JPS6213498B2 - - Google Patents

Info

Publication number
JPS6213498B2
JPS6213498B2 JP16834379A JP16834379A JPS6213498B2 JP S6213498 B2 JPS6213498 B2 JP S6213498B2 JP 16834379 A JP16834379 A JP 16834379A JP 16834379 A JP16834379 A JP 16834379A JP S6213498 B2 JPS6213498 B2 JP S6213498B2
Authority
JP
Japan
Prior art keywords
temperature
combustion
combustors
combustor
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16834379A
Other languages
Japanese (ja)
Other versions
JPS5692326A (en
Inventor
Soichi Kurosawa
Nobuyuki Iizuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP16834379A priority Critical patent/JPS5692326A/en
Publication of JPS5692326A publication Critical patent/JPS5692326A/en
Publication of JPS6213498B2 publication Critical patent/JPS6213498B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Regulation And Control Of Combustion (AREA)

Description

【発明の詳細な説明】 本発明は燃焼器を複数本有するガスタービンの
燃焼制御方法とその装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a combustion control method and apparatus for a gas turbine having a plurality of combustors.

燃焼器を複数本有するガスタービンで最も重要
なことは、各燃焼器のガス流量と温度と均一に保
つことにある。例えばある燃焼器1本の燃焼温度
が下つた場合、その燃焼器に連結されたノズルに
そのまま低温ガスが流れ込み、バケツトに作用す
る。この場合、円周上に設置された燃焼器のう
ち、当該燃焼器の占める部分にのみ低温ガスが通
過することになり、バケツトが一回転する毎に当
該部分にて冷気に晒され、周期的に変則荷重が加
えられることになる。この冷気並びに変則荷重の
影響はバケツト材の疲労を増し、寿命を極度に減
少せしめ、また振動発生、異常変形による摺損等
を引き起し、タービン損傷の大きな要因となる。
The most important thing in a gas turbine having multiple combustors is to maintain uniform gas flow rate and temperature in each combustor. For example, when the combustion temperature of a certain combustor drops, low-temperature gas directly flows into the nozzle connected to that combustor and acts on the bucket. In this case, among the combustors installed on the circumference, low-temperature gas passes only through the part occupied by the combustor, and every time the bucket rotates, that part is exposed to cold air, causing periodic An irregular load will be applied to the The effects of this cold air and irregular loads increase the fatigue of the bucket material, drastically shortening its lifespan, and also cause vibrations and abrasion losses due to abnormal deformation, which are major causes of turbine damage.

この温度不均衡の原因には二つあり、その一つ
は複数本の燃焼器に送る燃料の制御を個々にやつ
ておらず、複数本を一つに纏めて被駆動機出力、
ガス温度および燃料流量をコントロールしていた
ことであり、他の一つはガスタービンの温度コン
トロールの温度検出を排気温度にて行なつている
ため、燃焼器の温度変化が排気温度にまで到達す
るのに時間がかかり、その間に変形、振動発生、
摺損等の事故を引き起しているということであ
る。
There are two causes for this temperature imbalance. One is that the fuel sent to multiple combustors is not controlled individually, and multiple combustors are combined into one to reduce the output of the driven machine.
The gas temperature and fuel flow rate were controlled, and the other reason was that the gas turbine temperature control was detected using the exhaust temperature, so the temperature change in the combustor reached the exhaust temperature. During this time, deformation, vibration, and
This is causing accidents such as sliding damage.

つぎに従来の燃焼制御方法を第1図、第2図に
従つて説明すると、従来は排気室12に円周上に
設置された複数本のサーモカツプル8により排気
ガス7の温度を測定し、演算機9でこれらのサー
モカツプル8の指示温度の平均値を算出し、演算
値を制御装置10に導入し、出力に対応する温度
となるよう、燃料ライン11から供給される燃料
流量制御を行なつていた。
Next, a conventional combustion control method will be explained with reference to FIGS. 1 and 2. Conventionally, the temperature of the exhaust gas 7 is measured by a plurality of thermocouples 8 installed circumferentially in the exhaust chamber 12. The computer 9 calculates the average value of the indicated temperatures of these thermocouples 8, and the calculated value is introduced into the control device 10, which controls the flow rate of fuel supplied from the fuel line 11 so that the temperature corresponds to the output. I was getting used to it.

