JPS62136568A - Hard carbon coating method - Google Patents

Hard carbon coating method

Info

Publication number
JPS62136568A
JPS62136568A JP60275584A JP27558485A JPS62136568A JP S62136568 A JPS62136568 A JP S62136568A JP 60275584 A JP60275584 A JP 60275584A JP 27558485 A JP27558485 A JP 27558485A JP S62136568 A JPS62136568 A JP S62136568A
Authority
JP
Japan
Prior art keywords
heating element
diamond
heated
substrate
hard carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60275584A
Other languages
Japanese (ja)
Other versions
JPH064914B2 (en
Inventor
Akihiko Ikegaya
池ケ谷 明彦
Masaaki Tobioka
正明 飛岡
Toshio Nomura
俊雄 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP60275584A priority Critical patent/JPH064914B2/en
Publication of JPS62136568A publication Critical patent/JPS62136568A/en
Publication of JPH064914B2 publication Critical patent/JPH064914B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To uniformly form a carbon film on a substrate having a three- dimensional shape in a method for decomposing a hydrocarbon under a reduced pressure and forming the carbon film on the substrate surface by impressing electric power such as high frequency to a heating element for preheating and exciting the hydrocarbon from the outside of a furnace thereby heating the heating element. CONSTITUTION:The electric power of the high frequency or microwave is impressed from the outside of the reaction furnace to the heating element existing in the reaction furnace under the reduced pressure to heat the heating element to >=2,000 deg.C. The gaseous mixture composed of hydrogen and hydrocarbon is preheated and excited by the heated heating element. The hard carbon film is coated on the surface of the substrate heated to 600-1,200 deg.C.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、きわめて硬度の高いダイヤモンドもしくはダ
イヤモンドに類似の硬質炭素膜を超高圧、高温を用いず
に、減圧下で基板表面に炭化水素を分解させて被覆する
硬質炭素膜被覆法において、再現よく、かつ多量の基板
を処理しうる方法と提併することにある。
Detailed Description of the Invention (Field of Industrial Application) The present invention is a method of applying hydrocarbons to a substrate surface under reduced pressure without using ultra-high pressure or high temperature, by depositing extremely hard diamond or a hard carbon film similar to diamond. The object of the present invention is to provide a hard carbon film coating method in which coating is performed by decomposition, which can be reproducibly performed and which can process a large number of substrates.

(従来技術) ダイヤモンドは最も硬く、熱伝導率が高くかつ化学的に
も%めて安定であるため切削工具や耐摩部品に広く実用
に供している。
(Prior Art) Diamond is the hardest material, has high thermal conductivity, and is chemically very stable, so it is widely used in cutting tools and wear-resistant parts.

しかし乍ら研削加工が翫めて困難なこと、単結晶では臂
開性があることなどから最近ではダイヤモンドの微粉末
を結晶する焼結ダイヤモンド工具が用いられるようにな
ってきている。
However, since grinding is extremely difficult and single crystals have a tendency to open, sintered diamond tools that are made from fine diamond powder have recently come into use.

しかしながらダイヤモンド微粉末の焼結には極めて高価
な超高圧発生装置を有するため焼結ダイヤモンド工具は
おのずと高価なもの:・てならざるをえず、加えて形状
的にもあまり大きな工具fI:i造することは不可能で
あった。
However, since sintering of fine diamond powder requires an extremely expensive ultra-high pressure generator, sintered diamond tools are naturally expensive. It was impossible to do so.

最近減圧下、水素と炭化水素の混合気流kFji々の方
法で高エネルギー状態に励起させることによって、グラ
ファイトてなくダイヤモンドを基板表面に析出、被覆す
る方法か発明され、注目をあびている。
Recently, a method has been invented in which diamond, rather than graphite, is precipitated and coated on a substrate surface by exciting a mixed gas flow of hydrogen and hydrocarbon to a high energy state under reduced pressure, and this method is attracting attention.

