JPS621362B2 - - Google Patents

Info

Publication number
JPS621362B2
JPS621362B2 JP55094563A JP9456380A JPS621362B2 JP S621362 B2 JPS621362 B2 JP S621362B2 JP 55094563 A JP55094563 A JP 55094563A JP 9456380 A JP9456380 A JP 9456380A JP S621362 B2 JPS621362 B2 JP S621362B2
Authority
JP
Japan
Prior art keywords
test
composition
humus
activated carbon
bacteria
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55094563A
Other languages
Japanese (ja)
Other versions
JPS5721474A (en
Inventor
Koreo Morishita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP9456380A priority Critical patent/JPS5721474A/en
Publication of JPS5721474A publication Critical patent/JPS5721474A/en
Publication of JPS621362B2 publication Critical patent/JPS621362B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は長い幎月海底・湖底等の氎䞭に堆積し
おいた怍物性醗酵物質即ち腐怍泥即ち䜎䜍泥炭を
匷制酞化し、也燥しお埗られる消臭・殺菌・ガス
吞着性等の性質を有し、比范的豊富に各皮アミノ
酞各皮金属を含有する組成物に関する。 こゝで消臭・殺菌・ガス吞着性等ずは䞊蚘性質
の倖食品倉質防止剀・氎質倉質防止質・醗酵促進
剀・食品せん床保持剀等ずしお有効な性質をも特
぀ものであるが本明现曞䞭では始めに挙げた消
臭・殺菌・ガス吞着性の性胜を代衚ずしお簡略
化のために剀の名称ずしお挙げるが本剀は他の性
質も含み範囲ずしおそんな性質をもカバヌするも
のである。 最近化孊合成によ぀お぀くられた消臭・殺菌・
ガス吞着剀等に぀いおの副䜜甚が問題にされ、こ
れにかわる倩然産のもの又はその加工品に察する
芁望が高た぀おいるが珟圚のずころ適圓なものが
ない。 出願人等は先に特願昭54―102222号によ぀お醗
酵土壌物質を氎で抜出する方法に関しお特蚱出願
したが埗られる氎溶液の殺菌力は未だ満足できる
ものではなか぀たので倩然品の加工物ずしお曎に
匷力な殺菌力・消臭性・ガス吞着性等をも぀た組
成物を埗るこずを目的ずしお研究を続けお来た。
その結果本発明の組成物に関する発明を完成する
に至぀た。 埓぀お本発明の目的は倩然起源の原料から内圚
する匷力な消臭・殺菌・ガス吞着性を効果的に匕
き出し、そんな性質を具備した組成物を提䟛する
こずにある。 䞊蚘目的は以䞋の本発明の組成物によ぀お達成
される。即ち (1) 怍物性腐怍泥を匷制酞化し、80℃以䞋の枩床
で氎分60以䞋になる迄也燥しお埗られるガス
吞着性消臭・殺菌組成物。 (2) 䞊蚘也燥しお埗られる組成物を埮粉砕しお氎
分30前埌の粉末ずした堎合の䞊蚘第(1)項の組
成物。 (3) 䞊蚘也燥しお埗られる組成物を枩氎䞭で30分
間以䞊浞挬し、PH6.5以䞋の抜出液ずした埌ゎ
ミ残枣を濟去しお埗られる組成物。 (4) 䞊蚘濟過が工業的濟過ず0.8Ό以䞊の物質を
通さないミクロポヌア濟過ず段に行われる堎
合の䞊蚘第(3)項の組成物。 本発明の組成物の原料は珟圚又は䞔぀お長い幎
月の間に海底・湖底等の氎䞭に堆積しおいた怍物
質の醗酵物質が粘土状にな぀お存圚する所謂腐怍
泥であり、氎䞭以倖の堎所で醗酵したもの等は本
発明の組成物の原料にはなり埗ない。本発明の組
成物は普通珪藻類・草朚類が氎䞭で醗酵しお泥状
に堆積しおいるものを原料ずしお䜿甚する。 䞊蚘原料を氎切りしお工堎に搬入しお䜿甚する
がそんな状態で氎分は普通70以䞊含たれおい
る。 工堎内に搬入した原料は先ず砎砕工皋にかけら
れこゝで空気ず充分接觊させお匷制的に酞化す
る。原料はその䞭に醗酵未熟のものをも含んでい
るので少く共30分以䞊䞊蚘の劂き酞化工皋にかけ
られるこずが必芁である。 酞化の終぀たものを80℃以䞋の枩床で也燥し氎
分を60重量以䞋にする。䞊蚘の匷制酞化ず也燥
は本発明の組成物を埗る䞊に重芁な凊理法であ぀
お、これによ぀お始めお性胜が䞀定倀に安定した
醗酵組成物が埗られる。 埗られた也燥物は埮粉砕しお氎分玄30䜍の埮
粉末の圢状で消臭剀・醗酵促進剀ずしお䜿甚でき
る。又也燥物から又は䞀旊造぀た埮粉末から顆粒
状のものも成圢できる。 也燥物又は埮粉砕物を枩氎䞭に〜10重
量入れ30分間以䞊浞挬撹拌しおPH6.5以䞋奜
たしくは2.0〜4.0の抜出液を埗る。次に借雑物
を工業甚の濟過機で濟過しお液状消臭剀が埗られ
る。このものは淡耐色を呈しおいる。 工業甚濟過機で濟過したものを曎に0.8Ό又は
0.45Ό以䞊のものを通さない濟過機䟋えばミクロ
ポヌアフむルタヌに通すこずによ぀お殺菌剀・食
品倉質防止剀・氎質倉質防止剀ずしお極めお有効
な溶液が埗られる。 䞊述の方法によ぀お埗られた粉末消臭剀は埮粉
末で芋掛比重0.53、氎分30±で人糞消臭、ス
カム防止、醗酵促進、腐敗防止、生掻廃棄物、魚
臭、畜産の汚臭防止、䞋氎及びマンホヌル内の消
臭に甚途を有する。人糞に察しおは人糞総量の
600分のが䜿甚量の基準であり臭気発生状況に
より倚少の増枛をする。 粉末消臭剀にはビタミンB6、B12が含たれるこ
ずが報告されおいる。 本品は氎に濡らさなければ長時間保存できる。 顆粒消臭剀は芋掛比重0.9〜0.94、氎分10〜30
倧気䞭に発生する悪臭ガス、産業䞊発生する悪
臭ガスの陀去には充填塔䞭の充填局の䞭に盎接ガ
スを送入通過させお排気するか又は埪環させお䜿
甚するのが䟿利である。 氎䞭又は氎溶液䞭に悪臭成分ガスを含有する堎
合の陀去や海、河川、湖、池等の底郚に堆積され
た有機物が腐敗しお発生する有害ガスの抑制には
顆粒消臭剀を適圓な網袋等の容噚に入れるか又は
そのたたの状態で散垃、埋蚭させお䜿甚する。 液䜓消臭剀は淡耐色の液状のもので比重は
1.001〜1.002、PH3.0〜3.6のものである。魚畜産
関係の消臭・人糞消臭、冷蔵庫内家庭残飯及び容
噚の消臭、挬物類の酞敗臭及び容噚類の消臭に䜿
甚されそれには原液及び皀釈液を霧状にしお散垃
しお䜿甚する。このものは飲料氎芏栌詊隓にも合
栌しおいる。埗られた溶液䞭には詊隓結果による
ずタンニン0.01も怜出されず没食子酞プロ
ピル0.005gKgも怜出されず。、氎銀も含た
れおおらず、ひ玠、鉛、銅、アンチモン等も怜出
されない。亜鉛含量0.1ppm以䞋、スズ含量
1.0ppm以䞋で枅涌飲料氎芏栌詊隓に合栌するこ
ずが詊隓されおいる。 本品はアスパラギン酞を始め17皮の必須アミノ
酞、ビタミン、ク゚ン酞等の有機酞及び鉄・カ
ルシりムむオン等のミネラル成分を倚量に含んで
いる。 詳现な各皮詊隓結果に぀いおは実斜䟋で蚘茉す
る。 本発明の組成物に関しお曎に次の実斜䟋を挙げ
お説明する。 実斜䟋  95氎分の、数癟幎以䞊氎䞭で堆積しおいたず
考えられる草朚質醗酵物即ち腐怍泥1820gから氎
切りを行぀お玄300gの氎切り原料を埗、これを
開攟容噚䞭で砎砕しながら送颚機で空気を吹蟌み
箄215gの酞化凊理物を埗た。これを玄75℃の熱
颚で也燥しお氎分玄30の也燥物130gを埗た。
これを埮粉砕しお粉末消臭剀を埗た。又同じ粉末
消臭剀を50℃の枩氎2000mlで抜出しおPH3.0の溶
液が玄2000ml埗られ、工業甚濟過機で濟過しお玄
1700mlの溶液が埗られた。その際の残枣は玄
300gであ぀た。 実斜䟋  䞊蚘方法によ぀お埗られた埮粉砕品から粒状品
を぀く぀お防臭剀ずしお冷蔵庫内及びその他の比
范的氎分の倚い雰囲気䞭で脱臭剀ずしお䜿甚した
堎合に぀いおこれ迄比范的倚く垂販されおいる掻
性炭系の吞着剀に察しお比范詊隓を行぀た。実隓
の抂芁、実隓方法、充填量、実隓装眮、実隓の手
順、枬定方法、その結果ず考察を以䞋に瀺す。以
䞋この脱臭剀をヒナヌマスガヌドランず呌ぶこず
にする。 実隓の抂芁 臭いの成分ずしおは、アンモニアず硫化氎玠の
皮類を察象ずした。 ヒナヌマスガヌドランず察照物質の怰子殻掻性
炭をガラスカラムに同䞀䜓積充填し、䞋郚から氎
分の倚いアンモニアガスたたは硫化氎玠ガスを30
〜50cmsecの流速で倧過剰量送気した。その埌
氎分の倚い空気のみを䞊蚘成分が流出しなくなる
迄通気を行な぀た。ガラスカラムからヒナヌマス
ガヌドランず掻性炭を取り出し、それらの䞊蚘
成分の吞着量を枬定し吞着保持量を算出した。 実隓方法  アンモニアず硫化氎玠ガスの発生ずその発生
量 この成分は以䞋の薬剀を甚いお発生させ
た。 (1) アンモニアガス 10NH4Cl50NaOH
→NH3↑NaClH2O (2) 硫化氎玠ガス 50Na2S9H2O18NH2SO4
→H2S↑Na2SO4H2O (3) ガスの発生量 掻性炭のアンモニアず硫化氎玠に぀いおの
吞着保持量の文献倀を参考ずし、その倀の30
倍量を16時間連続的に発生させた。  ヒナヌマスガヌドランず掻性炭の充填量 ガラスカラム盎埄1.55cmに15cmの高さで
充填した。その充填量は28.4cm3であ぀た。 掻性炭は歊田薬品工業KK補、怰子殻掻性
炭、癜鷺C610で粒埄〜mmのものであ
る。  実隓装眮 実隓装眮は第図に瀺す。 図䞭はガラスカラム盎埄1.55cm は充填されたヒナヌマスガヌドランたたは怰
子殻掻性炭充填高さ15cm は分液ロヌト はガス発生甚容噚 は10NH4Clたたは50Na2S9H2O は掗条ビン ぱアヌポンプ 䞊蚘の装眮を組䜜りNo.〜No.ずした。 No. アンモニア甚ヒナヌマスガヌドラン 〃 〃 掻性炭 〃 硫化氎玠甚ヒナヌマスガヌドラン 〃 〃 掻性炭  実隓の手順 10NH4Clたたは50Na2S、9H2Oの必芁量
を実隓装眮のガス発生甚容噚の底郚に入れ、50
NaOHたたは18NH2SO4を分液ロヌトから少
量ず぀滎䞋した。 掗気ビンを通した空気をガス発生甚容噚の底
郚に送り蟌み反応液の撹拌混合ず通気を兌ねお
行な぀た。16時間に亘぀お、掚定の吞着保持量
に察しお倧過剰量のアンモニアず硫化氎玠を連
続的に発生させ、皮類の吞着物質に送気し接
觊させた。その埌、ガス発生甚容噚内の反応液
を取り陀き氎を入れ、氎分の倚い空気のみを通
気した。ガラスカラム出口でアンモニアたたは
硫化氎玠が怜出されなくなる迄通気を行な぀
た。 ガラスカラムからヒナヌマスガヌドランず掻
性炭を取り出しアンモニアず硫化氎玠の吞着量
を枬定した。  枬定方法 氎分、アンモニア及び硫化氎玠に぀いおは
JIS K0102工堎排氎詊隓法に準じお枬定を行な
぀た。 (1) アンモニア アルカリ性蒞留埌滎定法 (2) 硫化氎玠 酞性蒞留埌滎定法 (3) 105℃也燥法 結果ず考察 未䜿甚ず吞着埌のヒナヌマスガヌドランず掻性
炭に぀いお、氎分、アンモニア及び硫化氎玠の枬
定結果を以䞋に瀺す。
The present invention has properties such as deodorizing, sterilizing, and gas adsorption properties obtained by forcibly oxidizing and drying a fermented vegetable material, that is, humus mud, or low-level peat that has been deposited in water such as the seabed and lake bottom for many years. The present invention relates to a composition containing relatively abundant various amino acids and various metals. Here, deodorizing, sterilization, gas adsorption, etc. refer to the above-mentioned properties that are effective as food deterioration prevention agents, water quality deterioration prevention agents, fermentation accelerators, food consistency retaining agents, etc. In the specification, the three properties listed at the beginning, deodorizing, sterilization, and gas adsorption, are listed as representative agents for the sake of simplicity, but this agent also includes other properties and covers these properties as well. It is. Deodorizing, sterilizing, and