また燃焼器4の温度偏差を制御するには従来は
前記排気ガス温度平均値と、ある一個のサーモカ
ツプル8の指示温度の差が28℃以上になつた場
合、警報を発する仕組みとなつている。しかしな
がら、タービンを出た後の排気ガス7は約10度の
旋回角をもつて流れているため、下流側に設置さ
れている円周上のサーモカツプル8ではどの燃焼
器4の温度が異常であるかの判別がつかず、燃焼
器個々の制御をすることができない。これは旋回
角が負荷によつて変動し、サーモカツプル8と燃
焼器4との対応がつかないことにも関係する。
Furthermore, in order to control the temperature deviation of the combustor 4, conventional systems have been designed to issue an alarm if the difference between the average exhaust gas temperature and the indicated temperature of a certain thermocouple 8 exceeds 28°C. . However, since the exhaust gas 7 after leaving the turbine flows with a swirl angle of approximately 10 degrees, the temperature of which combustor 4 is abnormal in the circumferential thermocouple 8 installed on the downstream side. It is not possible to determine whether there is a combustor or not, and it is not possible to control each combustor individually. This is also related to the fact that the turning angle varies depending on the load, and the thermocouple 8 and the combustor 4 cannot correspond to each other.

本発明の目的は複数本の燃焼器間の燃焼温度偏
差を設定値以下に速やかに制御しうるガスタービ
ンの燃焼制御方法を提供することにある。
An object of the present invention is to provide a combustion control method for a gas turbine that can quickly control the combustion temperature deviation between a plurality of combustors to a set value or less.

また本発明の他の発明の目的は前記ガスタービ
ンの燃焼制御方法を適確に実施しうる燃焼制御装
置を提供することにある。
Another object of the present invention is to provide a combustion control device that can accurately implement the combustion control method for a gas turbine.

本発明の特徴は複数本の燃焼器の各燃焼筒内部
温度を個別に検出し、その温度信号をそれぞれ演
算装置に送り込み、該演算装置により前記温度信
号より前記複数本の燃焼器間の燃焼温度平均値と
燃焼温度偏差とを演算し、その演算値に基づいて
各燃焼器に供給される燃料流量を、前記燃焼器間
の燃焼温度偏差が設定値以下になるように制御す
るところにあり、この構成により複数本の燃焼器
間の燃焼温度偏差を設定値以下に速やかに制御し
うるガスタービンの燃焼制御方法を得たものであ
る。
A feature of the present invention is that the internal temperature of each combustion cylinder of a plurality of combustors is individually detected, the temperature signals are sent to a calculation device, and the calculation device calculates the combustion temperature between the plurality of combustors based on the temperature signal. The average value and the combustion temperature deviation are calculated, and the fuel flow rate supplied to each combustor is controlled based on the calculated value so that the combustion temperature deviation between the combustors is equal to or less than a set value, This configuration provides a combustion control method for a gas turbine that can quickly control the combustion temperature deviation between a plurality of combustors to a set value or less.

そして本発明の他の発明の特徴は複数本の燃焼
器の各燃焼筒内部温度を検出しかつその温度信号
を出力するサーモカツプルと、これらサーモカツ
プルからの温度信号より前記複数本の燃焼器間の
燃焼平均温度と燃焼温度偏差を演算しかつ制御信
号を出力する演算装置と、各燃焼器に個別に接続
されかつ前記演算装置からの制御信号により各燃
焼器間の燃焼温度偏差が設定値以下になるように
燃料流量を制御する燃料制御装置とを備えている
ところに存し、この構成により前記方法を適確に
実施しうる燃焼制御装置を得たものである。
Another feature of the present invention is a thermocouple that detects the internal temperature of each combustion cylinder of a plurality of combustors and outputs the temperature signal, and a thermocouple that detects the temperature inside each combustion cylinder of a plurality of combustors and outputs a temperature signal thereof, and a calculation device that calculates the combustion average temperature and combustion temperature deviation of the combustor and outputs a control signal; and a calculation device that is individually connected to each combustor and uses a control signal from the calculation device to control the combustion temperature deviation between each combustor to be below a set value. The combustion control device is equipped with a fuel control device that controls the fuel flow rate so that the fuel flow rate is controlled so that the combustion control device can accurately carry out the method described above.

以下本発明を図面に基づいて説明する。 The present invention will be explained below based on the drawings.

第3図および第4図は本発明方法の実施態様を
示すもので、複数本の燃焼器4a,4b,4cの
出口側、すなわち第1段ノズル入口にそれぞれ設
けられたサーモカツプル12a,12b,12c
により燃焼器4a,4b,4cの各燃焼筒内部の
燃焼温度が検出され、その温度信号13a,13
b,13cは演算装置14に送り込まれる。
FIGS. 3 and 4 show an embodiment of the method of the present invention, in which thermocouples 12a, 12b, and 12c
The combustion temperature inside each combustion cylinder of the combustors 4a, 4b, 4c is detected, and the temperature signals 13a, 13
b, 13c are sent to the arithmetic unit 14.

演算装置14では各温度信号13a,13b,
13cより前記複数本の燃焼器4a,4b,4c
の燃焼温度平均値と燃焼温度偏差が演算される。
The calculation device 14 receives each temperature signal 13a, 13b,
13c, the plurality of combustors 4a, 4b, 4c
The combustion temperature average value and combustion temperature deviation are calculated.

前記演算装置14からは各燃焼器4a,4b,
4cに燃料供給配管18a,18b,18cを介
して接続された燃料制御装置19a,19b,1
9cに対し、前記燃焼温度偏差に基づき制御信号
15a,15b,15cが送られ、燃焼温度が低
い燃焼器に接続されている燃料制御装置は相対的
に燃料流量大に、反対に燃焼温度が高い燃焼器に
接続されている燃料制御装置は相対的に燃料流量
小にそれぞれ制御される。
From the arithmetic unit 14, each combustor 4a, 4b,
4c via fuel supply pipes 18a, 18b, 18c, fuel control devices 19a, 19b, 1
9c, control signals 15a, 15b, and 15c are sent based on the combustion temperature deviation, and a fuel control device connected to a combustor with a low combustion temperature has a relatively large fuel flow rate, whereas a fuel control device with a high combustion temperature The fuel control devices connected to the combustor each control the fuel flow rate to be relatively small.

従つて複数本の燃焼器4a,4b,4c間の燃
焼温度偏差が、例えば28℃等の設定値以下になる
ように調整される。
Therefore, the combustion temperature deviation between the plurality of combustors 4a, 4b, and 4c is adjusted to be below a set value, such as 28° C., for example.

前述構成の燃焼制御方法では、燃焼器直後の燃
焼ガスの温度より各燃焼器4a,4b,4cの内
部温度を直ちに検出できるので、検出遅れがな
く、かつ燃焼器4a,4b,4cとそれぞれの燃
焼温度と燃料制御装置19a,19b,19cと
の対応が明確となり、異常温度を指示している燃
焼器がどれであるかの判別が速やかに行なわれる
し、また異常燃焼器に対する燃料流量の制御が速
やかに行なわれ、燃焼器全体が設定値以下の燃焼
温度偏差になるように、直ちに調整されることに
なる。
In the combustion control method configured as described above, since the internal temperature of each combustor 4a, 4b, 4c can be detected immediately from the temperature of the combustion gas immediately after the combustor, there is no detection delay, and the internal temperature of each combustor 4a, 4b, 4c and The correspondence between the combustion temperature and the fuel control devices 19a, 19b, and 19c becomes clear, and it is possible to quickly determine which combustor is indicating an abnormal temperature, and to control the fuel flow rate for the abnormal combustor. is carried out promptly, and the entire combustor is immediately adjusted so that the combustion temperature deviation is below the set value.

なお第3図に示される実施例では演算装置14
から燃料ライン16の燃料遮断弁17に制御信号
15dが送られ、複数本の燃焼器4a,4b,4
c間の燃焼温度偏差が設定値を大幅に超え、制限
値以上のとき、燃料遮断弁17が閉じられ、ガス
タービンをトリツプさせ、点検体制に入れるよう
に構成されている。
Note that in the embodiment shown in FIG.
A control signal 15d is sent to the fuel cutoff valve 17 of the fuel line 16, and the plurality of combustors 4a, 4b, 4
When the combustion temperature deviation between the two points significantly exceeds the set value and is equal to or greater than the limit value, the fuel cutoff valve 17 is closed, the gas turbine is tripped, and the system is put into an inspection system.

つぎに第3図および第4図に基づき、本発明装
置を説明する。
Next, the apparatus of the present invention will be explained based on FIGS. 3 and 4.

コンプレツサ1、タービン2、発電機3、円周
上に罐型の複数本配列された燃焼器4a,4b,
4cを備えるガスタービン発電プラントにおい
て、各燃焼器4a,4b,4cの出口側にサーモ
カツプル12a,12b,12cが設けられてお
り、各燃焼器4a,4b,4cの燃焼温度が検出
され、その温度信号13a,13b,13cは演
算装置14に送られるようになつている。
A compressor 1, a turbine 2, a generator 3, a plurality of can-shaped combustors 4a and 4b arranged on the circumference,
4c, thermocouples 12a, 12b, 12c are provided on the exit side of each combustor 4a, 4b, 4c, and the combustion temperature of each combustor 4a, 4b, 4c is detected and The temperature signals 13a, 13b, 13c are sent to a calculation device 14.

前記演算装置14では各温度信号13a,13
b,13cから複数本の燃焼器4a,4b,4c
間の燃焼温度平均値と燃焼温度偏差とが演算され
るようになつている。
In the arithmetic unit 14, each temperature signal 13a, 13
Multiple combustors 4a, 4b, 4c from b, 13c
The combustion temperature average value and combustion temperature deviation between the two are calculated.

一方燃料遮断弁17を有する燃料ライン16か
ら各燃焼器4a,4b,4cに分岐された燃料供
給配管18a,18b,18cにはそれぞれ燃料
制御装置19a,19b,19cが接続されてい
る。
On the other hand, fuel control devices 19a, 19b, 19c are connected to fuel supply pipes 18a, 18b, 18c branched from a fuel line 16 having a fuel cutoff valve 17 to each combustor 4a, 4b, 4c, respectively.

そして前記演算装置14から各燃料制御装置1
9a,19b,19cに対し、燃焼温度偏差に基
づいて制御信号15a,15b,15cが送ら
れ、この制御信号15a,15b,15cにより
燃焼温度が燃焼温度偏差よりも低い燃焼器に接続
されている燃料制御装置は相対的に燃料流量大
に、また燃焼温度が燃焼温度偏差値よりも高い燃
焼器に接続されている燃料制御装置は相対的に燃
料流量小にそれぞれ制御されるようになつてい
る。
Then, from the arithmetic device 14 to each fuel control device 1
Control signals 15a, 15b, 15c are sent to combustors 9a, 19b, 19c based on the combustion temperature deviation, and these control signals 15a, 15b, 15c connect the combustors whose combustion temperature is lower than the combustion temperature deviation. The fuel control device is configured to control a relatively large fuel flow rate, and the fuel control device connected to a combustor whose combustion temperature is higher than the combustion temperature deviation value is controlled to a relatively small fuel flow rate. .

その結果、複数本の燃焼器4a,4b,4c間
の燃焼温度が速やかに設定値以下の燃焼温度偏差
に納まるように調整される。
As a result, the combustion temperature between the plurality of combustors 4a, 4b, and 4c is adjusted to quickly fall within the combustion temperature deviation below the set value.

また図示実施例では第3図に示されるように、
演算装置14から前記燃料遮断弁17に対して燃
焼器4a,4b,4c間の燃焼温度が制限値以上
になつたとき、制御信号15dが送られるように
なつており、この制御信号15dにより燃料遮断
弁17が閉じられ、ガスタービン2がトリツプさ
れ、点検に備えられている。
In addition, in the illustrated embodiment, as shown in FIG.
When the combustion temperature between the combustors 4a, 4b, and 4c exceeds a limit value, a control signal 15d is sent from the arithmetic unit 14 to the fuel cutoff valve 17, and this control signal 15d causes the fuel to shut off. The isolation valve 17 is closed and the gas turbine 2 is tripped and prepared for inspection.

前述の本発明において、燃焼器は図面に示され
る3個のものに限らないこと勿論である。
In the present invention described above, the number of combustors is of course not limited to the three shown in the drawings.

なお第1図ないし第4図中、符号6は給気、7
は排気を示し、さらに第1図、第2図、第3図お
よび第4図にわたつて同一部材には同一符号を付
して説明している。
Note that in Figures 1 to 4, the code 6 is air supply, and 7 is
1 shows an exhaust, and the same members are given the same reference numerals throughout FIG. 1, FIG. 2, FIG. 3, and FIG. 4 for explanation.

本発明は以上説明した構成、作用のものであつ
て、本発明方法によれば複数本の燃焼器間の燃焼
温度偏差を設定値以下に速やかに制御することが
でき、従つて燃焼温度偏差の調整不良に伴う色々
なトラブルを未然に防ぎうる効果がある。
The present invention has the structure and operation described above, and according to the method of the present invention, the combustion temperature deviation between a plurality of combustors can be quickly controlled to a set value or less, and therefore the combustion temperature deviation can be reduced. This has the effect of preventing various troubles caused by poor adjustment.

また本発明装置は各燃焼器の燃焼筒内部の温度
を個別に検出するサーモカツプルと、各サーモカ
ツプルからの温度信号より燃焼温度平均値と燃焼
温度偏差値を演算する演算装置と、演算装置から
の制御信号により燃焼器間の燃焼温度偏差が設定
値以下になるように、燃焼器に供給される燃料流
量を個別に制御する燃料制御装置との協働により
前記燃焼制御方法を適確に実施しうる効果があ
る。
In addition, the device of the present invention includes a thermocouple that individually detects the temperature inside the combustion cylinder of each combustor, an arithmetic device that calculates an average combustion temperature value and a combustion temperature deviation value from the temperature signal from each thermocouple, and an arithmetic device. The combustion control method is appropriately implemented in cooperation with a fuel control device that individually controls the fuel flow rate supplied to the combustors so that the combustion temperature deviation between the combustors is equal to or less than a set value by a control signal of the combustor. It has a certain effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来技術の系統図、第2図は同従来技
術の燃焼温度検出位置を示すガスタービンの断面
図、第3図は本発明の一実施例の系統図、第4図
は本発明の燃焼温度検出位置を示すガスタービン
の断面図である。 4a,4b,4c……燃焼器、12a,12
b,12c……サーモカツプル、13a,13
b,13c……温度信号、14……演算装置、1
5a,15b,15c,15d……制御信号、1
6……燃料ライン、17……燃料遮断弁、18
a,18b,18c……燃料供給配管、19a,
19b,19c……燃料制御装置。
Fig. 1 is a system diagram of the prior art, Fig. 2 is a sectional view of a gas turbine showing the combustion temperature detection position of the prior art, Fig. 3 is a system diagram of an embodiment of the present invention, and Fig. 4 is a system diagram of the present invention. FIG. 3 is a cross-sectional view of the gas turbine showing combustion temperature detection positions. 4a, 4b, 4c... combustor, 12a, 12
b, 12c...Thermocouple, 13a, 13
b, 13c... Temperature signal, 14... Arithmetic device, 1
5a, 15b, 15c, 15d...control signal, 1
6...Fuel line, 17...Fuel cutoff valve, 18
a, 18b, 18c...Fuel supply pipe, 19a,
19b, 19c...Fuel control device.

Claims (1)

【特許請求の範囲】 1 複数本の燃焼器の各燃焼筒内部温度を個別に
検出し、その温度信号をそれぞれ演算装置に送り
込み、該演算装置により前記温度信号より前記複
数本の燃焼器間の燃焼温度平均値と燃焼温度偏差
とを演算し、その演算値に基づいて各燃焼器に供
給される燃料流量を、前記燃焼器間の燃焼温度偏
差が設定値以下になるように制御することを特徴
とするガスタービンの燃焼制御方法。 2 複数本の燃焼器の各燃焼筒内部温度を検出し
かつその温度信号を出力するサーモカツプルと、
これらサーモカツプルからの温度信号より前記複
数本の燃焼器間の燃焼平均温度と燃焼温度偏差を
演算しかつ制御信号を出力する演算装置と、各燃
焼器に個別に接続されかつ前記演算装置からの制
御信号により各燃焼器間の燃焼温度偏差が設定値
以下になるように燃料流量を制御する燃料制御装
置とを備えていることを特徴とするガスタービン
の燃焼制御装置。
[Scope of Claims] 1. The temperature inside each combustion cylinder of a plurality of combustors is individually detected, the temperature signals are sent to a calculation device, and the calculation device uses the temperature signals to determine the temperature between the plurality of combustors. A combustion temperature average value and a combustion temperature deviation are calculated, and the fuel flow rate supplied to each combustor is controlled based on the calculated value so that the combustion temperature deviation between the combustors is equal to or less than a set value. Characteristic gas turbine combustion control method. 2. A thermocouple that detects the internal temperature of each combustion cylinder of the plurality of combustors and outputs the temperature signal;
A calculation device that calculates the combustion average temperature and combustion temperature deviation among the plurality of combustors from the temperature signals from these thermocouples and outputs a control signal, and a calculation device that is individually connected to each combustor and that outputs a control signal. A combustion control device for a gas turbine, comprising: a fuel control device that controls a fuel flow rate so that a combustion temperature deviation between each combustor is equal to or less than a set value using a control signal.
JP16834379A 1979-12-26 1979-12-26 Method of and apparatus for controlling combustion of gas turbine Granted JPS5692326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16834379A JPS5692326A (en) 1979-12-26 1979-12-26 Method of and apparatus for controlling combustion of gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16834379A JPS5692326A (en) 1979-12-26 1979-12-26 Method of and apparatus for controlling combustion of gas turbine

Publications (2)

Publication Number Publication Date
JPS5692326A JPS5692326A (en) 1981-07-27
JPS6213498B2 true JPS6213498B2 (en) 1987-03-26

Family

ID=15866295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16834379A Granted JPS5692326A (en) 1979-12-26 1979-12-26 Method of and apparatus for controlling combustion of gas turbine

Country Status (1)

Country Link
JP (1) JPS5692326A (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS597739A (en) * 1982-07-07 1984-01-14 Hitachi Ltd Method of controlling fuel supply in gas turbine
JP2972236B2 (en) * 1989-09-14 1999-11-08 株式会社日立製作所 Gas turbine combustor
JP2954401B2 (en) * 1991-08-23 1999-09-27 株式会社日立製作所 Gas turbine equipment and operation method thereof
JPH05126335A (en) * 1991-11-07 1993-05-21 Hitachi Ltd Gas turbine combustion controller and gas turbine combustion control method
US5487266A (en) * 1992-05-05 1996-01-30 General Electric Company Combustion control for producing low NOx emissions through use of flame spectroscopy
US5480298A (en) * 1992-05-05 1996-01-02 General Electric Company Combustion control for producing low NOx emissions through use of flame spectroscopy
US5257496A (en) * 1992-05-05 1993-11-02 General Electric Company Combustion control for producing low NOx emissions through use of flame spectroscopy
US5319931A (en) * 1992-12-30 1994-06-14 General Electric Company Fuel trim method for a multiple chamber gas turbine combustion system
US5763888A (en) * 1995-01-30 1998-06-09 Ametek Aerospace Products, Inc. High temperature gas stream optical flame sensor and method for fabricating same
US5961314A (en) * 1997-05-06 1999-10-05 Rosemount Aerospace Inc. Apparatus for detecting flame conditions in combustion systems
US6460346B1 (en) * 2000-08-30 2002-10-08 General Electric Company Method and system for identifying malfunctioning combustion chambers in a gas turbine
US7188465B2 (en) * 2003-11-10 2007-03-13 General Electric Company Method and apparatus for actuating fuel trim valves in a gas turbine

Also Published As

Publication number Publication date
JPS5692326A (en) 1981-07-27

Similar Documents

Publication Publication Date Title
US6530207B2 (en) Gas turbine system
US4115998A (en) Combustion monitor
US7908072B2 (en) Systems and methods for using a combustion dynamics tuning algorithm with a multi-can combustor
JPS6213498B2 (en)
US4031372A (en) System for manually or automatically transferring control between computers without power generation disturbance in an electric power plant or steam turbine operated by a multiple computer control system
KR100315179B1 (en) Apparatus and method of automatic nox control for a gas turbine
ATE196342T1 (en) THE FUEL SUPPLY FOR A GAS TURBINE IS CONTROLLED DEPENDENT ON THE CALCULATED TURBINE OUTLET TEMPERATURE
US3496724A (en) Main steam line desuperheater systems,apparatus and method
US5072580A (en) System for operating gas turbine jet engine with fan damage
US4959955A (en) Method of operating gas turbine engine with fan damage
US20150075170A1 (en) Method and system for augmenting the detection reliability of secondary flame detectors in a gas turbine
JP3881980B2 (en) Gas turbine protection equipment
JP3212895B2 (en) Gas turbine fuel supply device and control device therefor
JPS597739A (en) Method of controlling fuel supply in gas turbine
Jackson et al. Importance of matching steam temperatures with metal temperatures during starting of large steam turbines
GB877127A (en) Gas turbines
JP3086695B2 (en) Gas turbine control device
JP2003161168A (en) Fuel lines of gas turbine combustor
JP3446074B2 (en) Gas turbine combustion monitoring device
JPH08114103A (en) Casing cooling structure for steam turbine
JPH0264232A (en) Monitor display device of gas turbine combustor
RU2168677C1 (en) System for protection of heating surface of steam superheater against superheat at increased delivery of fuel to steam boiler furnace
JPH06341301A (en) Method for controlling thermal stress of steam turbine
JPH0264231A (en) Flame detecting method of gas turbine combustor
JPH0286927A (en) Gas turbine exhaust gas temperature monitor