JP3776606B2 - Method for producing transparent electrode substrate - Google Patents

Method for producing transparent electrode substrate Download PDF

Info

Publication number
JP3776606B2
JP3776606B2 JP31622398A JP31622398A JP3776606B2 JP 3776606 B2 JP3776606 B2 JP 3776606B2 JP 31622398 A JP31622398 A JP 31622398A JP 31622398 A JP31622398 A JP 31622398A JP 3776606 B2 JP3776606 B2 JP 3776606B2
Authority
JP
Japan
Prior art keywords
film
electrode substrate
transparent electrode
aluminum
conductive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31622398A
Other languages
Japanese (ja)
Other versions
JP2000150928A (en
Inventor
武志 山本
総一 酒井
伸 松見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP31622398A priority Critical patent/JP3776606B2/en
Publication of JP2000150928A publication Critical patent/JP2000150928A/en
Application granted granted Critical
Publication of JP3776606B2 publication Critical patent/JP3776606B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

【0001】
【発明の属する技術分野】
本発明は、透光性基板に透明導電性膜を形成して構成される透明電極基板及びその作製方法、並びに、そのような透明電極基板を用いる光起電力素子に関する。
【0002】
【従来の技術】
基板側から光を入射させて電気エネルギを取り出す構成の光起電力素子では、ガラス板等の透光性基板上に透明導電性膜を光入射側電極として積層してなる透明電極基板が利用される。この透明導電性膜の材料としては、酸化亜鉛(ZnO),酸化インジウム錫(ITO),酸化錫(SnO2 )が一般的であり、これ以外に、高光透過率及び低抵抗率を実現するべく、酸化アルミニウム(Al2 3 )を含む酸化亜鉛(特開平5−275727号公報)も知られている。
【0003】
そして、この透明電極基板の作製には、量産性に優れていて低コストである点を考慮して、一般的にスパッタリング法が検討されている。即ち、透光性基板を陽極とし、上記のような透明導電性膜の材料(ターゲット)を陰極として、10-2Torr程度の不活性ガス(例えばArガス)中で陰極に負の高周波電圧を印加することによってグロー放電を行い、放電で生じたイオン(例えばAr+ )をターゲットに当てて、その際に起こるスパッタリング作用を利用して透光性基板上にその材料を成膜して透明導電性膜を形成する。
【0004】
ところで、光起電力素子にあっては、光入射側電極(透明導電性膜)の表面が凹凸化している構造(テクスチャ構造)を有していると大きな電流を出力できることが知られている。即ち、透光性基板側から入射してきた光が凹凸形状を有する光入射側電極(透明導電性膜)と光電変換層との界面で散乱された後に光電変換層に入射するので、光電変換層に斜めに光が入射して光路の実質的な距離が延びて光の吸収が増大し、この結果、光起電力素子の光電変換特性が向上して出力電流が増加する。
【0005】
【発明が解決しようとする課題】
スパッタリング法を用いて透光性基板上に透明導電性膜を形成する方法は、処理工程が簡便であるが、光起電力素子の光入射側電極に期待されるような凹凸形状(テクスチャ構造)を実現することはできない。よって、スパッタリング法を用いて光入射側電極(透明導電性膜)を形成した光起電力素子の光電変換特性の向上が妨げられているという問題がある。
【0006】
本発明は斯かる事情に鑑みてなされたものであり、スパッタリング法を用いて透明導電性膜を作製する場合にあっても、その表面を凹凸形状にできる透明電極基板及びその作製方法を提供することを目的とする。
【0007】
本発明の他の目的は、スパッタリング法を用いて光入射側電極を形成する場合において、その光電変換特性の向上を図れる光起電力素子を提供することにある。