そしてこの励起方法として 1)2000℃以上に加熱された熱電子放射材、例えば
Wフィラメントによって水素と炭化水素の混合気流を予
熱する、 2)マイクロ波(マイクロ波とは3 D OMHz以上
の高周波を意味する)無極放電によって水素と炭化水素
の混合気流をプラズマ化させる、3)高周波(特に13
.56MH7のラジオ周波数)によって水素と炭化水素
の混合気流をプラズマ化させる、 の三つの励起方法が提案されている。
The excitation methods include 1) preheating a mixed gas flow of hydrogen and hydrocarbons using a thermionic emitter heated to 2000°C or higher, such as a W filament; 2) microwaves (microwaves are high frequencies of 3D OMHz or higher); 3) high frequency (particularly 13
.. Three excitation methods have been proposed in which a mixed gas flow of hydrogen and hydrocarbons is turned into plasma using a radio frequency of 56 MH7.

(発明が解決しようとする問題点) そこで発明者はそれぞれの励起方法にて実際にダイヤモ
ンドの被覆実験を行なったところ、1)、2)の励起方
法では、それぞれの基板表面にたしかにダイヤモンド状
の結晶物質の被覆に成功したものの、3)の高周波励起
法では結晶質の被覆をうるためには印加する高周波電力
を極めて大きなものにしなければならず、高周波電力が
不足するとほとんど結晶質の被覆は得られなかった。−
力印加する高間波電力を大会くしていくと基板か高周波
によって銹導加熱されて高温になってしまう。
(Problem to be solved by the invention) Therefore, the inventor actually conducted a diamond coating experiment using each excitation method, and found that with the excitation methods 1) and 2), diamond-like coating was certainly formed on the surface of each substrate. Although we were successful in coating crystalline materials, in the high-frequency excitation method described in 3), the applied high-frequency power must be extremely large in order to obtain a crystalline coating, and if the high-frequency power is insufficient, almost no crystalline coating will be formed. I couldn't get it. −
If the applied high frequency power is increased, the substrate will be heated by the high frequency and become high temperature.

ダイヤモンドを被覆す3ためには基板温度が1200℃
以下であることが必須である(基板温度が1200℃を
越えるとダイヤモンドではなくグラファイトが析出する
ため)ことから良質なダイヤモンド状結晶質の被覆をう
るにはきわめて微妙な高周波電力の調整が不可欠であり
、工業的には再現良く実現するのはほとんど不可能であ
った。
In order to coat diamond3, the substrate temperature must be 1200℃.
(If the substrate temperature exceeds 1200°C, graphite instead of diamond will precipitate.) Therefore, extremely delicate adjustment of the high-frequency power is essential to obtain a high-quality diamond-like crystalline coating. However, it has been almost impossible to achieve this with good reproducibility industrially.

マイクロ波による励起法はその点高周波に比較して周波
数が大巾に高いことから水素と炭化水素はきわめて高水
準に励起されることから高周波励起法に比較するときわ
めて容易に良好なダイヤモンド状の結晶質の被覆を再現
よくうにとが可能である。しかしながら切削工具のよう
な三次元形状をもつものを基板に用いると、プラズマは
優先的にとがった切刃エツジ部に集中するため、切刃エ
ツジ部に良好なダイヤモンド状結晶膜を被覆すると平担
部にはほとんど何も析出せず、逆に平担部に良好なダイ
ヤモンド状結晶膜1/!:eaすると切刃エツジ部はプ
ラズマが集中しすぎるため高温になりすぎグラファイト
が析出する。従ってマイクロ波励起方式では切削工具の
ような三次元形状全もつものには満足にダイヤモンドを
被覆することは不可能であった。
Microwave excitation has a much higher frequency than high-frequency waves, so hydrogen and hydrocarbons can be excited to an extremely high level, making it much easier to form good diamond-like crystals compared to high-frequency excitation. It is possible to reproduce the quality of the coating well with sea urchin. However, when a substrate with a three-dimensional shape, such as a cutting tool, is used, the plasma preferentially concentrates on the sharp edge of the cutting edge, so if the edge of the cutting edge is coated with a good diamond-like crystal film, it can be flattened. Almost nothing was precipitated on the flat part, and on the contrary, a good diamond-like crystal film 1/! was formed on the flat part. :ea, the plasma concentrates too much at the cutting edge and the temperature becomes too high, causing graphite to precipitate. Therefore, using the microwave excitation method, it has been impossible to satisfactorily coat diamond on objects having a complete three-dimensional shape, such as cutting tools.

高温に加熱した熱電子放射材例えばWフィラメントによ
って水素と炭化水素の混合気流を予熱することによって
励起する方法(以下Wフィラメント法と称す)はその点
プラズマを用いないため三次元形状をもつ基板にもダイ
ヤモンド状結晶質を均一に被覆することが可能であった
The method of exciting a mixed gas flow of hydrogen and hydrocarbon by preheating it using a thermionic emitting material heated to a high temperature, such as a W filament (hereinafter referred to as the W filament method), does not use plasma, so it is difficult to apply to a substrate with a three-dimensional shape. It was also possible to uniformly coat the diamond-like crystalline material.

ところでこれ等の励起方法によってダイヤモンドを超高
圧を用いず、減圧下、基板表面に析出させうるメカニズ
ムとして原子状の水素が選択的にグラファイトと反応し
ダイヤモンドとは反応しないため基板表面にダイヤモン
ドとグラファイトが共析出=15=(多分、大部分はグ
ラファイトが析出しているものと考えられる)しても、
グラファイトは原子状水素と反応してしまうため、結局
はダイヤモンドのみが析出、被覆していくとされている
By the way, the mechanism by which these excitation methods allow diamond to be deposited on the substrate surface under reduced pressure without using ultra-high pressure is that atomic hydrogen reacts selectively with graphite and does not react with diamond, so diamond and graphite are deposited on the substrate surface. Even if co-precipitated = 15 = (probably, most of it is graphite precipitated),
Because graphite reacts with atomic hydrogen, it is said that only diamond will eventually precipitate and cover it.

従っていかに原子状の水素を多量に発生させるかが極め
て重要であるが、分子状の水素が原子状水素に解離する
には出来るだけ高温が必要で、計算によれば2000℃
では数チしか原子状水素に解離しないが、6000℃で
はほとんどの水素が原子状態に解離しているといわれて
いる。
Therefore, it is extremely important to generate a large amount of atomic hydrogen, but in order for molecular hydrogen to dissociate into atomic hydrogen, as high a temperature as possible is required, which according to calculations is 2000℃.
It is said that at 6000°C, most of the hydrogen dissociates into atomic hydrogen, although only a few atoms dissociate into atomic hydrogen.

そこでWフィラメント法でも出来るだけWフィラメント
を高温に保つことが重要(2000℃以下ではほとんど
ダイヤモンド状の結晶質は被覆出来ない)であるか、い
かにWといえども2000℃では軟化してしまうため、
ダイヤモンド被覆中にWフィラメントか変形してしまい
、基板とWフィラメントとの距離が被覆中にどんどん変
化してしまう。基板表面はWフィラメントからの輻射で
加熱されているため(反応炉の外部からも加熱している
が、Wフィラメントからの輻射もきわめて寄与大である
)基板表面の温度が時々刻々と変化していくため再現性
良くダイヤモンド状結晶質を被覆するのは極めて困難で
あ・つた。特に多量の基板を一度に処理するためには大
規模なWフィラメントが必要であるが、Wフィラメント
が大きくなればなるほど変形の程度が大きくなる。その
ため小規模なWフィラメントを多数用い、それぞれのフ
ィラメント個々に給電するのが一般的である。しかし多
数のWフィラメント個々に給電するのは技術的にきわめ
て困難であり、工業的な規模でのWフィラメント法によ
るダイヤモンド状の結晶質の被覆はほとんど不可能と考
えられていた。
Therefore, even in the W filament method, it is important to keep the W filament as high as possible (diamond-like crystals cannot be coated below 2000°C), and no matter how much W is, it softens at 2000°C.
The W filament deforms during diamond coating, and the distance between the substrate and the W filament changes rapidly during coating. Since the substrate surface is heated by radiation from the W filament (although it is heated from outside the reactor, the radiation from the W filament also makes an extremely large contribution), the temperature of the substrate surface changes from moment to moment. Therefore, it was extremely difficult to coat diamond-like crystalline materials with good reproducibility. In particular, in order to process a large number of substrates at once, a large-scale W filament is required, and the larger the W filament, the greater the degree of deformation. Therefore, it is common to use a large number of small-scale W filaments and to supply power to each filament individually. However, it is technically extremely difficult to individually supply power to a large number of W filaments, and it was thought that it would be almost impossible to coat diamond-like crystals by the W filament method on an industrial scale.

上記に鑑み本発明はこのような問題点を解消した硬質炭
素被覆法を提供するものである。以下に詳細に本発明を
経緯と共に説明する。
In view of the above, the present invention provides a hard carbon coating method that solves these problems. The present invention will be explained in detail below along with the background.

Wフィラメント法は原理的にはプラズマを使用していな
いため三次元形状を持つ基板例えば切削工具などにダイ
ヤモンド状結晶質を被覆するに本質的に適している。し
かしながらWフィラメントが高温で変形すること、かつ
技術的にはWフィラメントを出来るだけ高温に保つこと
が肝要であるため多量の基板を処理するためには小規模
のWフィラメントを用い、それぞれのフィラメントに給
電しなければならず工業的には極めて困難であった。
Since the W filament method does not use plasma in principle, it is essentially suitable for coating a substrate with a three-dimensional shape, such as a cutting tool, with diamond-like crystalline material. However, since the W filament deforms at high temperatures, and technically it is important to keep the W filament as high as possible, in order to process a large number of substrates, a small-scale W filament is used, and each filament is Electricity had to be supplied, which was extremely difficult from an industrial perspective.

そこで発明者が鋭意考察の結果、発熱体を通電加熱する
からこのような問題が生じると思われた。
After careful consideration, the inventor found that such a problem occurs because the heating element is heated by electricity.

そして発熱体を通電によらず反応炉外部より誘電加熱す
るならば発熱体に給電する必要がなく自由に発熱体を配
置しうるため多量の基板を工業的に処理することが可能
ではないかと考え本発明を完成するに至った。
We also thought that if the heating elements were dielectrically heated from outside the reactor without energizing them, it would be possible to industrially process a large number of substrates because there would be no need to supply electricity to the heating elements and the heating elements could be placed freely. The present invention has now been completed.

(問題点を解決するための手段) 即ち本発明は、減圧下の反応炉内にて、水素と炭化水素
の混合気流を、2000℃以上に加熱した発熱体を以て
予熱励起することによって、600”C以上1200℃
以下に加熱した基板表面に硬質の炭素膜を被覆する硬質
被覆法に於いて、該発熱体を反応炉外より高周波もしく
はマイクロ波の電力を反応炉内に印加することによって
加熱することを特徴とするものである。
(Means for Solving the Problems) That is, the present invention preheats and excites a mixed gas flow of hydrogen and hydrocarbons in a reactor under reduced pressure using a heating element heated to 2000°C or higher. C or above 1200℃
In the hard coating method in which a hard carbon film is coated on the surface of a heated substrate, the heating element is heated by applying high frequency or microwave power into the reactor from outside the reactor. It is something to do.

誘電加熱による発熱体の加熱量は印加する電力の周波数
に比例する。一方、発熱体は2000℃以上という極め
て高温に加熱する必要があるため印加する電力は高周波
(ラジオ周波数500KHzJ]上、一般には13.5
6MHz 、 27.12MH2)もしくはマイクロ波
(300MH2以上、一般には2.54 GHz)が好
ましく、これ以下の周波数では発熱体の発熱量が不充分
となり好ましくない。
The amount of heating of the heating element by dielectric heating is proportional to the frequency of the applied power. On the other hand, since the heating element needs to be heated to an extremely high temperature of 2000℃ or higher, the power applied is high frequency (radio frequency 500KHzJ), and generally 13.5
6 MHz, 27.12 MH2) or microwaves (300 MHz or more, generally 2.54 GHz) are preferred; frequencies below this are not preferred because the heat generation amount of the heating element becomes insufficient.

なお、反応炉の外部より発熱体を誘電加熱させるために
高周波もしくはマイクロ波を印加するとグロー放電によ
るプラズマが発生するが、プラズマはあくまで発熱体を
中心に発生するため発熱体の近傍に配置した基板にはほ
とんどプラズマは影響を及ぼさないため三次元形状の基
板にも均一にダイヤモンド状結晶質を被覆出来る。
Note that plasma is generated by glow discharge when high frequency waves or microwaves are applied from outside the reactor to dielectrically heat the heating element, but since plasma is generated mainly around the heating element, it is necessary to place a substrate near the heating element. Since the plasma has almost no effect on the diamond-like crystal material, even a three-dimensionally shaped substrate can be uniformly coated with diamond-like crystalline material.

次にこの発熱体の材質としては高温における変形が出来
るだけ少なくかつ誘電率の大きなものが好ましく、グラ
ファイトが最も望ましい。グラファイトを発熱体に用い
ると、反応ガスに炭化水素を混ぜなくて水素だけでもグ
ラファイトと水素とが反応して励起状態の炭化水素が生
じるため基板上にダイヤモンド状の結晶質の被覆が可能
である。
Next, the material of this heating element is preferably one that undergoes as little deformation as possible at high temperatures and has a large dielectric constant, and graphite is most desirable. When graphite is used as a heating element, it is possible to form a diamond-like crystalline coating on the substrate because the graphite and hydrogen react with hydrogen to generate excited state hydrocarbons without mixing hydrocarbons in the reaction gas. .

又炭化水素以外の四塩化炭素と水素といった、ハロゲン
化炭化水素と水素とを原料ガスとして用いても高温のグ
ラファイト表面で励起状態の炭化水素と原子状の水素と
を生じるため同様に基板表面にダイヤモンド状の結晶質
の被覆が可能である。
Furthermore, even if a halogenated hydrocarbon and hydrogen other than hydrocarbons, such as carbon tetrachloride and hydrogen, are used as raw material gases, excited hydrocarbons and atomic hydrogen are generated on the high-temperature graphite surface. Diamond-like crystalline coatings are possible.

なお、発熱体の温度は2000℃以下ではダイヤモンド
状の結晶質を被覆するのは不可能である。
Note that if the temperature of the heating element is 2000° C. or lower, it is impossible to coat diamond-like crystalline material.

又基板表面温度は600℃以下ではアモルファス状態の
炭素膜が1200℃以上ではグラファイトが析出してし
まい好ましくない。
Further, if the substrate surface temperature is 600° C. or lower, the carbon film is in an amorphous state, whereas if it is 1200° C. or higher, graphite will precipitate, which is not preferable.

(実施例) 以下実施例で詳しく説明する。(Example) This will be explained in detail in Examples below.

〔実施例1〕 第1図に示したように内径120++++nの透明石英
製の反応炉(1)にグラファイト製の発熱体(2)を設
置し、その直下60頭のところに超硬合金製チップ(3
)(住友電気工業株式会社製H・1型番5PG422)
を18個一段に並べた。この反応炉にH2をI Q Q
 cc/mi n 、 CH4を1.5cc/min流
し、炉内を真空排気装置(4)で排気し、炉内f 40
Torrに保った。
[Example 1] As shown in Fig. 1, a graphite heating element (2) was installed in a transparent quartz reactor (1) with an inner diameter of 120+++n, and 60 cemented carbide chips were placed directly below it. (3
) (Sumitomo Electric Industries, Ltd. H・1 model number 5PG422)
I arranged 18 pieces in one row. Add H2 to this reactor I Q Q
cc/min, CH4 was flowed at 1.5 cc/min, the inside of the furnace was evacuated with a vacuum exhaust device (4), and the inside of the furnace was f 40
It was kept at Torr.

しかるのちマイクロ波発振機(5)にて2.45GHz
のマイクロ波を発生し導波管(6)、アプリケーター(
7)を用いて反応炉(1)に500Wのマイクロ波を印
加し発熱体(2)を加熱した。さらに電気炉(8)にて
超硬チップ(3)を加熱した。
Afterwards, the microwave oscillator (5) generates 2.45GHz.
Waveguide (6), applicator (
7) was used to apply a 500 W microwave to the reactor (1) to heat the heating element (2). Further, the carbide tip (3) was heated in an electric furnace (8).

この状態で6時間被覆処理したのち電気炉へ通電、マイ
クロ波の印加を停止し、ガス供給も停止し、炉内を真空
に保ったまま冷却した。得られた試料の表面からLEE
LS 、マイクロラマンおよびX−線回折などから表面
にはダイヤモンドもしくはダイヤモンドにきわめて類似
した炭素結晶質の膜が被覆されていることがわかった。
After coating in this state for 6 hours, electricity and microwave application to the electric furnace were stopped, gas supply was also stopped, and the furnace was cooled while maintaining a vacuum. LEE from the surface of the obtained sample
It was found from LS, micro-Raman, and X-ray diffraction that the surface was coated with diamond or a carbon crystalline film extremely similar to diamond.

この試料で以下の条件で切削テストを行なった。A cutting test was conducted on this sample under the following conditions.

被剛材 AC4C、切削速度 1200%in送 リ 
0・20シev  、  切り込み 1.0調 。
Rigid material AC4C, cutting speed 1200% in feed
0.20 shev, notch 1.0 tone.

ホルダー FPliR−44A 、  切 削 剤 使
用せず本発明のチップでは30分間切削してフランク摩
耗が0.06mmであったのに対し、未被覆の母材で切
削すると2分間切削してフランク摩耗が0.24m+n
と、硬質膜の被覆効果が実証された。
With the holder FPliR-44A and the tip of the present invention without using a cutting agent, flank wear was 0.06 mm after 30 minutes of cutting, whereas when cutting with an uncoated base material, flank wear was 0.06 mm after 2 minutes of cutting. 0.24m+n
The coating effect of the hard film was demonstrated.

なお公知のマイクロ波励起方式プラズマCVD法で作成
した硬質炭素膜被覆超硬合金(平担部はダイヤモンド状
の結晶質が被覆されていたが切刃部はグラファイトが析
出している)で、この条件で切削テストすると3分間ま
ではフランク摩耗が0.02mと硬質炭素膜の被覆効果
が認められたが、3分経過したところで被覆膜が剥離し
てしまい、急激に摩耗が進行して4分切削してフランク
摩耗が0.26ranと寿命となった。
This is a hard carbon film-coated cemented carbide made by a known microwave-excited plasma CVD method (the flat part was coated with diamond-like crystalline material, but the cutting edge part was coated with graphite). In cutting tests under these conditions, flank wear was 0.02 m up to 3 minutes, indicating the coating effect of the hard carbon film, but after 3 minutes, the coating peeled off and wear rapidly progressed to 4. After cutting, the flank wear was 0.26ran and the life span was reached.

〔実施例2〕 第2図のような透明石英製の反応炉(1)(内径120
+a)にグラファイト製の発熱体(2)を設置し、その
直下80閣のところに、実施例1と同じ超硬合金製のチ
ップ(3)を36個を18個ずつ2段に並べた(超硬チ
ップ同士の間隔は3票)。この反応炉にH2を4 Qc
c/min %CHaをQ、6CC/min  導入し
、真空排気装置(4)で排気し、炉内を25’rorr
に保った。
[Example 2] A reactor (1) made of transparent quartz as shown in Fig. 2 (inner diameter 120
A graphite heating element (2) was installed at +a), and 36 chips (3) made of cemented carbide, the same as in Example 1, were arranged in two tiers of 18 pieces directly below the heating element (2). The spacing between carbide tips is 3 votes). Add H2 to this reactor at 4 Qc
c/min % CHa was introduced at Q, 6 CC/min, evacuated with the vacuum exhaust device (4), and the inside of the furnace was heated to 25'rorr.
I kept it.

13.56MHzの高周波発振機(5)、マツチング袈
裟(6)をへて反応炉にまいたコイル(7)に500W
の高周波電力を印加し発熱体(2)を加熱した。さらに
電気炉(8)にて超硬チップ(3)を加熱した。この状
態で4時間被覆処理をした。
A 13.56 MHz high frequency oscillator (5), a matching casing (6), and a coil (7) that is placed in the reactor receives 500W power.
High-frequency power was applied to heat the heating element (2). Further, the carbide tip (3) was heated in an electric furnace (8). The coating treatment was carried out in this state for 4 hours.

試料にはダイヤモンド状の結晶質が切刃エツジ部までき
わめて均一に被覆されていた。なおこの時の基板表面の
温度を熱電対(9)にて測定したところ850℃であっ
た。
The specimen was extremely uniformly coated with diamond-like crystalline material up to the cutting edge. The temperature of the substrate surface at this time was measured with a thermocouple (9) and found to be 850°C.

次に全く同じようにして電気炉(8)に印加する電力の
みを増減し、基板表面温度を500℃、1000℃、1
300℃にそれぞれ変化させると、1000℃の時のみ
ダイヤモンド状の結晶質が被覆され、500℃の時では
アモルファス状態の炭素膜が、又1300℃の時にはグ
ラファイト膜が被覆されていた。500℃、850℃、
1000℃、1300℃で被覆した試料をそれぞれA、
BlC。
Next, in exactly the same way, only the electric power applied to the electric furnace (8) was increased or decreased, and the substrate surface temperature was adjusted to 500°C, 1000°C, 1
When the temperature was changed to 300°C, a diamond-like crystalline substance was coated only at 1000°C, an amorphous carbon film was coated at 500°C, and a graphite film was coated at 1300°C. 500℃, 850℃,
Samples coated at 1000°C and 1300°C were labeled A and A, respectively.
BlC.

Dとし実施例1と同じ条件にて切削テストヲ行なった。A cutting test was conducted under the same conditions as in Example 1.

その結果Aは6分14秒で、Cは2分18秒で寿命にな
ったのに対し、Bは30分間切削してフランク摩耗が0
.09mm5Cも30分間切削してフランク摩耗が0.
18mmであった。
As a result, the life of A was 6 minutes and 14 seconds, and that of C was 2 minutes and 18 seconds, while B had no flank wear after 30 minutes of cutting.
.. 09mm5C was also cut for 30 minutes and flank wear was 0.
It was 18 mm.

(発明の効果) 以上の様な本発明の方法によれば、超高圧、高温を用い
ずに減圧下で基板表面に炭化水素を分解させて硬質炭素
膜を被覆する方法に於いて、工業的規模に於いて3次元
形状をもつものでも硬質炭素膜の被覆を可能にする。
(Effects of the Invention) According to the method of the present invention as described above, the method of coating a hard carbon film by decomposing hydrocarbons on the substrate surface under reduced pressure without using ultra-high pressure or high temperature can be achieved industrially. This makes it possible to cover objects with a hard carbon film even if they have a three-dimensional shape.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明の詳細な説明すの るたむくイクロ波加熱装置及び高周波加熱実、験装置を
示す。 (1)・・・反応炉、(2)・・・発熱体、(3)・・
・基板、(4)・・・排気装置、(5)・・・発振機、
    −゛ 、(6)・・・整合装置(マイクロ波の
時は導波管、高周波の時はマツチング装置)、 (7)・・・電力印加装置(マイクロ波の時はアプリケ
ーター、高周波の時はコイル)、 (8)・・・電気炉、(9)・・・熱電対第1図 オ 2 図 手続補正書 昭和61年4月26日
FIGS. 1 and 2 show a microwave heating apparatus and a high-frequency heating experiment apparatus, which serve as a detailed explanation of the present invention. (1)... Reactor, (2)... Heating element, (3)...
・Substrate, (4)...exhaust device, (5)...oscillator,
-゛ , (6)... Matching device (waveguide for microwave, matching device for high frequency), (7)... Power application device (applicator for microwave, applicator for high frequency) Coil), (8)... Electric furnace, (9)... Thermocouple Figure 1 O 2 Amendment to Figure Procedures April 26, 1986

Claims (2)

【特許請求の範囲】[Claims] (1)減圧下の反応炉内にて、水素と炭化水素の混合気
流を、2000℃以上に加熱した発熱体を以て予熱励起
することによつて600℃以上、1200℃以下に加熱
した基板表面に硬質の炭素膜を被覆する硬質炭素膜被覆
法に於いて、該発熱体を反応炉外より高周波もしくはマ
イクロ波の電力を反応炉内に印加することによつて加熱
することを特徴とする硬質炭素膜被覆法。
(1) In a reactor under reduced pressure, a mixed gas flow of hydrogen and hydrocarbons is preheated and excited using a heating element heated to 2000°C or higher, so that the surface of the substrate is heated to 600°C or higher and 1200°C or lower. In a hard carbon film coating method for coating a hard carbon film, the heating element is heated by applying high frequency or microwave power into the reactor from outside the reactor. Membrane coating method.
(2)発熱体としてグラフアイトを用いる特許請求の範
囲第(1)項記載の硬質炭素被覆法。
(2) The hard carbon coating method according to claim (1), using graphite as the heating element.
JP60275584A 1985-12-07 1985-12-07 Hard carbon film coating method Expired - Lifetime JPH064914B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60275584A JPH064914B2 (en) 1985-12-07 1985-12-07 Hard carbon film coating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60275584A JPH064914B2 (en) 1985-12-07 1985-12-07 Hard carbon film coating method

Publications (2)

Publication Number Publication Date
JPS62136568A true JPS62136568A (en) 1987-06-19
JPH064914B2 JPH064914B2 (en) 1994-01-19

Family

ID=17557492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60275584A Expired - Lifetime JPH064914B2 (en) 1985-12-07 1985-12-07 Hard carbon film coating method

Country Status (1)

Country Link
JP (1) JPH064914B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01103310A (en) * 1987-10-16 1989-04-20 Sumitomo Electric Ind Ltd Surface acoustic wave element
JPH0492891A (en) * 1990-08-07 1992-03-25 Toyota Motor Corp Formation of diamond film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01103310A (en) * 1987-10-16 1989-04-20 Sumitomo Electric Ind Ltd Surface acoustic wave element
JPH0492891A (en) * 1990-08-07 1992-03-25 Toyota Motor Corp Formation of diamond film

Also Published As

Publication number Publication date
JPH064914B2 (en) 1994-01-19

Similar Documents

Publication Publication Date Title
Matsumoto et al. Synthesis of diamond films in a rf induction thermal plasma
US4957591A (en) Method for preparing needle-like, fibrous or porous diamond, or an aggregate thereof
US4935303A (en) Novel diamond-like carbon film and process for the production thereof
JPH0346437B2 (en)
JPS63107898A (en) Method for synthesizing diamond with plasma
JPS58135117A (en) Preparation of diamond
JPS5891100A (en) Synthesizing method for diamond
Meyer et al. Radio‐frequency plasma chemical vapor deposition growth of diamond
Haubner Low-pressure diamond: From the unbelievable to technical products
Fedoseeva et al. Influence of the temperature of molybdenum substrates on the structure of diamond coatings obtained by chemical vapor deposition from a high-speed microwave plasma jet
Din et al. CVD diamond
JPS62136568A (en) Hard carbon coating method
JPS62158195A (en) Synthesizing method of diamond
JPH0366280B2 (en)
JPH01261298A (en) Synthesis of diamond
JPH0481552B2 (en)
JPH06280019A (en) Production of thin film of diamond-like carbon
JPS62256796A (en) Production of diamond
JP2582765B2 (en) Diamond production equipment
JPS62138394A (en) Preparation of diamond
JPS63256596A (en) Method for synthesizing diamond in vapor phase
JPH08208207A (en) Vapor phase synthesis of boron nitride
JPH10259482A (en) Formation of hard carbon coating
JP3980138B2 (en) Diamond manufacturing method
JPS63230592A (en) Low-pressure synthesis of diamond