The side effects of gas adsorbents and the like have been a problem, and there is an increasing demand for natural substitutes or processed products thereof, but there are currently no suitable substitutes. The applicants had previously applied for a patent in Japanese Patent Application No. 102222/1983 for a method for extracting fermented soil materials with water, but the bactericidal power of the resulting aqueous solution was still not satisfactory, so they decided to use processed natural products. We have continued our research with the aim of obtaining compositions with even stronger bactericidal, deodorizing, and gas adsorption properties.
As a result, we have completed the invention regarding the composition of the present invention. Therefore, an object of the present invention is to effectively bring out the strong deodorizing, sterilizing, and gas adsorbing properties inherent in naturally occurring raw materials, and to provide a composition having such properties. The above object is achieved by the following composition of the present invention. Namely, (1) a gas adsorbent deodorizing/sterilizing composition obtained by forcibly oxidizing vegetable humus mud and drying it at a temperature of 80° C. or lower until the moisture content is 60% or less; (2) The composition according to item (1) above, obtained by finely pulverizing the composition obtained by drying the above to form a powder with a water content of about 30%. (3) A composition obtained by immersing the composition obtained by drying the above in warm water for 30 minutes or more to obtain an extract having a pH of 6.5 or less, and then filtering off the dust residue. (4) The composition according to item (3) above, wherein the filtration is performed in two stages: industrial filtration and micropore filtration that does not allow substances of 0.8Ό or larger to pass through. The raw material for the composition of the present invention is so-called humic mud, which is a clay-like form of fermented plant matter that has been deposited in water such as seabeds and lake bottoms over a long period of time. Fermented products cannot be used as raw materials for the composition of the present invention. The composition of the present invention usually uses diatoms and plants that are fermented in water and deposited in the form of mud as raw materials. The above raw materials are drained and transported to the factory for use, but in such conditions they usually contain more than 70% water. The raw materials brought into the factory are first subjected to a crushing process, where they are brought into sufficient contact with air and forcibly oxidized. Since the raw materials include some unfermented materials, it is necessary to subject them to the above-mentioned oxidation process for at least 30 minutes or more. After oxidation, dry the product at a temperature below 80°C to reduce the moisture content to below 60% by weight. The above-mentioned forced oxidation and drying are important processing methods for obtaining the composition of the present invention, and only by this method can a fermented composition whose performance is stabilized at a constant value be obtained. The obtained dried product is finely pulverized into a fine powder with a water content of approximately 30%, which can be used as a deodorizer and fermentation accelerator. It is also possible to form granules from a dried product or from a fine powder once produced. Add 5 to 10% (by weight) of the dried or finely ground product to warm water and immerse and stir for 30 minutes or more to obtain an extract having a pH of 6.5 or less (preferably 2.0 to 4.0). Next, impurities are filtered using an industrial filter to obtain a liquid deodorant. This thing has a light brown color. Filtered with an industrial filter, further filtered with 0.8Ό or
By passing the solution through a filter that does not allow anything larger than 0.45 Όm to pass through, such as a micropore filter, a solution that is extremely effective as a disinfectant, food deterioration preventive agent, and water quality deterioration preventive agent can be obtained. The powder deodorant obtained by the above method is a fine powder with an apparent specific gravity of 0.53 and a moisture content of 30±3%, and is useful for deodorizing human excrement, preventing scum, promoting fermentation, preventing rot, household waste, fish odor, and livestock production. It is used to prevent foul odors and deodorize sewage and manholes. For human feces, the total amount of human feces
The standard usage amount is 1/600, and it may increase or decrease depending on the odor generation situation. Powdered deodorants are reported to contain vitamins B6 and B12 . This product can be stored for a long time as long as it does not get wet. Granular deodorant has an apparent specific gravity of 0.9 to 0.94 and a moisture content of 10 to 30.
% To remove foul-smelling gases generated in the atmosphere or industrially, it is convenient to use the gas by directly feeding it through the packed bed of a packed column and exhausting it, or by circulating it. . To remove malodorous gases contained in water or aqueous solutions, or to suppress harmful gases generated by the decay of organic matter deposited at the bottom of oceans, rivers, lakes, ponds, etc., use granular deodorizers in an appropriate net. Use it by putting it in a container such as a bag, or by scattering or burying it as is. Liquid deodorant is a light brown liquid with a specific gravity of
1.001-1.002, PH3.0-3.6. It is used to deodorize fish and livestock industry, deodorize human feces, deodorize household leftovers and containers in refrigerators, deodorize rancid odors of pickles, and deodorize containers. To do so, spray the undiluted solution or diluted solution in the form of a mist. use. This product has also passed the drinking water standard test. According to the test results, neither tannin (0.01%) nor propyl gallate (0.005g/Kg) was detected in the obtained solution. , does not contain mercury, and does not detect arsenic, lead, copper, antimony, etc. Zinc content 0.1ppm or less, tin content
It has been tested to pass the soft drink standard test at 1.0ppm or less. This product contains large amounts of 17 essential amino acids including aspartic acid, vitamin B, organic acids such as citric acid, and mineral components such as iron and calcium ions. Detailed various test results will be described in Examples. The composition of the present invention will be further explained with reference to the following examples. Example 1 Approximately 300 g of drained raw material was obtained by draining 1,820 g of humus mud, a vegetable fermentation product with 95% water content that is thought to have been deposited in water for hundreds of years or more, and this was crushed while being crushed in an open container. Approximately 215 g of oxidized product was obtained by blowing air with a blower. This was dried with hot air at about 75°C to obtain 130 g of a dry product with a moisture content of about 30%.
This was finely pulverized to obtain a powder deodorant. Also, by extracting the same powder deodorant with 2000ml of warm water at 50℃, approximately 2000ml of pH3.0 solution was obtained, which was filtered with an industrial filter to obtain approximately
1700ml of solution was obtained. The residue at that time is approximately
It was 300g. Example 2 Regarding the case where a granular product is made from the finely pulverized product obtained by the above method and used as a deodorizer in a refrigerator or other relatively humid atmosphere. A comparative test was conducted on activated carbon-based adsorbents. The outline of the experiment, experimental method, filling amount, experimental equipment, experimental procedure, measurement method, results and discussion are shown below. Hereinafter, this deodorizer will be referred to as humus guardran. Overview of the experiment Two types of odor components were used: ammonia and hydrogen sulfide. A glass column was filled with the same volume of coconut shell activated carbon as a control substance, and humid ammonia gas or hydrogen sulfide gas was added from the bottom for 30 minutes.
A large excess amount of air was supplied at a flow rate of ~50 cm/sec. Thereafter, only moisture-rich air was aerated until the above components no longer flowed out. Take out humus guardlan and activated carbon from the glass column and add them to the above 2
The adsorption amount of the component was measured and the adsorption retention amount was calculated. Experimental method 1 Generation and amount of ammonia and hydrogen sulfide gas These two components were generated using the following chemicals. (1) Ammonia gas 10%NH 4 Cl + 50% NaOH
→NH 3 ↑NaClH 2 O (2) Hydrogen sulfide gas 50%Na 2 S9H 2 O18NH 2 SO 4
→H 2 S↑Na 2 SO 4 +H 2 O (3) Amount of gas generated Referring to literature values for adsorption and retention of ammonia and hydrogen sulfide on activated carbon, 30% of that value
Double doses were generated continuously for 16 hours. 2 Packing amount of humus guardlan and activated carbon A glass column (diameter 1.55 cm) was packed at a height of 15 cm. The filling volume was 28.4 cm 3 . The activated carbon is Coconut Shell Activated Carbon, Shirasagi C 6 /10, manufactured by Takeda Pharmaceutical Co., Ltd., and has a particle size of 2 to 6 mm. 3 Experimental apparatus The experimental apparatus is shown in Figure 1. In the figure, 1 is a glass column with a diameter of 1.55 cm, 2 is a packed humus gardan or coconut shell activated carbon, and has a height of 15 cm. 3 is a separating funnel 4 is a gas generation container 5 is 10% NH 4 Cl or 50% Na 2 S9H 2 O 6 is a scour bin 7 is an air pump Four sets of the above devices were made and numbered No. 1 to No. 4. No. 1 For ammonia: Humus gardan 〃 2 〃 : Activated carbon 〃 3 For hydrogen sulfide: Humus gardan 〃 4 〃 : Activated carbon 4 Experimental procedure 10% NH 4 Cl or 50% Na 2 S, 9H 2 Pour the required amount of O into the bottom of the gas generation container of the experimental apparatus, and
% NaOH or 18NH 2 SO 4 was added dropwise from a separatory funnel little by little. Air passed through an air washing bottle was sent to the bottom of the gas generation container to stir and mix the reaction solution and to aerate the mixture. Over a period of 16 hours, ammonia and hydrogen sulfide were continuously generated in large excess amounts relative to the estimated amount of adsorption and retention, and the two types of adsorbent materials were brought into contact with air. Thereafter, the reaction liquid in the gas generation container was removed, water was added, and only moisture-rich air was vented. Aeration was continued until no ammonia or hydrogen sulfide was detected at the outlet of the glass column. Humus gardane and activated carbon were taken out from the glass column and the amount of adsorption of ammonia and hydrogen sulfide was measured. 5 Measurement method For moisture, ammonia and hydrogen sulfide
Measurements were conducted in accordance with JIS K0102 factory wastewater test method. (1) Ammonia Titration method after alkaline distillation (2) Hydrogen sulfide Titration method after acidic distillation (3) 105℃ drying method Results and discussion Moisture, ammonia, and hydrogen sulfide for unused and adsorbed humus gardan and activated carbon The measurement results are shown below.

【衚】 アンモニア、硫化氎玠の吞着量は湿詊料に぀い
おの倀である。 䞊蚘の倀よりヒナヌマスガヌドランず掻性炭の
也物単䜍重量圓りの吞着保持量は以䞋の倀ずな぀
た。
[Table] The adsorption amounts of ammonia and hydrogen sulfide are values for wet samples. From the above values, the amount of adsorption and retention per unit weight of dry matter of humus gardane and activated carbon was as follows.

【衚】 以䞊の実隓結果より (1) ヒナヌマスガヌドランの未䜿甚品は氎分33
であ぀たが、氎分の倚い空気を通気接觊させお
も氎分量が増加するこずがなか぀た。 (2) 䞀方、掻性炭は氎分が26に増加した未䜿
甚品3.7。 (3) 未䜿甚品に぀いおみるず掻性炭はアンモニア
ず硫化氎玠をほずんど含有しおいないが、ヒナ
ヌマスガヌドランはアンモニア133mgKg、硫
化氎玠21mgKgず前者より高い倀を瀺した。 (4) ヒナヌマスガヌドランず掻性炭の也物単䜍重
量圓りの吞着保持量を比范するず、ヒナヌマス
ガヌドランは掻性炭よりアンモニアに぀いお22
倍、硫化氎玠に぀いお倍高い倀であ぀た。 (5) この様に氎分の倚い雰囲気䞭でのアンモニア
ず硫化氎玠の吞着保持胜力はヒナヌマスガヌド
ランが掻性炭より明らかに優぀おいた。 本実隓は氎分の倚い雰囲気䞭で実隓を行な぀た
が、この様な条件では掻性炭の吞着保持量の䜎䞋
が著しか぀た。参考ずしお掻性炭の也燥雰囲気䞭
での吞着保持量を以䞋に瀺す。 アンモニア 0.2 硫化氎玠 15 ヒナヌマスガヌドランのアンモニア吞着保持量
は氎分が倚い雰囲気䞭でも掻性炭の䞊蚘の倀の10
倍も高か぀たが、これはヒナヌマスガヌドランの
優れた特性によるものず考えられる。この様に氎
分の倚い雰囲気䞭で掻性炭よりも高い吞着保持胜
を有するヒナヌマスガヌドランは掻性炭より広範
囲に亘る応甚が可胜である。 実斜䟋  この実斜䟋は実斜䟋の方法で぀く぀た埮粉砕
粉末消臭剀に぀いお以䞋の成分解析実隓を行぀た
結果を瀺すものである。 こゝで粉末消臭剀をヒナヌマスカルミヌず呌
ぶ。「ヒナヌマスカルミヌ」の内容成分解析 抂 芁  䞀般性状詊隓 PH、氎分、粗たん癜質、粗脂肪、粗繊維、灰
分、酞床、リン、カリりム、COD重クロム
酞カリりム法  衛生詊隓 现菌怜査䞀般现菌数、カビ数、酵母数、倧腞
菌矀数 有害金属氎銀、カドミりム、鉛、砒玠、六䟡
クロム シアン、PCB、蟲薬有機リン系、有機塩玠
系、フタル酞゚ステル  特殊分析 元玠分析C.N.H、党有機炭玠、発光分析
金属類の定性分析、カルボン酞組成分析、糖
類組成分析、アミノ酞組成分析、抗生物質ペ
ニシリン、金属類定量分析  倧腞菌、黄色ブドり球菌、緑膿菌に察する増
殖抑制詊隓  䞀般性状詊隓 1.1 詊隓方法 PHJIS Z8802ガラス電極法 氎分
105℃也燥法 粗たん癜質ケルダヌル法
粗脂質゜ツクスレヌ抜出法 粗繊維ヘン
ネベルヒ・ストヌマン法 灰分電気炉灰化
法550℃ 酞床䞭和滎定法 リンモ
リブデン青色法 CODJIS K0102.15重
クロム酞カリりム法 1.2 詊隓成瞟 䞊蚘成瞟を衚―に瀺す。
[Table] Based on the above experimental results (1) The moisture content of unused Hyumas Guardan is 33%.
However, even when air with a high moisture content was brought into contact with the air, the moisture content did not increase. (2) On the other hand, the moisture content of activated carbon increased to 26% (compared to 3.7% for unused products). (3) When looking at unused products, activated carbon contains almost no ammonia and hydrogen sulfide, but humus gardan had higher values than the former, at 133 mg/Kg of ammonia and 21 mg/Kg of hydrogen sulfide. (4) Comparing the amount of adsorption and retention per unit weight of dry matter between humus gardan and activated carbon, it is found that humus gardan has more ammonia than activated carbon.
The value was 9 times higher for hydrogen sulfide. (5) In this way, humus gardane was clearly superior to activated carbon in its ability to adsorb and retain ammonia and hydrogen sulfide in a humid atmosphere. This experiment was conducted in a moisture-rich atmosphere, but under these conditions, the amount of adsorption and retention of activated carbon was significantly reduced. For reference, the amount of adsorption and retention of activated carbon in a dry atmosphere is shown below. Ammonia 0.2% Hydrogen sulfide 15% The amount of ammonia adsorbed and retained by humus gardan is 10% of the above value of activated carbon even in a moisture-rich atmosphere.
Although it was twice as high, this is thought to be due to the excellent properties of humus guard run. As described above, humus gardan, which has a higher adsorption and retention capacity than activated carbon in a moisture-rich atmosphere, can be used in a wider range of applications than activated carbon. Example 3 This example shows the results of the following component analysis experiment conducted on the finely ground powder deodorant produced by the method of Example 1. This powdered deodorant is called hyumascalmy. Outline of content analysis of “Hyumascalmy” 1 General property test PH, moisture, crude protein, crude fat, crude fiber, ash, acidity, phosphorus, potassium, COD (potassium dichromate method) 2 Hygiene test bacteria Inspection (general bacteria count, mold count, yeast count, coliform bacteria count) Toxic metals (mercury, cadmium, lead, arsenic, hexavalent chromium) Cyanide, PCB, pesticides (organic phosphorus, organic chlorine), phthalate 3 Special analysis elemental analysis (CNH), total organic carbon, luminescence spectrometry (qualitative analysis of metals), carboxylic acid composition analysis, saccharide composition analysis, amino acid composition analysis, antibiotics (penicillin), quantitative analysis of metals 4 Escherichia coli, yellow grapes Growth inhibition test 1 for cocci and Pseudomonas aeruginosa General property test 1.1 Test method PH: JIS Z8802 (glass electrode method) Moisture:
105℃ drying method Crude protein: Kjeldahl method
Crude lipid: Soxhlet extraction method Crude fiber: Henneberg-Staumann method Ash: Electric furnace ashing method (550℃) Acidity: Neutralization titration method Phosphorus: Molybdenum blue method COD: JIS K0102.15 (potassium dichromate method) 1.2 Test Results The above results are shown in Table-1.

【衚】 衚―より明らかなようにヒナヌマスカル
ミヌは匷い酞性を瀺し、無機質の倚いこずが
特城である。たた氎分量33.3で倖芋䞊倚い
ように思われるが枬定法を105℃也燥法で行
぀おいるため詊料䞭の揮発性成分も䞀郚、氎
分量ずしお枬定されおいる可胜性がある。  衛生詊隓 2.1 詊隓方法 氎銀環境庁告瀺第64号原子吞光法 カ
ドミりムJIS K0102.40.2原子吞光法
鉛JIS K0102.39.2原子吞光法 砒玠
JIS K0102.48.2原子吞光法 六䟡クロ
ムJIS K0102.51.2原子吞光法 シア
ンJIS K0102.29.2吞光光床法PCB
JIS K0093ガスクロマ法 蟲薬衛生詊
隓法 フタル酞゚ステル化孊物質調査法環境
庁発行 抗生物質ペヌパヌデスク法 2.2 詊隓成瞟 分析結果をたずめお衚―に瀺す。
[Table] As is clear from Table 1, Hyumascalmy is characterized by its strong acidity and high mineral content. Also, the water content of 33.3% may seem high on the surface, but since the measurement method was carried out using a 105°C drying method, it is possible that some of the volatile components in the sample were also measured as water content. 2 Hygiene test 2.1 Test method Mercury: Environment Agency Notification No. 64 (atomic absorption method) Cadmium: JIS K0102.40.2 (atomic absorption method)
Lead: JIS K0102.39.2 (atomic absorption method) Arsenic:
JIS K0102.48.2 (Atomic absorption method) Hexavalent chromium: JIS K0102.51.2 (Atomic absorption method) Cyan: JIS K0102.29.2 (Atomic absorption method) PCB:
JIS K0093 (Gas chroma method) Pesticides: Hygiene test method Phthalate esters: Chemical substance investigation method (published by the Environment Agency) Antibiotics: Paper desk method 2.2 Test results The analysis results are summarized in Table 2.

【衚】 分析結果から衛生的内容を考察するず土壌
汚染防止法、食品衛生法の基準を満足する。
尚フタル酞゚ステルに぀いおは珟圚のずころ
芏準倀は定められおいない。 参考資料 法什䟋 米囜の残留蟲薬に関する。 成分芏栌 BHC 0.2ppm以䞋 アルドリン 䞍怜出 デむルドリン 䞍怜出 ゚ンドリン 䞍怜出 パラチオン 䞍怜出 マラチオン 0.1ppm以䞋 カドミりム 1.0ppm以䞋  金属成分の発光分析法による定性ず原子吞光
法による定量分析 3.1 詊隓方法 発光分析装眮による定性詊隓詊料に黒
鉛粉末の重量割合で混合し発光分析装眮に
かけ吞収スペクトルの盞察匷床で金属の定性
を行぀た。 原子吞光法による定量詊隓ナトリりム、
カリりム、カルシりム、マグネシりム、鉄、
アルミニりム、マンガン、クロム等は硝酞で
湿匏分解したのち、原子吞光法で分析した。 たた、リンは湿匏分解したのちモリブデン
青色法で定量した。ケむ玠はアルカリ溶融分
解したのち吞光光床法で定量した。 3.2 詊隓成瞟 発光分析装眮による定性分析結果を衚―
に、たた䞻たる成分の定量分析結果を衚―
に瀺した。
[Table] Considering the hygienic content from the analysis results, it satisfies the standards of the Soil Contamination Prevention Act and the Food Sanitation Act.
No standard values have been established for phthalate esters at present. (Reference material) Laws and regulations (example) Regarding pesticide residues in the United States. Ingredient specifications BHC 0.2ppm or less Aldrin Not detected Deirdrin Not detected Endrin Not detected Parathion Not detected Malathion 0.1ppm or less Cadmium 1.0ppm or less 3 Qualitative analysis of metal components by emission spectrometry and quantitative analysis by atomic absorption spectrometry 3.1 Test method Qualitative by emission spectrometer Test: Sample 1 was mixed with graphite powder at a weight ratio of 2, and the mixture was subjected to an emission spectrometer to qualitatively characterize the metal based on the relative intensity of the absorption spectrum. Quantitative test by atomic absorption method: Sodium,
potassium, calcium, magnesium, iron,
Aluminum, manganese, chromium, etc. were wet decomposed with nitric acid and then analyzed using atomic absorption spectrometry. In addition, phosphorus was determined using the molybdenum blue method after wet decomposition. Silicon was quantified by spectrophotometry after alkali melt decomposition. 3.2 Test results Table 3 shows the qualitative analysis results using the luminescence spectrometer.
Table 4 also shows the results of quantitative analysis of the main components.
It was shown to.

【衚】 発光分析装眮による定性分析では19成分が
怜出され、ケむ玠、ナトリりム、アルミニり
ム、カルシりム、鉄等はで最も倚
いグルヌプ、次いでマグネシりム、カリり
ム、チタンの、リン、ニツケル、
銀、銅、バナゞりム、バリりム、鉛、マンガ
ン、クロム、コバルト、ストロンチりム等は
で少ないグルヌプであ぀た。
[Table] Qualitative analysis using an optical emission spectrometer detected 19 components, silicon, sodium, aluminum, calcium, iron, etc. were the most common group with (+++), followed by magnesium, potassium, titanium (++), phosphorus, nickel, etc.
Silver, copper, vanadium, barium, lead, manganese, chromium, cobalt, strontium, etc. were in groups with (+) and small numbers.

【衚】 発光分析の結果を参考にし10皮類の金属に
぀いお定量分析を行぀た結果ケむ玠9.2ず
最も倚くアルミニりム1.9、鉄1.7、ナト
リりム1.09等が䞻たる金属である。  有機酞組成分析 4.1 詊隓方法 遊離の有機酞詊料500mgをずり氎でml
に定容にしたのち遠心分離3000rpm×20
分を行ない䞊柄を濟過埌、カルボン酞分析
蚈で枬定した。 加氎分解物の有機酞詊料10gをずり1N―
HCl箄40mlに溶解し加熱還流により時間、
加氎分解を行぀た。その埌、遠心分離
3000rpm×20分を行ない䞊柄を濟過埌、
濟液を40mlに定容しカルボン酞分析蚈で枬定
した。 4.2 詊隓成瞟 怜出された有機酞を衚―に瀺す。遊離の
状態では乳酞がわずかに怜出された。たた加
氎分解物では酢酞、ギ酞、乳酞の皮類を怜
出し、酢酞0.078、ギ酞0.036、乳酞0.007
であ぀た。
[Table] Based on the results of luminescence spectroscopy, quantitative analysis of 10 types of metals was conducted. The main metals were silicon at 9.2%, aluminum at 1.9%, iron at 1.7%, and sodium at 1.09%. 4 Organic acid composition analysis 4.1 Test method Free organic acid: Take 500 mg of sample and add 5 ml of water.
After adjusting the volume to a constant volume, centrifuge (3000 rpm x 20
After filtering the supernatant, it was measured using a carboxylic acid analyzer. Organic acid of hydrolyzate: Take 10g of sample and 1N-
Dissolve in approximately 40 ml of HCl and heat under reflux for 3 hours.
Hydrolysis was performed. After that, perform centrifugation (3000 rpm x 20 minutes) and filter the supernatant.
The filtrate was diluted to 40 ml and measured using a carboxylic acid analyzer. 4.2 Test results Table 5 shows the organic acids detected. A small amount of lactic acid was detected in the free state. In addition, three types of acetic acid, formic acid, and lactic acid were detected in the hydrolyzate: acetic acid 0.078%, formic acid 0.036%, and lactic acid 0.007%.
It was %.

【衚】  アミノ酞組成分析 5.2 詊隓方法 遊離アミノ酞詊料10gに蒞留氎200mlを
加え撹拌したのち濟玙No.で濟過し、濟液を
枛圧濃瞮したのち脱塩し再び枛圧也固した也
固物、PH2.2のリチりムBufferで定容にしア
ミノ酞分析蚈で分析を行぀た。 党アミノ酞詊料を6N塩酞で110℃、24時
間の条件で加氎分解したのち枛圧也固し2.2
のリチりムBufferで定容しアミノ酞分析蚈で
分析を行぀た。 5.3 詊隓成瞟 各アミノ酞の含有量を衚―に瀺す。
[Table] 5 Amino acid composition analysis 5.2 Test method Free amino acids: Add 200 ml of distilled water to 10 g of sample, stir, filter through filter paper No. 2, concentrate the filtrate under reduced pressure, desalt, and dry again under reduced pressure. The volume was made constant with lithium buffer at pH 2.2 and analyzed using an amino acid analyzer. Total amino acids: Hydrolyze the sample with 6N hydrochloric acid at 110℃ for 24 hours, then dry under reduced pressure to obtain 2.2
The solution was made to a constant volume with Lithium Buffer and analyzed using an amino acid analyzer. 5.3 Test results The content of each amino acid is shown in Table 6.

【衚】 遊離アミノ酞はきわめお埮量であるが党ア
ミノ酞ではかなり倚量のアミノ酞を抜出し
た。  糖組成分析 6.1 詊隓方法 遊離の糖詊料10gをずり氎40mlで溶解し
箄30分間振ずう埌、遠心分離を行ない䞊柄液
をロヌタリヌ゚バポレヌタヌで也固した。 加氎分解物の糖詊料10gをずり1N―
HCl40mlに溶解し加熱還流により加氎分解を
行぀た。その埌、遠心分離を行い䞊柄液をロ
ヌタリヌ゚バポレヌタヌで濃瞮し、N2通気
で也固した。 䞊述のように凊理した詊料にピリゞン塩
酞ヒドロキシルアミン、α―メチル・グルコ
シド含有mlを入れ75℃、30分間加熱埌、
無氎酢酞mlを入れ、䞀倜攟眮した。このよ
うにしお䜜成した怜液をガスクロマトグラフ
で枬定した。 6.2 詊隓成瞟 各皮の含有量を衚―に瀺す。
[Table] Although the amount of free amino acids was extremely small, a considerable amount of total amino acids was extracted. 6 Sugar composition analysis 6.1 Test method Free sugar: 10 g of sample was dissolved in 40 ml of water, shaken for about 30 minutes, centrifuged, and the supernatant liquid was dried using a rotary evaporator. Sugar of hydrolyzate: Take 10g of sample and 1N-
Hydrolysis was carried out by dissolving in 40 ml of HCl and heating under reflux. Thereafter, centrifugation was performed, and the supernatant liquid was concentrated using a rotary evaporator and dried by bubbling with N2 . Add 4 ml of pyridine (containing hydroxylamine hydrochloride and α-methyl glucoside) to the sample treated as above and heat it at 75°C for 30 minutes.
4 ml of acetic anhydride was added and left overnight. The test solution prepared in this manner was measured using a gas chromatograph. 6.2 Test results The contents of each type are shown in Table 7.

【衚】 遊離糖は怜出されなか぀たが加氎分解物で
はガラクトヌス0.37、アラビノヌス0.33
、キシロヌス0.30、グルコヌス0.16、
マンノヌス0.12、ラムノヌス0.07を怜出
した。  元玠分析、党有機炭玠TOC分析 7.1 詊隓方法 元玠分析C.H.Nアナラむザヌを甚いお枬定
した。 党有機炭玠TOC分析蚈を甚いお枬定し
た。 7.2 詊隓成瞟
[Table] No free sugars were detected, but the hydrolyzate contained 0.37% galactose and 0.33% arabinose.
%, xylose 0.30%, glucose 0.16%,
Mannose 0.12% and rhamnose 0.07% were detected. 7 Elemental analysis, total organic carbon (TOC) analysis 7.1 Test method Elemental analysis: Measured using a CHN analyzer. Total organic carbon: Measured using a TOC analyzer. 7.2 Exam results

【衚】 元玠の䞻成分は炭玠14.0でこの内党
有機炭玠3.6のしめる割合は25.7で
ある。 ヒナヌマスカルミヌの埮生物詊隓ず増殖抑制詊隓  光孊顕埮鏡による芳察 詊料の蒞留氎懞濁液の滎をスラむドグ
ラスに塗垃しお也燥させ400倍の光孊顕埮鏡で
芳察するず、倧小の土塊ずずもに皮々の珪藻類
が倚数認められた。珪藻類は通垞土壌䞭に盞圓
数怜出されるものであるから、通垞の土壌ずの
比范においおその倚寡を論じなければならない
が、ヒナヌマスカルミヌが珪藻土の範疇に属す
べきものの可胜性を瀺唆しおいる。 珪藻はその现胞壁が高床に珪酞化されおいる
ために土壌䞭で腐敗、分解され難く、殻ずしお
残るずいわれおいる。 珪藻類の他には怍物の繊維やカビの菌糞ず思
われる構造物が認められるが、その量は倚くは
なか぀た。たた现菌现胞ず認められる構造物も
極めお少量存圚するに過ぎなか぀た。  现菌怜査䞀般现菌数、カビ・酵母数、及び
倧腞菌矀数 2.1 方法 è©Šæ–™10gを粟秀し、90mlの滅菌生理食塩氎
に懞濁した液を10倍皀釈液ずし、同じく滅菌
生理食塩氎で適宜10倍段階皀釈したものを詊
料ずしお甚いた。  䞀般现菌数はトリプチケヌス゜む寒倩培
地BBL瀟補及び普通寒倩培地栄研化
孊補で30℃、日〜日間  カビ及び酵母数はPH3.5に修正したポテ
トデキストロヌス寒倩培地栄研で25
℃、日  カビ数はツアペツクドツクス培地栄
研で25℃、日  倧腞菌矀数はデスオキシコヌレむト培地
栄研で35℃、日の培逊で生じた集萜
数から、詊料1g圓りの生残菌数ずしお算
出した。  原詊料液を80℃、10分間加熱した埌に、
䞊蚘ず同様に皀釈しおトリプチケヌス゜む
寒倩培地BBL、普通寒倩培地栄研
で30℃、〜日培逊しお耐熱性芜胞数を
枬定した。 2.2 成瞟 衚に瀺す。
[Table] The main elemental component is carbon (14.0%), of which the total organic carbon (3.6%) accounts for 25.7%. Microbial test and growth inhibition test 1 of Hyumascalmyi Observation using an optical microscope When a drop of a 1% suspension of the sample in distilled water was applied to a slide glass, dried, and observed under an optical microscope at 400x magnification, large and small soil clods were observed. A large number of various diatoms were observed. Since diatoms are usually detected in considerable numbers in soil, their abundance must be discussed in comparison with normal soil, but this suggests that Hyumascalmy may belong to the category of diatomaceous earth. ing. Because the cell walls of diatoms are highly silicified, they are difficult to rot and decompose in the soil, and are said to remain as shells. In addition to diatoms, structures that appear to be plant fibers and fungal hyphae were also observed, but their quantity was not large. Also, only a very small amount of structures recognized as bacterial cells were present. 2. Bacteria test (general bacteria count, mold/yeast count, and coliform bacteria count) 2.1 Method Accurately weigh 10g of the sample, suspend it in 90ml of sterile physiological saline, make a 10-fold dilution, and dilute the same solution with sterile physiological saline. The samples were diluted appropriately in 10-fold steps and used as samples. 1. General bacterial counts were measured on trypticase soy agar medium (manufactured by BBL) and ordinary agar medium (manufactured by Eiken Chemical Co., Ltd.) at 30°C for 2 to 3 days. 2. Mold and yeast counts were measured on potato dextrose agar corrected to pH 3.5. 25 with medium (Eiken)
℃, 4 days 3 The number of molds was determined by culturing in Tatsupeku Dokus medium (Eiken) at 25℃ for 4 days. 4 The number of coliform bacteria was determined by culturing in desoxycholate medium (Eiken) at 35℃ for 1 day. From the number, the number of viable bacteria per gram of sample was calculated. 5 After heating the original sample solution at 80℃ for 10 minutes,
Trypticase soy agar medium (BBL) and ordinary agar medium (Eiken) were diluted in the same manner as above.
The cells were cultured at 30°C for 2 to 3 days, and the number of heat-resistant spores was measured. 2.2 Results Table 9 shows the results.

【衚】 するこずが困難であ぀た。
 すべおがカビの芜胞である。
现菌数を枬定するために甚いた培地は栄逊玠に
富むため、詊料䞭に圧倒的倚数に存圚するカビ類
の増殖を防止するこずができず、正確な生残数を
枬定できなか぀たが、集萜の圢態や色調からは现
菌類のものず想定されるものは党く芋出すこずが
できなか぀た。倧腞菌矀を枬定するためのデ゜キ
シコヌレむト培地は遞択増殖性のよい培地であ぀
お、その枬定倀の信頌床は高いのであるが、その
数は10以䞋であるから、この倀から想定すれ
ば䞀般现菌も著るしくひくい倀であろうこずがう
かがえる。 耐熱性芜胞数ずしお枬定されたものはすべおカ
ビの集萜であ぀たが、その数は加熱凊理前のもの
ず比范しお1/2000以䞋であ぀た。このこずは、加
熱凊理前の詊料ではカビの菌糞が倚く、胞子が少
いこずを瀺しおいる。即ち菌糞状態で存圚するも
のは加熱すれば死滅するが胞子状で存圚するもの
は耐熱性であるこずを瀺しおいるのであろう。 ヒナヌマスカルミヌがいわゆる腐怍土であるな
らば、1g圓り400䞇皋床のカビ類が存圚するこず
はずりたおお問題ずすべきものではない。 芁 箄  ヒナヌマスカルミヌの䞻成分は無機質40
でPH2.98酞床ク゚ン酞量換算倀4.08
の酞性物質である。  無機質は発光分析により19皮類の金属を怜出
し、ケむ玠9.2、アルミニりム1.9、鉄1.7
、ナトリりム1.09等が䞻たる成分である。  残留蟲薬、重金属等の有害物質は土壌汚染防
止法、食品衛生法等の基準倀を満足しおいる。  有機酞では酢酞0.078、ギ酞0.036、乳酞
0.007の成分を怜出した。  構成アミノ酞では必須アミノ酞等16成分を怜
出し総アミノ酞量は7841ppm0.78にな
る。  構成糖はガラクトヌス、アラビノヌス、グル
コヌス、キシロヌス、マンノヌス、ラムノヌス
等から成りその総量は1.35になる。  構成元玠は14.0、2.3、0.8
である。 実斜䟋  この実斜䟋は実斜䟋で工業甚濟過機で濟過し
たPH2.8の溶液を曎に0.8Ό以䞊の物質を通さない
ミクロポヌア濟過に付しお埗られた溶液に぀いお
埮生物詊隓を行぀た結果を瀺す。こゝで䞊蚘溶液
をヒナヌマス゚ルラビン1000ず呌ぶこずにする。  䜿甚菌皮 倧腞菌Escherichia coli IFO12734 黄色ブドり球菌Staphylococcus aureus
FDA209P 緑膿菌Pseuclomonas aeruginosa
IFO12689 の菌株を指瀺菌ずしお甚いた。  ヒナヌマスカルミヌ抜出液の䜜成法 è©Šæ–™10gを秀量し、90mlの粟補氎を加えおよ
く混合し、撹拌しながら50℃で30分抜出した。
8000回転分10000×で15分間遠心しお
沈柱物を陀去し现菌類やカビを陀去するために
䞊蚘の现菌濟過噚で濟過滅菌した。この濟液を
ヒナヌマス゚ルラビン1000抜出液ずしお甚い
た。  ヒナヌマス゚ルラビン1000の皀釈 ヒナヌマス゚ルラビン1000のPHはきわめお䜎
くPH2.8前埌指瀺菌はいずれも䜎いPHに耐
えられないず想定されるので、ヒナヌマス゚ル
ラビン1000の皀釈は滅菌蒞留氎で行぀た。即ち
䞊蚘ヒナヌマス゚ルラビン1000を滅菌蒞留氎で
10倍、100倍、300倍及び500倍に皀釈したもの
を詊隓液ずした。  指瀺菌の前培逊ず詊隓液䞭の生菌数の枬定
に瀺した指瀺菌は普通ブむペン液䜓培
地で倧腞菌ず黄色ブドり球菌は37℃で、緑膿菌
は30℃で20時間培逊しお甚いた。詊隓液ぞの接
皮は、培逊液の100〜500倍皀釈液の0.1mlを10
mlの詊隓液に投入するこずによ぀お行぀た。 菌を接皮した詊隓液は35℃のフラン噚内で24
時間攟眮し、生残菌数を調べた。 生菌数の枬定には普通寒倩培地の平板を甚
い、37℃倧腞菌及び黄色ブドり球菌又は30
℃緑膿菌で〜日培逊しお生じた集萜数
から算定した。 成 瞟 10ヒナヌマスカルミヌ懞濁液を50℃、30分加
枩しお䜜成したヒナヌマス゚ルラビン1000を原液
ずしお、蒞留氎で10〜500倍に皀釈した堎合の倧
腞菌、黄色ブドり球菌及び緑膿菌に察する抗菌性
詊隓の成瞟を䞀括しお衚に瀺した。 蒞留氎皀釈した堎合の増殖抑制䜜甚 ヒナヌマス゚ルラビン1000のPHは2.8を瀺し、
蒞留氎で10〜500倍に皀釈するず皀釈倍率が高く
なるに埓぀おPHも順次䞭性偎に䞊昇した。 倧腞菌は原液の10倍皀釈液では、35℃、24時間
埌にすべおの菌が死滅したが、100〜500倍皀釈で
はきわめお少数が生残した。黄色ブドり球菌は
300倍皀釈たで党滅したが500倍皀釈では10ml生
残した。緑膿菌では500倍皀釈でも殺菌効果があ
぀た。即ちヒナヌマス゚ルラビン1000を蒞留氎で
皀釈する限りにおいおは、皋床の差があるにしお
も䞊蚘菌皮に察する増殖抑制䜜甚があるこずが
明らかである。
[Table] It was difficult to do so.
** All are mold spores.
Because the medium used to measure the number of bacteria is rich in nutrients, it was not possible to prevent the growth of mold, which is overwhelmingly present in the samples, and it was not possible to accurately measure the number of surviving bacteria. Based on the shape and color, nothing that could be assumed to be bacterial could be found. The desoxycholate medium used to measure coliform bacteria is a medium with good selective growth properties, and its measured values are highly reliable, but since the number of coliform bacteria is less than 10/g, it is estimated from this value. This suggests that the values for general bacteria would also be significantly lower. All of the heat-resistant spores measured as colonies were mold colonies, but the number was less than 1/2000 of that before heat treatment. This indicates that the sample before heat treatment had more fungal hyphae and fewer spores. In other words, this may indicate that those that exist in the form of hyphae will die if heated, but those that exist in the form of spores are heat resistant. If Hyumascalmy is a so-called humus soil, the presence of about 4 million molds per gram should not be a particular problem. Summary 1 The main components of Hyumascalmy are inorganic (40
%) and PH2.98 acidity (citric acid amount conversion value) 4.08%
It is an acidic substance. 2 As for inorganic substances, 19 types of metals were detected by emission analysis, including 9.2% silicon, 1.9% aluminum, and 1.7% iron.
%, sodium 1.09%, etc. are the main ingredients. 3. Hazardous substances such as residual pesticides and heavy metals meet the standard values of the Soil Contamination Prevention Act and the Food Sanitation Act. 4 Organic acids include acetic acid 0.078%, formic acid 0.036%, and lactic acid.
Three components were detected at 0.007%. 5. Among the constituent amino acids, 16 components including essential amino acids were detected, and the total amount of amino acids was 7841 ppm (0.78%). 6 The constituent sugars are galactose, arabinose, glucose, xylose, mannose, rhamnose, etc., and the total amount is 1.35%. 7 Constituent elements are C = 14.0%, H = 2.3%, N = 0.8
%. Example 4 This example shows the results of a microbial test on the solution obtained by further subjecting the pH 2.8 solution that was filtered using an industrial filter in Example 1 to micropore filtration that does not allow substances of 0.8Ό or larger to pass through. shows. Hereinafter, the above solution will be referred to as Humerous Rubin 1000. 1 Bacterial species used Escherichia coli IFO12734 Staphylococcus aureus
FDA209P) Pseuclomonas aeruginosa
IFO12689) were used as indicator bacteria. 2. Method for preparing Hyumascalmy extract 10 g of sample was weighed, 90 ml of purified water was added, mixed well, and extracted at 50° C. for 30 minutes with stirring.
The mixture was centrifuged at 8,000 rpm (10,000×G) for 15 minutes to remove precipitates, and sterilized by filtration using the above-mentioned bacterial filter to remove bacteria and mold. This filtrate was used as a humus errabine 1000 extract. 3. Dilution of Hummus erravin 1000 The pH of Hummus erravin 1000 is extremely low (around 2.8), so it is assumed that all indicator bacteria cannot tolerate low PH. Dilutions were made with sterile distilled water. That is, the above Hummus Errabine 1000 is mixed with sterile distilled water.
The test solutions were diluted 10 times, 100 times, 300 times, and 500 times. 4 Pre-culture of indicator bacteria and measurement of the number of viable bacteria in the test solution The indicator bacteria shown in 1) were incubated in ordinary broth (liquid) medium for 20 hours at 37℃ for Escherichia coli and Staphylococcus aureus, and at 30℃ for Pseudomonas aeruginosa. It was cultured and used. To inoculate the test solution, add 0.1 ml of a 100 to 500 times diluted culture solution to 10
This was done by pouring it into ml of test solution. The test solution inoculated with bacteria was kept in a furan vessel at 35℃ for 24 hours.
After leaving it for a while, the number of surviving bacteria was examined. To measure the number of viable bacteria, use a plain agar plate at 37°C (for E. coli and Staphylococcus aureus) or at 30°C.
It was calculated from the number of colonies formed by culturing at 1 to 2 days at ℃ (Pseudomonas aeruginosa). Results Escherichia coli and Staphylococcus aureus were diluted 10 to 500 times with distilled water using Humus Errabine 1000, which was prepared by heating a 10% humus carmy suspension at 50℃ for 30 minutes, as a stock solution. The results of the antibacterial test against Pseudomonas aeruginosa and Pseudomonas aeruginosa are summarized in Table 2. Proliferation inhibitory effect when diluted with distilled water The pH of Hummus Errabine 1000 is 2.8,
When diluted 10 to 500 times with distilled water, the pH gradually increased toward neutrality as the dilution ratio increased. In a 10-fold dilution of the original solution, all E. coli bacteria died after 24 hours at 35°C, but in a 100- to 500-fold dilution, a very small number survived. Staphylococcus aureus is
It was completely destroyed up to 300 times dilution, but 10/ml survived at 500 times dilution. It had a bactericidal effect on Pseudomonas aeruginosa even when diluted 500 times. In other words, it is clear that as long as Hummus Errabine 1000 is diluted with distilled water, it has an effect of inhibiting the growth of the three types of bacteria mentioned above, although there are differences in degree.

【衚】【table】

【衚】 蒞留氎
ヒナヌマス゚ルラビン1000の倧腞菌、黄色ブド
り球菌、緑膿菌等ぞの増殖抑制䜜甚は500倍皀釈
液でも効果があ぀た。
[Table] Distilled water Hummus Errabin 1000 was effective in inhibiting the growth of E. coli, Staphylococcus aureus, Pseudomonas aeruginosa, etc. even when diluted 500 times.

【図面の簡単な説明】[Brief explanation of the drawing]

第図は実斜䟋の実隓装眮を瀺す。 FIG. 1 shows the experimental apparatus of Example 2.

Claims (1)

【特蚱請求の範囲】  怍物性腐怍泥原料を砎砕工皋にかけ、こゝで
空気ず充分接觊させるための原料の切かえしず通
気を少く共30分以䞊続け、酞化の終぀たものを玄
80℃〜玄75℃の熱颚で氎分玄60〜玄30以䞊の
也燥物ずし埗られるガス吞着性・殺菌組成物。  䞊蚘也燥しお埗られる組成物を曎に埮粉砕し
お氎分30前埌の粉末ずした堎合の特蚱請求の範
囲の組成物。  䞊蚘也燥しお埗られる組成物を枩氎䞭で30分
間以䞊浞挬し、PH6.5以䞋の抜出液ずした埌ゎミ
残枣を去しお埗られる組成物。  䞊蚘過が工業的過ず0.8M以䞊の物質を
通さないミクロポヌア過ず段に行われる堎合
の特蚱請求の範囲の組成物。
[Claims] 1. Vegetable humus mud raw material is subjected to a crushing process, and the raw material is changed and aerated for at least 30 minutes to bring it into sufficient contact with air, and the oxidized material is crushed into approximately
A gas-adsorbing and sterilizing composition that can be dried with hot air at 80°C to about 75°C and has a moisture content of about 60% to about 30% or more. 2. The composition according to claim 1, wherein the composition obtained by drying the above is further finely pulverized into a powder having a water content of about 30%. 3. A composition obtained by immersing the composition obtained by drying the above in warm water for 30 minutes or more to obtain an extract having a pH of 6.5 or less, and then removing dust residue. 4. The composition according to claim 3, wherein the filtration is carried out in two stages: industrial filtration and micropore filtration which does not allow substances of 0.8M or more to pass through.
JP9456380A 1980-07-12 1980-07-12 Novel gas-adsorbable, deodorizing, bactericidal composition Granted JPS5721474A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9456380A JPS5721474A (en) 1980-07-12 1980-07-12 Novel gas-adsorbable, deodorizing, bactericidal composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9456380A JPS5721474A (en) 1980-07-12 1980-07-12 Novel gas-adsorbable, deodorizing, bactericidal composition

Publications (2)

Publication Number Publication Date
JPS5721474A JPS5721474A (en) 1982-02-04
JPS621362B2 true JPS621362B2 (en) 1987-01-13

Family

ID=14113779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9456380A Granted JPS5721474A (en) 1980-07-12 1980-07-12 Novel gas-adsorbable, deodorizing, bactericidal composition

Country Status (1)

Country Link
JP (1) JPS5721474A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5391121A (en) * 1977-01-22 1978-08-10 Tokyo Shiyokubutsu Kagaku Kenk Sterilizing agent and use thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5391121A (en) * 1977-01-22 1978-08-10 Tokyo Shiyokubutsu Kagaku Kenk Sterilizing agent and use thereof

Also Published As

Publication number Publication date
JPS5721474A (en) 1982-02-04

Similar Documents

Publication Publication Date Title
US5397499A (en) Alkali-ionization and oxidation inhibiting composition
Sharma et al. Physical, chemical and phytoremediation technique for removal of heavy metals
Ali et al. Biochars reduced the bioaccessibility and (bio) uptake of organochlorine pesticides and changed the microbial community dynamics in agricultural soils
WO2011121832A1 (en) Fenton reaction catalyst using coffee grounds or tea dregs as raw material
WO1996018301A1 (en) Aqueous composition containing h2o2, acids and ag, preparation method therefor and use thereof for disinfection, hygiene and/or pollution control
KR101734140B1 (en) Composition for reducing odor gas with antimicrobial effect and preparation method thereof
CN102718247A (en) Calcium powder and preparation method thereof
US11097241B2 (en) Biochars, biochar extracts and biochar extracts having soluble signaling compounds and method for capturing material extracted from biochar
CN102318644B (en) Method for preparing material slowly releasing chlorine dioxide and application thereof
JP2002224678A (en) Water quality improving agent and manufacturing method thereof and treated water treated by water quality improving agent
JPS621362B2 (en)
KR100760987B1 (en) Lactobacillus acidophilus pm1 removing heavy metals
CN1915041A (en) Product of antistaling agent for vegetable, fruit, and its applications
JPH08164192A (en) Vegetative deodorant
US11629084B2 (en) Method for treating an oily solid waste sludge
US20220174985A1 (en) Biochars, biochar extracts and biochar extracts having soluble signaling compounds and method for capturing material extracted from biochar
KR100454508B1 (en) Natural water having deodorization ability and sterilization effect against resistent bacteria, and produce method thereof
KR101993762B1 (en) Liquefied deodorant and fabricating method thereof
Rahmayanti et al. Physicochemical Properties Of Used Cooking Oil Purified Using Shallot (Allium Cepa L.) Pell Adsorbent
WO2020045580A1 (en) Microorganism adsorbent and method for sterilizing microorganisms using same
Mwakabona et al. The influence of stereochemistry of the active compounds on fluoride adsorption efficiency of the plant biomass
Abdeen Novel Trends to Reduce the Hazard of Some Environmental Pollutants on Milk and Dairy Products
CN1177618C (en) Antibacterial organic deodouring agent for refrigerator
Dwidar Removal of heavy metal ions from some wastewater by using different agricultural wastes
KR102637027B1 (en) Method and composition for removing residual pesticides using microorganism from agricultural products