【0014】
【課題を解決するための手段】
本発明に係る透明電極基板の作製方法は、スパッタリング法にて透明導電性膜を透光性基板に形成してなる透明電極基板を作製する方法において、前記透光性基板にアルミニウム膜を形成する工程と、形成したアルミニウム膜をエッチングして凹凸化する工程と、アルミニウム膜をアルミニウム化合物膜に変化させる工程と、アルミニウム化合物膜にスパッタリング法にて透明導電性膜を形成する工程とを有することを特徴とする。
【0015】
エッチング処理により凹凸化されたアルミニウム化合物膜上にスパッタリング法にて透明導電性膜を形成することにより、スパッタリング法を用いても、アルミニウム化合物膜の凹凸形状に応じて透明導電性膜が凹凸化する。
【0016】
【発明の実施の形態】
以下、本発明をその実施の形態を示す図面を参照して具体的に説明する。
【0017】
図1は、本発明の透明電極基板の構成図である。図1において、1はガラス製の透光性基板である。透光性基板1上には、表面が凹凸形状をなす酸化アルミニウム(Al2 3 )または窒化アルミニウム(AlN)からなるアルミニウム化合物膜2(厚さ:1000Å)が形成され、その上には、表面が凹凸形状をなす、即ち表面にテクスチャ構造を有する酸化亜鉛(ZnO)または酸化錫(SnO2 )からなる透明導電性膜3(厚さ:6000Å)が形成されている。
【0018】
次に、このような構成を有する本発明の透明電極基板の作製手順を、その工程を示す図2を参照して説明する。まず、ガラス製の透光性基板1上に、スパッタリング法にて、厚さ1000Åのアルミニウム(Al)膜21を形成する(図2(a))。次に、塩酸:水=1:1のエッチャントを用いてアルミニウム膜21を部分的にエッチング除去してその表面を凹凸化する(図2(b))。
【0019】
次に、大気中または窒素雰囲気中で50℃で加熱して、アルミニウム膜21を酸化または窒化させて、結晶化された酸化アルミニウムまたは窒化アルミニウムのアルミニウム化合物膜2を形成する(図2(c))。最後に、スパッタリング法にて、酸化亜鉛または酸化錫を厚さ6000Åだけ成膜して、透明導電性膜3を形成する(図2(d))。この際、下地となるアルミニウム化合物膜2の表面が凹凸形状をなすので、その上に形成される透明導電性膜3も凹凸化し、テクスチャ構造を有することになる。
【0020】
ところで、スパッタリング法にて透光性基板1上に直接形成した酸化亜鉛または酸化錫の透明導電性膜を直接エッチングしてその表面を凹凸化するような手法も考えられるが、酸化亜鉛または酸化錫のエッチング加工は容易でないという問題がある。これに対して、アルミニウムは、これらの酸化亜鉛または酸化錫と比較してエッチング加工が容易であるので、本発明は簡単にテクスチャ構造の透明導電性膜を持った透明電極基板を作製できる。
【0021】
図3は、上述したような透明電極基板を用いた本発明の光起電力素子の構成図である。図3において、1,2,3は、図1と同様のガラス製の透光性基板,アルミニウム化合物膜,透明導電性膜(光入射側電極)である。透明導電性膜3上には、p型非晶質シリコン層4(厚さ:200Å)、i型非晶質シリコン層5(厚さ:750Å)、n型微結晶シリコン層6(厚さ:250Å)、p型非晶質シリコン層7(厚さ:200Å)、i型非晶質シリコン層8(厚さ:3000Å)、n型非晶質シリコン層9(厚さ:300Å)、ZnOまたはITOからなる拡散防止層10(厚さ:1000Å)、Agからなる裏面電極膜11(厚さ:2000Å)がこの順に積層形成されている。
【0022】
このようなアルミニウム化合物膜2は透光性を有するので、透光性基板1と透明導電性膜3との間のアルミニウム化合物膜2の存在が光電変換特性に悪影響を及ぼすことはなく、例えば酸化アルミニウムの屈折率(1.62)が、ガラスの屈折率(1.5)とZnOまたはITOの屈折率(2.0)との間であるので、このアルミニウム化合物膜2の存在によって反射防止効果が得られる。
【0023】
このような構成の光起電力素子は、以下のようにして製造できる。まず、上述したような工程(図2参照)にて透明電極基板を作製し、その透明電極基板上に、プラズマCVD法にて各シリコン層4〜9を順次形成し、その上に、スパッタリング法にて、拡散防止層10,裏面電極膜11を形成する。
【0024】
次に、本発明による透明電極基板及び光起電力素子の特性について説明する。
(実施例1)
図1,図3におけるアルミニウム化合物膜2として酸化アルミニウムを用いた透明電極基板,光起電力素子を製造し、夫々の特性を測定した。また、比較例として、酸化アルミニウムからなるアルミニウム化合物膜を設けない透明電極基板,光起電力素子を製造し、夫々の特性も測定した。これらの測定結果を表1(透明電極基板の特性),表2(1cmセルの光起電力素子の特性)に示す。
【0025】
【表1】

Figure 0003776606
【0026】
【表2】
Figure 0003776606
【0027】
比較例の透明電極基板にあっては、透明導電性膜の表面が平坦であって充分なヘイズ率が得られていない。これに対して、表面が凹凸のアルミニウム化合物膜(酸化アルミニウム膜)を設けた本発明の透明電極基板では、透明導電性膜の表面が凹凸化して充分なヘイズ率を達成できている。この結果、これを用いる本発明の光起電力素子では、特に短絡電流(ISC)及び最大起電力Pmax が大幅に向上している。
【0028】
(実施例2)
図1,図3におけるアルミニウム化合物膜2として窒化アルミニウムを用いた透明電極基板,光起電力素子を製造し、夫々の特性を測定した。また、比較例として、窒化アルミニウムからなるアルミニウム化合物膜を設けない透明電極基板,光起電力素子を製造し、夫々の特性も測定した。これらの測定結果を表3(透明電極基板の特性),表4(1cmセルの光起電力素子の特性)に示す。
【0029】
【表3】
Figure 0003776606
【0030】
【表4】
Figure 0003776606
【0031】
比較例の透明電極基板にあっては、透明導電性膜の表面が平坦であって充分なヘイズ率が得られていない。これに対して、表面が凹凸のアルミニウム化合物膜(窒化アルミニウム膜)を設けた本発明の透明電極基板では、透明導電性膜の表面が凹凸化して充分なヘイズ率を達成できている。この結果、これを用いる本発明の光起電力素子では、特に短絡電流(ISC)及び最大起電力(Pmax )が大幅に向上している。
【0032】
なお、上述した例では、アルミニウム膜を形成し、それをエッチングした後に酸化または窒化するようにしたが、酸化アルミニウムの粉末を使用することも可能である。この場合には、酸化アルミニウムの粉末を溶媒に溶かしたペーストを透光性基板上に塗布し、その塗布した膜にエッチング処理を施して表面を凹凸化すれば、全く同様に、テクスチャ構造を有する透明導電性膜を形成することができる。
【0033】
【発明の効果】
以上のように本発明では、スパッタリング法によって透明導電性膜を形成する場合にあっても、表面が凹凸形状をなす透明導電性膜を有する透明電極基板を得ることができ、高いヘイズ率を持つ透明電極基板を提供できる。
【0034】
また、このような透明電極基板を用いるようにしたので、光の有効利用を図って優れた光電変換特性を持つ光電変換素子を提供できる。
【図面の簡単な説明】
【図1】本発明の透明電極基板の構成図である。
【図2】本発明の透明電極基板の作製方法の工程を示す図である。
【図3】本発明の光起電力素子の構成図である。
【符号の説明】
1 透光性基板
2 アルミニウム化合物膜
3 透明導電性膜
21 アルミニウム膜[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a transparent electrode substrate formed by forming a transparent conductive film on a translucent substrate, a method for manufacturing the same, and a photovoltaic device using such a transparent electrode substrate.
[0002]
[Prior art]
In a photovoltaic device having a configuration in which light is incident from the substrate side and electric energy is extracted, a transparent electrode substrate in which a transparent conductive film is laminated as a light incident side electrode on a translucent substrate such as a glass plate is used. The As a material of the transparent conductive film, zinc oxide (ZnO), indium tin oxide (ITO), and tin oxide (SnO 2 ) are generally used. In addition to this, in order to realize high light transmittance and low resistivity. In addition, zinc oxide containing aluminum oxide (Al 2 O 3 ) (Japanese Patent Laid-Open No. 5-275727) is also known.
[0003]
For the production of this transparent electrode substrate, a sputtering method is generally studied in view of its excellent mass productivity and low cost. That is, a negative high frequency voltage is applied to the cathode in an inert gas (for example, Ar gas) of about 10 −2 Torr using the light-transmitting substrate as the anode, the transparent conductive film material (target) as described above as the cathode. Applying a glow discharge, applying ions (for example, Ar + ) generated by the discharge to the target, and depositing the material on the translucent substrate by utilizing the sputtering action that occurs at that time, transparent conductive Forming a conductive film.
[0004]
Incidentally, it is known that a photovoltaic device can output a large current if it has a structure (texture structure) in which the surface of the light incident side electrode (transparent conductive film) is uneven. That is, the light incident from the translucent substrate side is scattered at the interface between the light incident side electrode (transparent conductive film) having a concavo-convex shape and the photoelectric conversion layer and then enters the photoelectric conversion layer. The light is incident obliquely and the substantial distance of the optical path is extended to increase the light absorption. As a result, the photoelectric conversion characteristics of the photovoltaic element are improved and the output current is increased.
[0005]
[Problems to be solved by the invention]
The method of forming a transparent conductive film on a light-transmitting substrate using a sputtering method has a simple processing step, but has an uneven shape (texture structure) that is expected for a light incident side electrode of a photovoltaic device. Cannot be realized. Therefore, there exists a problem that the improvement of the photoelectric conversion characteristic of the photovoltaic element which formed the light-incidence side electrode (transparent conductive film) using sputtering method is prevented.
[0006]
The present invention has been made in view of such circumstances, and provides a transparent electrode substrate whose surface can be formed into an uneven shape even when a transparent conductive film is produced using a sputtering method and a method for producing the same. For the purpose.
[0007]
Another object of the present invention is to provide a photovoltaic device capable of improving the photoelectric conversion characteristics when a light incident side electrode is formed by sputtering.
[0014]
[Means for Solving the Problems]
The method for producing a transparent electrode substrate according to the present invention is a method for producing a transparent electrode substrate in which a transparent conductive film is formed on a translucent substrate by a sputtering method, wherein an aluminum film is formed on the translucent substrate. A step of etching the formed aluminum film to make it uneven, a step of changing the aluminum film into an aluminum compound film, and a step of forming a transparent conductive film on the aluminum compound film by a sputtering method. Features.
[0015]
By forming a transparent conductive film on the aluminum compound film that has been roughened by the etching process by a sputtering method, the transparent conductive film becomes uneven depending on the uneven shape of the aluminum compound film even if the sputtering method is used. .
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings showing embodiments thereof.
[0017]
FIG. 1 is a configuration diagram of a transparent electrode substrate of the present invention. In FIG. 1, 1 is a glass transparent substrate. On the translucent substrate 1, an aluminum compound film 2 (thickness: 1000 mm) made of aluminum oxide (Al 2 O 3 ) or aluminum nitride (AlN) having an uneven surface is formed. A transparent conductive film 3 (thickness: 6000 mm) made of zinc oxide (ZnO) or tin oxide (SnO 2 ) having an uneven surface, that is, having a textured structure on the surface is formed.
[0018]
Next, a manufacturing procedure of the transparent electrode substrate of the present invention having such a configuration will be described with reference to FIG. First, an aluminum (Al) film 21 having a thickness of 1000 mm is formed on a glass transparent substrate 1 by a sputtering method (FIG. 2A). Next, the aluminum film 21 is partially removed by etching using an etchant of hydrochloric acid: water = 1: 1 to make the surface uneven (FIG. 2B).
[0019]
Next, the aluminum film 21 is oxidized or nitrided by heating at 50 ° C. in air or nitrogen atmosphere to form the crystallized aluminum oxide or aluminum nitride aluminum compound film 2 (FIG. 2C). ). Finally, a transparent conductive film 3 is formed by sputtering to form a zinc oxide or tin oxide film having a thickness of 6000 mm (FIG. 2D). At this time, since the surface of the aluminum compound film 2 serving as a base has an uneven shape, the transparent conductive film 3 formed thereon is also uneven and has a texture structure.
[0020]
By the way, a method of directly etching a transparent conductive film of zinc oxide or tin oxide formed directly on the light-transmitting substrate 1 by a sputtering method to make the surface uneven may be considered. There is a problem that the etching process is not easy. On the other hand, aluminum is easier to etch than these zinc oxides or tin oxides. Therefore, the present invention can easily produce a transparent electrode substrate having a textured transparent conductive film.
[0021]
FIG. 3 is a configuration diagram of the photovoltaic element of the present invention using the transparent electrode substrate as described above. In FIG. 3, 1, 2 and 3 are the same glass transparent substrate, aluminum compound film, and transparent conductive film (light incident side electrode) as in FIG. On the transparent conductive film 3, a p-type amorphous silicon layer 4 (thickness: 200 mm), an i-type amorphous silicon layer 5 (thickness: 750 mm), and an n-type microcrystalline silicon layer 6 (thickness: 250 mm), p-type amorphous silicon layer 7 (thickness: 200 mm), i-type amorphous silicon layer 8 (thickness: 3000 mm), n-type amorphous silicon layer 9 (thickness: 300 mm), ZnO or A diffusion preventing layer 10 (thickness: 1000 mm) made of ITO and a back electrode film 11 (thickness: 2000 mm) made of Ag are laminated in this order.
[0022]
Since such an aluminum compound film 2 has translucency, the presence of the aluminum compound film 2 between the translucent substrate 1 and the transparent conductive film 3 does not adversely affect the photoelectric conversion characteristics. Since the refractive index of aluminum (1.62) is between the refractive index of glass (1.5) and the refractive index of ZnO or ITO (2.0), the presence of the aluminum compound film 2 prevents the reflection. Is obtained.
[0023]
The photovoltaic device having such a configuration can be manufactured as follows. First, a transparent electrode substrate is produced by the process as described above (see FIG. 2), and silicon layers 4 to 9 are sequentially formed on the transparent electrode substrate by a plasma CVD method, and a sputtering method is formed thereon. Then, the diffusion prevention layer 10 and the back electrode film 11 are formed.
[0024]
Next, characteristics of the transparent electrode substrate and the photovoltaic element according to the present invention will be described.
Example 1
A transparent electrode substrate and a photovoltaic device using aluminum oxide as the aluminum compound film 2 in FIGS. 1 and 3 were manufactured, and their characteristics were measured. In addition, as a comparative example, a transparent electrode substrate and a photovoltaic element not provided with an aluminum compound film made of aluminum oxide were manufactured, and their characteristics were also measured. These measurement results are shown in Table 1 (characteristics of the transparent electrode substrate) and Table 2 (characteristics of the photovoltaic element of 1 cm cell).
[0025]
[Table 1]
Figure 0003776606
[0026]
[Table 2]
Figure 0003776606
[0027]
In the transparent electrode substrate of the comparative example, the surface of the transparent conductive film is flat and a sufficient haze ratio is not obtained. On the other hand, in the transparent electrode substrate of the present invention provided with an aluminum compound film (aluminum oxide film) having an uneven surface, the surface of the transparent conductive film is made uneven to achieve a sufficient haze ratio. As a result, in the photovoltaic element of the present invention using this, particularly the short circuit current (I SC ) and the maximum electromotive force P max are greatly improved.
[0028]
(Example 2)
A transparent electrode substrate and a photovoltaic device using aluminum nitride as the aluminum compound film 2 in FIGS. 1 and 3 were manufactured, and their characteristics were measured. In addition, as a comparative example, a transparent electrode substrate and a photovoltaic element without an aluminum compound film made of aluminum nitride were manufactured, and their characteristics were also measured. The measurement results are shown in Table 3 (characteristics of the transparent electrode substrate) and Table 4 (characteristics of 1 cm cell photovoltaic elements).
[0029]
[Table 3]
Figure 0003776606
[0030]
[Table 4]
Figure 0003776606
[0031]
In the transparent electrode substrate of the comparative example, the surface of the transparent conductive film is flat and a sufficient haze ratio is not obtained. On the other hand, in the transparent electrode substrate of the present invention provided with an aluminum compound film (aluminum nitride film) having an uneven surface, the surface of the transparent conductive film is uneven and a sufficient haze ratio can be achieved. As a result, the short-circuit current (I SC ) and the maximum electromotive force (P max ) are greatly improved particularly in the photovoltaic device of the present invention using this.
[0032]
In the above-described example, an aluminum film is formed and then oxidized or nitrided after being etched, but aluminum oxide powder can also be used. In this case, if a paste in which aluminum oxide powder is dissolved in a solvent is applied on a light-transmitting substrate and the coated film is etched to make the surface uneven, the texture structure is exactly the same. A transparent conductive film can be formed.
[0033]
【The invention's effect】
As described above, in the present invention, even when a transparent conductive film is formed by a sputtering method, a transparent electrode substrate having a transparent conductive film having an uneven surface can be obtained and has a high haze ratio. A transparent electrode substrate can be provided.
[0034]
In addition, since such a transparent electrode substrate is used, it is possible to provide a photoelectric conversion element having excellent photoelectric conversion characteristics by effectively using light.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a transparent electrode substrate of the present invention.
FIG. 2 is a diagram showing a process of a method for producing a transparent electrode substrate according to the present invention.
FIG. 3 is a configuration diagram of a photovoltaic element of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Translucent substrate 2 Aluminum compound film 3 Transparent conductive film 21 Aluminum film

Claims (1)

スパッタリング法にて透明導電性膜を透光性基板に形成してなる透明電極基板を作製する方法において、前記透光性基板にアルミニウム膜を形成する工程と、形成したアルミニウム膜をエッチングして凹凸化する工程と、アルミニウム膜をアルミニウム化合物膜に変化させる工程と、アルミニウム化合物膜にスパッタリング法にて透明導電性膜を形成する工程とを有することを特徴とする透明電極基板の作製方法。  In a method for producing a transparent electrode substrate formed by forming a transparent conductive film on a light-transmitting substrate by a sputtering method, a step of forming an aluminum film on the light-transmitting substrate, and etching the formed aluminum film A method for producing a transparent electrode substrate, comprising: a step of converting the aluminum film into an aluminum compound film; and a step of forming a transparent conductive film on the aluminum compound film by a sputtering method.
JP31622398A 1998-11-06 1998-11-06 Method for producing transparent electrode substrate Expired - Fee Related JP3776606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31622398A JP3776606B2 (en) 1998-11-06 1998-11-06 Method for producing transparent electrode substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31622398A JP3776606B2 (en) 1998-11-06 1998-11-06 Method for producing transparent electrode substrate

Publications (2)

Publication Number Publication Date
JP2000150928A JP2000150928A (en) 2000-05-30
JP3776606B2 true JP3776606B2 (en) 2006-05-17

Family

ID=18074685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31622398A Expired - Fee Related JP3776606B2 (en) 1998-11-06 1998-11-06 Method for producing transparent electrode substrate

Country Status (1)

Country Link
JP (1) JP3776606B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002222975A (en) * 2001-01-29 2002-08-09 Kyocera Corp THIN FILM CRYSTALLINE Si SOLAR BATTERY AND ITS MANUFACTURING METHOD
JP4959127B2 (en) * 2004-10-29 2012-06-20 三菱重工業株式会社 Photoelectric conversion device and substrate for photoelectric conversion device
JP4634129B2 (en) 2004-12-10 2011-02-16 三菱重工業株式会社 Light scattering film and optical device using the same
FR2915834B1 (en) * 2007-05-04 2009-12-18 Saint Gobain TRANSPARENT SUBSTRATE WITH IMPROVED ELECTRODE LAYER
US20090173373A1 (en) * 2008-01-07 2009-07-09 Wladyslaw Walukiewicz Group III-Nitride Solar Cell with Graded Compositions
CN102044593A (en) * 2009-10-19 2011-05-04 杜邦太阳能有限公司 Process of manufacturing TCO substrate with light trapping feature and device thereof
FR2961954B1 (en) * 2010-06-25 2012-07-13 Saint Gobain CELL COMPRISING A CADMIUM-BASED PHOTOVOLTAIC MATERIAL

Also Published As

Publication number Publication date
JP2000150928A (en) 2000-05-30

Similar Documents

Publication Publication Date Title
US6825408B2 (en) Stacked photoelectric conversion device
JP5440433B2 (en) Solar cell manufacturing method and film forming apparatus
EP1949450A1 (en) Solar cell of high efficiency and process for preparation of the same
KR20080002657A (en) Photovoltaic device which includes all-back-contact configuration and related processes
JP3469729B2 (en) Solar cell element
JP3801342B2 (en) Solar cell substrate, manufacturing method thereof, and semiconductor element
KR20030081662A (en) Solar cell with double layer antireflection coating
JP3776606B2 (en) Method for producing transparent electrode substrate
JP2011243806A (en) Solar cell
JP5375414B2 (en) Solar cell and manufacturing method thereof
JP7110173B2 (en) SOLAR CELL, SOLAR CELL MODULE, AND SOLAR CELL MANUFACTURING METHOD
JPH05129640A (en) Solar cell and manufacture thereof
JP4127994B2 (en) Photovoltaic device manufacturing method
JP3243229B2 (en) Solar cell module
JP2002217428A (en) Photoelectric conversion device and its manufacturing method
CN106024919A (en) Amorphous silicon thin-film solar cell and manufacturing method thereof
JP3196155B2 (en) Photovoltaic device
JPWO2014185356A1 (en) Photovoltaic element and manufacturing method thereof
JP2002222969A (en) Laminated solar battery
JP2975751B2 (en) Photovoltaic device
JP2003008036A (en) Solar battery and its manufacturing method
JP2010103347A (en) Thin film photoelectric converter
JP3172368B2 (en) Photovoltaic device
JP2815688B2 (en) Manufacturing method of thin film solar cell
KR940003430B1 (en) Manufacturing method of solar cell forming antireflection film

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060223

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140303

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees