, while if it exceeds 0.5 wt%, the cleanliness of the rope will decrease and the toughness will deteriorate, so the appropriate range for Si is 0. 1
~0.5 wt%.

Mnは0.6 wt%未満では鋼の強度、じん性が劣化
しIIAZが軟化する傾向にある。しかし2wt%を越
えるとIIAZのじん性が低下するため、Mnの適正範
囲は0.6〜2.0賀t%である。
When Mn is less than 0.6 wt%, the strength and toughness of the steel tend to deteriorate and IIAZ tends to soften. However, if it exceeds 2 wt%, the toughness of IIAZ decreases, so the appropriate range for Mn is 0.6 to 2.0 wt%.

さらにこの発明の効果をより有効に発揮させるため鋼の
化学成分のうちAlとNは、それぞれ八l:0.005
〜0.08%、N :0.005%以下が望ましい。鋼
片を加熱前にAIとNを固溶させ930〜1060’c
の温度範囲での加熱を行ったときAINを微細に析出さ
せることによりオーステナイト組織を微細化かつ均一化
させるというのがその技術内容であるが、Al量、Nl
の上限は鋼片の冷却中におけるAINの析出を防止する
ためであり、Al量の下限は加熱時に有効なAINの体
積分率を確保するためである。
Furthermore, in order to more effectively exhibit the effects of this invention, among the chemical components of steel, Al and N are each 8l:0.005.
~0.08%, N: 0.005% or less is desirable. Before heating the steel piece, AI and N are dissolved in solid solution to 930~1060'c.
The technology is to make the austenite structure finer and more uniform by finely precipitating AIN when heated in a temperature range of
The upper limit of the amount of Al is to prevent precipitation of AIN during cooling of the steel billet, and the lower limit of the amount of Al is to ensure an effective volume fraction of AIN during heating.

Al:0.005〜0.08wt%、N量:0.005
wt%以下にすると鋼片の冷却速度が遅くなるような大
型素材についてもAINの析出が防止され、加熱時の微
細析出物生成が容易になる。
Al: 0.005-0.08wt%, N amount: 0.005
When the content is less than wt%, precipitation of AIN is prevented even in large materials where the cooling rate of the steel billet is slow, and formation of fine precipitates during heating is facilitated.

上記成分にさらに希土類元素及び/又はZrを適量加え
ることによりじん性の改善効果が著しくなる。
By further adding appropriate amounts of rare earth elements and/or Zr to the above components, the effect of improving toughness becomes remarkable.

すなわち微細な炭窒化物を加熱時に生成してオーステナ
イトを微細化するとともにフェライト核形成サイトとな
り未再結晶域圧延の効果をより有効に発揮させるからで
ある。希土類元素量は0.003〜0.03wt%また
Zrは0.003〜0.06wt%が好ましく、これら
添加量の上限は鋼片冷却時の析出防止のためであり、下
限は加熱時に十分な体積分率を確保するためである。
That is, fine carbonitrides are generated during heating, which refine the austenite and also serve as ferrite nucleation sites, making the effect of rolling in the non-recrystallized region more effective. The amount of rare earth elements is preferably 0.003 to 0.03 wt%, and the amount of Zr is preferably 0.003 to 0.06 wt%. This is to ensure the volume fraction.

(実施例) 実施例1 供試鋼の成分を表1に示し、この供試鋼のオーステナイ
ト未再結晶温度域は875℃である。
(Example) Example 1 The composition of the test steel is shown in Table 1, and the austenite non-recrystallization temperature range of this test steel is 875°C.

表2に示す加熱、熱間圧延、冷却条件で板厚60■識の
厚板を製造した。
A thick plate having a thickness of 60 mm was manufactured under the heating, hot rolling, and cooling conditions shown in Table 2.

板厚中心部での機械的性質を表2に示す。Table 2 shows the mechanical properties at the center of the plate thickness.

表2から加熱温度が1100℃(番号1)あるいは85
0℃(番号4)と加熱温度の上限あるいは下限をはずれ
る場合には、−75℃あるいは一55℃のvTrsしか
得られないが、1020℃(番号2)あるいは960℃
(番号3)の場合はvTrsが一110℃以下となりす
ぐれた低温じん性を示す。また好適範囲である1020
℃では引張強さ56kgf/am2と高い値を示す。
From Table 2, the heating temperature is 1100℃ (number 1) or 85℃.
If the heating temperature is outside the upper or lower limit of 0°C (number 4), only -75°C or -55°C vTrs can be obtained;
In the case of (number 3), vTrs is 1110°C or less, indicating excellent low-temperature toughness. Also, 1020 is a suitable range.
℃ shows a high tensile strength of 56 kgf/am2.

未再結晶域圧下率を50%に減少させる(番号5)とv
Trsが一70℃となりじん性が劣化する。
Decrease the unrecrystallized area reduction rate to 50% (number 5) and v
Trs becomes 170°C and the toughness deteriorates.

圧延終了温度が875℃(番号6)と高い場合にはvT
rs −65℃となり十分な低温じん性が得られない。
If the rolling end temperature is as high as 875°C (number 6), vT
rs -65°C, and sufficient low-temperature toughness cannot be obtained.

また圧延終了温度が715℃と低くなった場合(番号8
)には低温じん性はすぐれているが、引張強さが48k
irf/mm2と十分な冷却による強度上昇がみられな
い。
Also, when the rolling end temperature is as low as 715℃ (number 8
) has excellent low-temperature toughness, but its tensile strength is only 48K.
irf/mm2, and no increase in strength was observed due to sufficient cooling.

圧延終了温度が760℃で^r、付近にあっても750
°C以上で冷却(番号7)すれば52kgf/龍2と十
分な引張強さが得られるのに反し冷却開始温度が712
°Cと低くなる(番号9)と引張強度は49kgf/龍
2に下り冷却による強度上昇効果が顕著でなくなる。
The rolling end temperature is 760℃^r, even if it is around 750℃
If you cool it above °C (number 7), you can obtain a sufficient tensile strength of 52 kgf/Ryu2, but the cooling start temperature is 712 kgf/Ryu2.
When the temperature becomes low (number 9), the tensile strength decreases to 49 kgf/Ryu 2, and the strength increasing effect due to cooling becomes less noticeable.

圧延後空冷(番号10)シた場合には当然のことながら
引張強さは46kgf/mm2と低いが2.5℃/秒の
速度で強制冷却(番号11)を行うことにより引張強さ
は51kgf/w2と5kgf/sn2もの強度上昇が
ある。
Naturally, when air cooling (No. 10) is performed after rolling, the tensile strength is as low as 46 kgf/mm2, but by forced cooling at a rate of 2.5°C/sec (No. 11), the tensile strength is 51 kgf. /w2 and 5kgf/sn2 strength increase.

冷却停止温度が550℃(番号12)と高くなると強度
上昇効果が得られない。また室温まで冷却するとく番号
14)じん性が劣化するが、冷却停止温度を250℃ま
で上昇させることによりじん性の劣化はみられずvTr
s −108℃とすぐれた低温じん性を示す。
If the cooling stop temperature is as high as 550° C. (number 12), no strength increase effect can be obtained. In addition, when cooling to room temperature, the toughness deteriorates (No. 14), but by increasing the cooling stop temperature to 250°C, no deterioration in toughness was observed and vTr
Shows excellent low-temperature toughness at -108°C.

実施例2 表3に成分を示す供試鋼を、1000℃に加熱後875
℃〜790℃または圧延終了温度の未再結晶域で76%
の加工を行った後、板厚中心での圧延終了温度を表4に
示す条件で変化させ60龍の厚板に圧延後、ただちに冷
却を開始し、中心部の冷却速度5℃/秒で400℃まで
冷却した。表面下5龍と中心部の引張強さを表4にあわ
せ示す。
Example 2 A test steel whose composition is shown in Table 3 was heated to 1000°C and then heated to 875°C.
℃~790℃ or 76% in non-recrystallized area of rolling end temperature
After processing, the rolling end temperature at the center of the plate thickness was varied under the conditions shown in Table 4, and after rolling to a thick plate of 60 mm, cooling was immediately started, and the cooling rate at the center was 5℃/sec. Cooled to ℃. Table 4 also shows the tensile strength of the 5 dragons below the surface and the center.

表3 表4 表4に示すように圧延終了温度が750〜850℃の範
囲である番号2.3.4は表層部と中心部の引張強さの
差が2kgf/mm”と小さいが、圧延終了温度が87
5°Cのように高すぎる場合は強度差が5kgf/鳳冒
2と大きくなる。
Table 3 Table 4 As shown in Table 4, for numbers 2.3.4 whose rolling end temperature is in the range of 750 to 850°C, the difference in tensile strength between the surface layer and the center is as small as 2 kgf/mm. End temperature is 87
If the temperature is too high, such as 5°C, the difference in strength will be as large as 5kgf/2.

また圧延終了温度が750°C以下になれば中心部の強
度が低下することがわかり、板厚方向に均一な強度を得
るためには圧延終了温度を750〜850℃以内に限定
する必要があることがわかる。
It was also found that the strength at the center decreases when the rolling end temperature is below 750°C, and in order to obtain uniform strength in the thickness direction, it is necessary to limit the rolling end temperature to within 750 to 850°C. I understand that.

実施例3 表5に成分を示す供試!it (A) 、 (B) 、
 (C) 、 (D)を1000°Cに加熱後、875
℃〜815℃のオーステナイト未再結晶域で76%の加
工度を施し中心温度815℃で圧延を終了後、810℃
から冷却を開始し、中心部の冷却速度4℃/秒にて中心
温度400°Cで冷却を終了し75龍厚の厚鋼板を製造
した。得られた板厚中心部での機械的性質を表6に示す
Example 3 Test sample whose components are shown in Table 5! it (A), (B),
After heating (C) and (D) to 1000°C, 875
After applying 76% working in the austenite non-recrystallized region between ℃ and 815℃ and finishing rolling at a center temperature of 815℃, the rolling process was completed at 810℃.
Cooling was started from , and cooling was completed at a center temperature of 400°C at a cooling rate of 4°C/sec to produce a thick steel plate with a thickness of 75 mm. Table 6 shows the mechanical properties at the center of the plate thickness obtained.

表5 表6 表6に示すようにNlの高い(A)鋼について引張強度
53kgf/mm2、vTrs−95℃、vE−6o 
14.5kgf−mとかなりすくれた値を示すが、N量
を28 ppmにさげることによりvTrs −110
°c 、 vE−6o:20.5kgf−mとじん性の
向上効果が著しい。さらに希土類元素添加の(C)鋼、
Zr添加の(D)鋼はそれぞれvTrs−125°C,
vE−ao:24.3kgf HmおよびvTrs −
123°C1vE−bo:24.5kgf−mと靭性の
向上が顕著になり、Rem及び/又はZrの添加による
しん性向上効果も明らかである。
Table 5 Table 6 As shown in Table 6, the steel (A) with high Nl has a tensile strength of 53 kgf/mm2, vTrs-95℃, vE-6o
Although it shows a rather low value of 14.5 kgf-m, by reducing the amount of N to 28 ppm, vTrs -110
°c, vE-6o: 20.5 kgf-m, and the effect of improving toughness is remarkable. Furthermore, (C) steel with addition of rare earth elements,
Zr-added (D) steel is vTrs-125°C, respectively.
vE-ao: 24.3 kgf Hm and vTrs −
123°C1vE-bo: 24.5 kgf-m, the improvement in toughness is remarkable, and the effect of improving toughness due to the addition of Rem and/or Zr is also obvious.

(発明の効果) この発明は工業的規模で安定に高張力高じん性鋼板を製
造することができ、加熱、圧延、冷却の管理ポイントは
かなりゆるやかな条件で与えられているため、大量生産
の場においても安定に目標とした鋼板の機械的性質を得
ることができる。
(Effects of the invention) This invention can stably produce high-tensile, high-tension steel sheets on an industrial scale, and the control points of heating, rolling, and cooling are given under fairly loose conditions, making it possible to produce large-scale production. It is possible to stably obtain the targeted mechanical properties of the steel sheet even in the field.

Claims (1)

【特許請求の範囲】 1、炭素鋼または低合金鋼を930〜1060℃の温度
範囲に加熱後、未再結晶オーステナイト域で70%以上
の加工度を施し、板厚中心部の温度が750〜850℃
の温度範囲にて熱間圧延を終了し、 板厚中心部で750℃以上の温度から、板厚中心部にお
ける1〜8℃/秒の冷却速度範囲で冷却を行い、板厚中
心部の温度が200〜500℃の温度範囲にて冷却を停
止する ことを特徴とする高張力高じん性鋼板の製造方法。 2、炭素鋼又は低合金鋼が化学成分としてAl:0.0
05〜0.08wt%、N:0.005wt%以下を含
有するのものである、1記載の方法。 3、炭素鋼又は低合金鋼が化学成分としてAl:0.0
05〜0.08wt%、N:0.005wt%以下を含
有しさらに全希土類元素:0.003〜0.03wt%
及び/又はZr:0.003〜0.06wt%を含有す
るものである、1記載の方法。
[Claims] 1. Carbon steel or low alloy steel is heated to a temperature range of 930 to 1060°C, and then processed to a degree of working of 70% or more in the unrecrystallized austenite region, so that the temperature at the center of the plate thickness is 750 to 1060°C. 850℃
The hot rolling is completed in the temperature range of 1. A method for producing a high tensile strength steel sheet, characterized in that cooling is stopped in a temperature range of 200 to 500°C. 2. Carbon steel or low alloy steel has Al as a chemical component: 0.0
05 to 0.08 wt%, N: 0.005 wt% or less, the method according to 1. 3. Carbon steel or low alloy steel has Al as a chemical component: 0.0
05 to 0.08 wt%, N: 0.005 wt% or less, and total rare earth elements: 0.003 to 0.03 wt%
and/or Zr: 0.003 to 0.06 wt%.
JP28106985A 1985-12-16 1985-12-16 Manufacture of high tension and toughness steel plate Granted JPS62139816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28106985A JPS62139816A (en) 1985-12-16 1985-12-16 Manufacture of high tension and toughness steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28106985A JPS62139816A (en) 1985-12-16 1985-12-16 Manufacture of high tension and toughness steel plate

Publications (2)

Publication Number Publication Date
JPS62139816A true JPS62139816A (en) 1987-06-23
JPH0366367B2 JPH0366367B2 (en) 1991-10-17

Family

ID=17633878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28106985A Granted JPS62139816A (en) 1985-12-16 1985-12-16 Manufacture of high tension and toughness steel plate

Country Status (1)

Country Link
JP (1) JPS62139816A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100346307B1 (en) * 1999-12-15 2002-07-26 두산중공업 주식회사 A Low Alloy Steel added Al and N for High Tough Nuclear Reactor Pressure Vessel

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006118069A1 (en) 2005-04-28 2006-11-09 Eagle Industry Co., Ltd. Mechanical seal device
WO2008013147A1 (en) 2006-07-25 2008-01-31 Eagle Industry Co., Ltd. Mechanical seal device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59182915A (en) * 1983-03-31 1984-10-17 Sumitomo Metal Ind Ltd Production of high tensile steel
JPS59190323A (en) * 1983-04-12 1984-10-29 Nippon Steel Corp Production of low temperature steel
JPS6289815A (en) * 1985-10-15 1987-04-24 Kobe Steel Ltd Manufacture of high yield point steel for low temperature

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59182915A (en) * 1983-03-31 1984-10-17 Sumitomo Metal Ind Ltd Production of high tensile steel
JPS59190323A (en) * 1983-04-12 1984-10-29 Nippon Steel Corp Production of low temperature steel
JPS6289815A (en) * 1985-10-15 1987-04-24 Kobe Steel Ltd Manufacture of high yield point steel for low temperature

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100346307B1 (en) * 1999-12-15 2002-07-26 두산중공업 주식회사 A Low Alloy Steel added Al and N for High Tough Nuclear Reactor Pressure Vessel

Also Published As

Publication number Publication date
JPH0366367B2 (en) 1991-10-17

Similar Documents

Publication Publication Date Title
JPS6155572B2 (en)
JPS63286517A (en) Manufacture of high-tensile steel with low yielding ratio
JPS6156235A (en) Manufacture of high toughness nontemper steel
JPS62139816A (en) Manufacture of high tension and toughness steel plate
JPS6167717A (en) Manufacture of high tension steel plate having superior strength and toughness in its weld heat-affected zone
JPH07173534A (en) Production of ni-containing steel sheet excellent in toughness and workability
JPS58120720A (en) Production of tempered steel
JPS6289815A (en) Manufacture of high yield point steel for low temperature
JPH1192860A (en) Steel having ultrafine ferritic structure
JPH0445227A (en) Production of steel product with low yield ratio
JPH0192317A (en) Manufacture of high-strength sheet metal excellent in stretch-flange workability
JPS63179019A (en) Manufacture of high tension steel plate having low yield ratio
JPS61127814A (en) Manufacture of high tension steel plate having excellent low-temperature toughness
JPH02133518A (en) Production of high tensile steel products having excellent low-temperature toughness
JPS6324012A (en) Production of low yielding ratio high-tensile steel plate by direct hardening and tempering method
JPS63293110A (en) Production of thick steel plate having high strength, high toughness and low yield ratio
JPS5896819A (en) Production of low ni alloy steel plate having excellent low-temperature toughness
JPS63140034A (en) Production of low yield ratio high tensile steel having excellent low-temperature toughness
JPH0112814B2 (en)
JPH05171263A (en) Two phase range hardening method for b-adding steel
JPS62149812A (en) Production of low temperature steel plate of 40kgf/mm2 yield point glass
JPS5980718A (en) Manufacture of steel material for low temperature use with high toughness
JPH04141519A (en) Production of structural steel plate excellent in toughness at low temperature and having high young&#39;s modulus
JPH042718A (en) Production of medium strength steel plate having high yield point and high toughness
JPS62130216A (en) Production of accelerated cooling type thick, high toughness, high tensile steel sheet

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees