JPS62137873A - Manufacture of photoelectric conversion device - Google Patents

Manufacture of photoelectric conversion device

Info

Publication number
JPS62137873A
JPS62137873A JP60278013A JP27801385A JPS62137873A JP S62137873 A JPS62137873 A JP S62137873A JP 60278013 A JP60278013 A JP 60278013A JP 27801385 A JP27801385 A JP 27801385A JP S62137873 A JPS62137873 A JP S62137873A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
substrate
amorphous silicon
silicon layer
conversion element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60278013A
Other languages
Japanese (ja)
Inventor
Kazuo Tozawa
戸沢 和夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP60278013A priority Critical patent/JPS62137873A/en
Publication of JPS62137873A publication Critical patent/JPS62137873A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To easily manufacture the titled device at low cost as well as to obtain a large short-circuit current and high photoelectric conversion efficiency copying the existing technique by a method wherein, after a photoelectric conversion element has been formed on a flat substrate, a photoelectric conversion device having a wave- formed plane of incidence is formed by bending the substrate. CONSTITUTION:A stainless steel plate 1 is prepared, and an almost rectangular dielectric pattern 2 is applied to the surface of the plate 1. Then, a P-type amorphous silicon layer 3a, an I-type amorphous silicon layer 3b and an N-type amorphous silicon layer 3c are formed successively in the prescribed thickness on the stainless steel plate 1 by performing a commonly used RF glow discharge decomposition method using a metal mask. Besides, a number of photoelectric conversion electrodes 5 are constituted by vacuum-depositing a transparent electrode 4 on the incidence side consisting of ITO film, for example, on the amorphous silicon layer 3c, and the aluminum electrode 6, with which the transparent electrode 5 of the adjoining photoelectric conversion element 5 is interconnected, is formed by performing a vacuum deposition. Lastly, the gap 7 between the adjoining photoelectric conversion elements 5 is fixed by a jig, and the substrate 1 is bent using said part as a boundary and it is formed in wave form.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光電変換装置の製造方法、特に基板を波形に折
り曲げて光電変換素子で反射される光を近傍の光電変換
素子に入射させることによって光電変換効率を向上した
光電変換装置の製造方法に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for manufacturing a photoelectric conversion device, in particular, a method for manufacturing a photoelectric conversion device, in particular, by bending a substrate into a waveform and making light reflected by a photoelectric conversion element enter a nearby photoelectric conversion element. The present invention relates to a method of manufacturing a photoelectric conversion device with improved photoelectric conversion efficiency.

(従来の技術) 従来、ガラス基板上に透明電極を形成し、その上に、例
えば水素化アモルファス・シリコン(α−8i  :H
)より成る光電変換層を堆積し、ざらにその上にアルミ
ニウム等の電極を堆積して太陽電池を構成することは既
知である。このような太陽電池ではガラス基板側を入射
側としているが、屈折率1の空気と、屈折率が約1.5
5のガラス基板と、屈折率的2.0の透明導電膜と、屈
折率3.5〜5のアモルファス・シリコンとから成る窓
側表面において反射が生じ、入射光の20〜30%の光
が反射されて損失となっている。このため、ガラス基板
表面に反射防止コートを被着し、透明電極表面を凹凸化
することも提案されているが、反射損失は依然として1
0〜20%もある。
(Prior Art) Conventionally, a transparent electrode is formed on a glass substrate, and hydrogenated amorphous silicon (α-8i:H
It is known that a solar cell can be constructed by depositing a photoelectric conversion layer consisting of a photovoltaic material (e.g., a photoelectric conversion layer) and roughly depositing an electrode such as aluminum on the photoelectric conversion layer. In such solar cells, the glass substrate side is the incident side, but air with a refractive index of 1 and air with a refractive index of approximately 1.5
Reflection occurs on the window side surface made of the glass substrate No. 5, a transparent conductive film with a refractive index of 2.0, and amorphous silicon with a refractive index of 3.5 to 5, and 20 to 30% of the incident light is reflected. This has resulted in a loss. For this reason, it has been proposed to apply an antireflection coating to the surface of the glass substrate and make the surface of the transparent electrode uneven, but the reflection loss still remains at 1.
It can range from 0 to 20%.

またステンレス基板上にアモルファスシリコンより成る
光電変換層をIft積し、さらに透明電極及びくし形の
アルミニウム等の金属を堆積して太陽電池を構成するこ
とも既知である。このような太陽電池において、透明導
電膜の厚さを反射防止の効果が最も大きくなるようにし
ても反射](」失は5〜30%もある。
It is also known to construct a solar cell by depositing a photoelectric conversion layer made of amorphous silicon on a stainless steel substrate, and further depositing a transparent electrode and a comb-shaped metal such as aluminum. In such a solar cell, even if the thickness of the transparent conductive film is set to maximize the antireflection effect, the loss of reflection still remains as much as 5 to 30%.

(発明が解決しようとする問題点) 上述したように基板表面での反射による損失を軽減する
ために、基板を波形とし、成る而で反射された光を隣接
する面に再び入射させるように構成することも考えられ
る。このように入射面を波形とするためには、基板も波
形とする必要があるが、このように波形の基板に太陽電
池を膜堆積技術やホトマスク技術を用いて形成すること
は実際上きわめて困難である。
(Problems to be Solved by the Invention) As mentioned above, in order to reduce the loss due to reflection on the substrate surface, the substrate is made into a corrugated shape so that the reflected light enters the adjacent surface again. It is also possible to do so. In order to make the incident surface waveform in this way, it is necessary to make the substrate also waveform, but it is actually extremely difficult to form solar cells on such a corrugated substrate using film deposition technology or photomask technology. It is.

本発明の目的は、上述した欠点を除去し、平坦な基板上
に膜形成技術やホトマスク技術を利用して多数の光電変
換素子を形成することができ、しかも完成した光電変換
装置におい′Cは波形の基板とすることにより反射によ
る損失を2〜5%程度まで低減することができ、したが
ってきわめて高い光電変換効率を有する光電変換装置を
簡単かつ安価に製造することができる方法を提供しよう
とするものである。
An object of the present invention is to eliminate the above-mentioned drawbacks, to form a large number of photoelectric conversion elements on a flat substrate using film forming technology and photomask technology, and to have a completed photoelectric conversion device with no odor of 'C. By using a corrugated substrate, loss due to reflection can be reduced to about 2 to 5%, and therefore a method is provided that can easily and inexpensively manufacture a photoelectric conversion device having extremely high photoelectric conversion efficiency. It is something.

(問題点を解決するための手段) 本発明は光電変換装置を製造するに当たり、変形可能な
材料より成る基板上に電極、光電変換層および電極を順
次に堆積して複数の光電変換素子を形成した後、各光電
変換素子からの反射光を、近傍の光電変換素子に入射さ
せるような形状に前記基板を折り曲げることを特徴とす
゛るものである。
(Means for Solving the Problems) In manufacturing a photoelectric conversion device, the present invention forms a plurality of photoelectric conversion elements by sequentially depositing an electrode, a photoelectric conversion layer, and an electrode on a substrate made of a deformable material. After that, the substrate is bent into a shape such that the reflected light from each photoelectric conversion element is incident on a nearby photoelectric conversion element.

(作用) 上述した本弁明の製造方法によれば光″市変換素子を形
成する工程までは基板を平坦なものとしておくので、従
来の膜形成技術やフォトマスク技術をそのまま利用プる
ことができる。一方、多数の光電変換素子を形成した後
、基板を波形に折り曲げるので、成る基板表面で反射さ
れた光は隣接する基板表面に入射するようになり、反射
による損失を2〜5%とすることができる。
(Function) According to the manufacturing method of the present invention described above, the substrate is kept flat until the process of forming the photonic city conversion element, so conventional film forming technology and photomask technology can be used as is. On the other hand, since the substrate is bent into a waveform after forming a large number of photoelectric conversion elements, the light reflected on the surface of the substrate becomes incident on the surface of the adjacent substrate, reducing the loss due to reflection to 2 to 5%. be able to.

(実施例) 第1図は本発明による光電変換装置の製造方法。(Example) FIG. 1 shows a method for manufacturing a photoelectric conversion device according to the present invention.

の一実施例の順次の製造工程を示すものであり、第1図
Aに示すように厚さ0,1〜0.5mmのステンレス板
1を準備し、その表面にはほぼ長方形の絶縁パターン2
を被着する。この絶縁パターン2は、200℃以上の高
温に耐える耐熱性絶縁材料、例えばポリイミド樹脂膜を
以って構成する。
This shows the sequential manufacturing process of one embodiment. As shown in FIG.
be coated with. The insulating pattern 2 is made of a heat-resistant insulating material that can withstand high temperatures of 200° C. or higher, such as a polyimide resin film.

次に第1図Bに示すように、メタルマスクを用いて通常
のRFグロー放電分解法により、ステンレス1上にn型
アモルファス・シリコンM3a 。
Next, as shown in FIG. 1B, n-type amorphous silicon M3a was deposited on the stainless steel 1 by using a metal mask and a normal RF glow discharge decomposition method.

1型アモルファス・シリコン層3bおよびn型アモルフ
ァス・シリコン層3Gをそれぞれ100人。
100 people each for the 1-type amorphous silicon layer 3b and the n-type amorphous silicon layer 3G.

5000人および100人の厚さに順次に成膜する。Films are sequentially formed to a thickness of 5,000 and 100.

次に第1図Cに示すように、例えばITO膜より成る入
射側の透明電NA4を、アモルファス・シリコン層3C
上に真空蒸着して多数の光電変換素子5を構成する。
Next, as shown in FIG.
A large number of photoelectric conversion elements 5 are formed by vacuum evaporation thereon.

次に第1図りに示すように隣接する光電変換素子5の透
明電ff15を相互接続するアルミニウム電VJ6を真
空蒸着により形成する。
Next, as shown in the first diagram, an aluminum conductor VJ6 interconnecting the transparent conductors ff15 of adjacent photoelectric conversion elements 5 is formed by vacuum evaporation.

最後に第1図Eに示すように隣接する光電変換索子5の
間のギャップ7を冶具により固定し、この部分を境とし
て基板1を折り曲げ、波形とする。
Finally, as shown in FIG. 1E, the gap 7 between adjacent photoelectric conversion cables 5 is fixed using a jig, and the substrate 1 is bent at this portion as a boundary to form a waveform.

この場合、光電変換素子表面の折り曲げ角度θは45°
以上、好ましくは60〜75°とする。
In this case, the bending angle θ of the photoelectric conversion element surface is 45°
Above, preferably 60 to 75 degrees.

上述したようにして製造した太陽電池においては、成る
光電変換素子に入射した光の一部はここで反射されるが
、この反射光は隣接する光電変換素子に入射するととも
にこの光電変換素子で反射された光は再び元の光電変換
素子に入射する。このように、入射光は多重反射されな
がら光電変換作用に寄与することになり、反射による光
の損失を、2〜5%程度ときわめて小さくすることがで
きる。
In the solar cell manufactured as described above, a part of the light incident on the photoelectric conversion element is reflected, but this reflected light is incident on the adjacent photoelectric conversion element and is reflected by this photoelectric conversion element. The emitted light enters the original photoelectric conversion element again. In this way, the incident light contributes to the photoelectric conversion effect while undergoing multiple reflections, and the loss of light due to reflection can be extremely reduced to about 2 to 5%.

第2図は従来の太陽電池と本発明による太陽電池との分
光反射特性を示すグラフであり、曲線Aは従来のガラス
基板を用いた平面形状のアモルファス・シリコン太陽電
池の反射率を示し、10〜20%程度の反射率がある。
FIG. 2 is a graph showing the spectral reflection characteristics of a conventional solar cell and a solar cell according to the present invention. Curve A shows the reflectance of a planar amorphous silicon solar cell using a conventional glass substrate. It has a reflectance of about 20%.

また曲!iQBはステンレス基板を用いたアモルファス
・シリコン太陽電池で、表面に反射防止膜を兼ねた透明
導電膜コートを施“したものの反射率を示すものであり
、反射防止コートの作用のため反射率は低下しているが
、依然として5〜30%程度の反射率を有している。曲
線Cは本発明による太陽電池の反射率を示し、全波長域
に亘って反射率は2〜5%ときわめて小さくなっている
Another song! iQB is an amorphous silicon solar cell using a stainless steel substrate, and is coated with a transparent conductive film that also serves as an anti-reflection film on the surface. However, it still has a reflectance of about 5 to 30%.Curve C shows the reflectance of the solar cell according to the present invention, and the reflectance is extremely small at 2 to 5% over the entire wavelength range. It has become.

第3図は従来の太陽電池の電流電圧特性曲線へと、本発
明による太陽電池の電流電圧特性曲線Bとを示ケもので
あり、本発明によると、AM(エア・マス)1.5の照
射条件で短絡電流J  が17C mA/cdから19m A / cJに増大し、変換効
率も10%から11%に増加している。
FIG. 3 shows the current-voltage characteristic curve B of the solar cell according to the present invention as well as the current-voltage characteristic curve B of the conventional solar cell. Under the irradiation conditions, the short-circuit current J increases from 17 C mA/cd to 19 mA/cJ, and the conversion efficiency also increases from 10% to 11%.

本発明は上述した実施例にのみ限定されるものではなく
、幾多の変形を加えることができる。例えば上述した実
施例(よアモルファス・シリコン太陽電池としたが、他
の半導体材料を用いる太陽電池としたり、太陽電池以外
の光電変換装置とすることもできる。また、基板の材料
はステンレスに限られるものではなく、アルミ板、ポリ
イミド系樹脂板などの塑性変形し得る材料で構成するこ
ともできる。
The present invention is not limited to the embodiments described above, but can be modified in many ways. For example, although the above embodiment uses an amorphous silicon solar cell, it is also possible to use a solar cell using other semiconductor materials or a photoelectric conversion device other than solar cells.Also, the material of the substrate is limited to stainless steel. Instead, it can be made of a material that can be plastically deformed, such as an aluminum plate or a polyimide resin plate.

(発明の効果) 上述したように本発明の光電変換装置の製造方法によれ
ば平坦な基板上に光電変換素子を形成した後、基板を折
り曲げて波形の入射面を有する光電変換装置を形成する
ため、光電変換素子の形成に【よ既存の技術をそのまま
利用することができ、特に新しい技術を開発する必要が
なく、容易かつ支価に実施することができる。また、本
発明の方法によって製造された光電変換装置は反射によ
る損失が2〜5%ときわめて小さく、大きな短絡電流が
得られるとともに高い光電変換効率が(;1られる。
(Effects of the Invention) As described above, according to the method for manufacturing a photoelectric conversion device of the present invention, a photoelectric conversion device is formed on a flat substrate, and then the substrate is bent to form a photoelectric conversion device having a corrugated entrance surface. Therefore, existing technology can be used as is to form the photoelectric conversion element, and there is no need to develop any new technology, and it can be implemented easily and inexpensively. Further, the photoelectric conversion device manufactured by the method of the present invention has extremely small loss due to reflection of 2 to 5%, can obtain a large short circuit current, and has a high photoelectric conversion efficiency (;1).

【図面の簡単な説明】[Brief explanation of drawings]

第1図A−Fは本発明による光電変換装置の製造方法の
一実施例の順次の工程を示ず図、第2図は本発明の方法
により製造した太陽電池と従来の太陽電池の分光反射率
特性を示すグラフ、第3図は本発明の方法により製造し
た太陽電池と従来の太陽電池の電′a電圧特性を示づグ
ラフである。 1・・・ステンレス基板  2・・・絶縁パターン3a
、 3b、 3c・・・アモルファス・シリコン層4・
・・透明導電膜    5・・・光電変換素子6・・・
アルミニウム電極 第1図
Figures 1A-F are diagrams that do not show the sequential steps of an embodiment of the method for manufacturing a photoelectric conversion device according to the present invention, and Figure 2 is a diagram showing the spectral reflections of a solar cell manufactured by the method of the present invention and a conventional solar cell. FIG. 3 is a graph showing the voltage characteristics of a solar cell manufactured by the method of the present invention and a conventional solar cell. 1... Stainless steel substrate 2... Insulating pattern 3a
, 3b, 3c...Amorphous silicon layer 4.
...Transparent conductive film 5...Photoelectric conversion element 6...
Aluminum electrode diagram 1

Claims (1)

【特許請求の範囲】[Claims] 1、変形可能な材料より成る基板上に電極、光電変換層
および電極を順次に堆積して複数の光電変換素子を形成
した後、各光電変換素子からの反射光を、近傍の光電変
換素子に入射させるような形状に前記基板を折り曲げる
ことを特徴とする光電変換装置の製造方法。
1. After forming a plurality of photoelectric conversion elements by sequentially depositing an electrode, a photoelectric conversion layer, and an electrode on a substrate made of a deformable material, the reflected light from each photoelectric conversion element is transmitted to a nearby photoelectric conversion element. A method of manufacturing a photoelectric conversion device, comprising bending the substrate into a shape that allows light to enter.
JP60278013A 1985-12-12 1985-12-12 Manufacture of photoelectric conversion device Pending JPS62137873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60278013A JPS62137873A (en) 1985-12-12 1985-12-12 Manufacture of photoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60278013A JPS62137873A (en) 1985-12-12 1985-12-12 Manufacture of photoelectric conversion device

Publications (1)

Publication Number Publication Date
JPS62137873A true JPS62137873A (en) 1987-06-20

Family

ID=17591419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60278013A Pending JPS62137873A (en) 1985-12-12 1985-12-12 Manufacture of photoelectric conversion device

Country Status (1)

Country Link
JP (1) JPS62137873A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6430858U (en) * 1987-08-20 1989-02-27
EP0641487A1 (en) * 1992-05-21 1995-03-08 United Solar Systems Corporation Monolithic, parallel connected photovoltaic array and method for its manufacture
JP2010272787A (en) * 2009-05-25 2010-12-02 Seiko Epson Corp Solar cell panel, solar cell unit, and solar cell unit aggregate
JP2016015402A (en) * 2014-07-02 2016-01-28 輝雄 早津 Solar cell module and photovoltaic power generation system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6430858U (en) * 1987-08-20 1989-02-27
EP0641487A1 (en) * 1992-05-21 1995-03-08 United Solar Systems Corporation Monolithic, parallel connected photovoltaic array and method for its manufacture
EP0641487A4 (en) * 1992-05-21 1997-01-22 United Solar Systems Corp Monolithic, parallel connected photovoltaic array and method for its manufacture.
JP2010272787A (en) * 2009-05-25 2010-12-02 Seiko Epson Corp Solar cell panel, solar cell unit, and solar cell unit aggregate
JP2016015402A (en) * 2014-07-02 2016-01-28 輝雄 早津 Solar cell module and photovoltaic power generation system

Similar Documents

Publication Publication Date Title
US4316049A (en) High voltage series connected tandem junction solar battery
US4517403A (en) Series connected solar cells and method of formation
US5133809A (en) Photovoltaic device and process for manufacturing the same
US4824488A (en) Photovoltaic device
US4623751A (en) Photovoltaic device and its manufacturing method
US4542578A (en) Method of manufacturing photovoltaic device
JPH0467348B2 (en)
JPS5999780A (en) Large area photocell and method of producing same
JPH0472392B2 (en)
US20200303569A1 (en) Preparation method of thin film solar battery
JPS60233870A (en) Photoresponsive semiconductor device having reflection preventive double layer coating
US4956023A (en) Integrated solar cell device
JPH0147907B2 (en)
JPH0851229A (en) Integrated solar battery and its manufacture
JPS62137873A (en) Manufacture of photoelectric conversion device
JP2011243806A (en) Solar cell
US20110265847A1 (en) Thin-film solar cell module and manufacturing method thereof
JP3776606B2 (en) Method for producing transparent electrode substrate
US5298087A (en) Photovoltaic device useful as a mirror
JPS59161081A (en) Thin-film solar cell
JP3609147B2 (en) Photoelectric conversion device
JPS62142368A (en) Manufacture of thin film semiconductor device
JP2975751B2 (en) Photovoltaic device
JP3172365B2 (en) Photovoltaic device and manufacturing method thereof
KR20190141447A (en) Thin-film solar module and method for manufacturing the same