JPS62134464A - Controller for air conditioner - Google Patents

Controller for air conditioner

Info

Publication number
JPS62134464A
JPS62134464A JP60274451A JP27445185A JPS62134464A JP S62134464 A JPS62134464 A JP S62134464A JP 60274451 A JP60274451 A JP 60274451A JP 27445185 A JP27445185 A JP 27445185A JP S62134464 A JPS62134464 A JP S62134464A
Authority
JP
Japan
Prior art keywords
defrosting
refrigerant
air conditioner
valve
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60274451A
Other languages
Japanese (ja)
Inventor
玉利 純次
康雄 中島
清 佐久間
文雄 松岡
等 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60274451A priority Critical patent/JPS62134464A/en
Publication of JPS62134464A publication Critical patent/JPS62134464A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、ヒートポンプ式の冷媒回路を有する空気調
和機の制御装置、特に自動的に除霜運転を行う空気調和
機の制御装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a control device for an air conditioner having a heat pump type refrigerant circuit, and particularly to a control device for an air conditioner that automatically performs defrosting operation. be.

〔従来の技術〕[Conventional technology]

第7図は、1985年三菱電機株式会社発行の「冷熱ハ
ンドブック」の第914頁に記載されている従来の空気
調和機の制御装置を示す図である。
FIG. 7 is a diagram showing a conventional air conditioner control device described on page 914 of "Cooling and Heat Handbook" published by Mitsubishi Electric Corporation in 1985.

これはヒートポンプ式の冷凍サイクル?有した分離形空
気調和機の冷媒回路を示すもので、図において、1,2
はそれぞれ分離形空気tp和機の室外機及び室内機、3
は圧縮機、4は冷媒の流れを切り換えて冷房、暖房の冷
凍サイクルの切換えを行う四方弁、5は室外側熱交換器
、6は冷凍サイクルにおける減圧器としての毛細管、7
は分配管、8(・ま室内側熱交換器、9は上記四方弁4
の下流側に接続されたアキュムレータ、10はアキュム
レータ9と圧縮機3の間に介装された受液器、1)は暖
房運転時に冷媒の高圧圧力側と低圧圧力側全バイパスす
るために設けられた圧力調整弁で、毛細管6をバイパス
するように接続されている。12ないし20はそれぞれ
上述した冷媒回路の各構成部品全連結している冷ρ(配
管である。
Is this a heat pump refrigeration cycle? This figure shows the refrigerant circuit of a separate air conditioner with
3 are the outdoor unit and indoor unit of the separate air TP unit, respectively.
is a compressor, 4 is a four-way valve that switches the flow of refrigerant to switch between cooling and heating refrigeration cycles, 5 is an outdoor heat exchanger, 6 is a capillary tube as a pressure reducer in the refrigeration cycle, 7
is the distribution pipe, 8 is the indoor heat exchanger, and 9 is the four-way valve 4 above.
10 is a liquid receiver interposed between the accumulator 9 and the compressor 3, and 1) is provided for completely bypassing the high pressure side and low pressure side of the refrigerant during heating operation. The capillary tube 6 is connected to bypass the capillary tube 6. Reference numerals 12 to 20 are cold pipes that connect all the components of the refrigerant circuit described above.

次に動作について説明する。暖房運転時は、四方弁4才
暖房サイクルに切換操作する。これにより図の点線矢印
で示すように、圧縮機3から吐出されたガス冷媒は冷媒
配管12及び四方弁4を経て冷媒配管17を流れ、室内
側熱交換器8に入って凝縮され、ここで液冷媒となる。
Next, the operation will be explained. During heating operation, switch to the four-way valve 4-year heating cycle. As a result, as shown by the dotted arrow in the figure, the gas refrigerant discharged from the compressor 3 passes through the refrigerant pipe 12 and the four-way valve 4, flows through the refrigerant pipe 17, enters the indoor heat exchanger 8, and is condensed here. It becomes a liquid refrigerant.

そして、との液冷姪は冷媒配管16?経て分配管7を通
り、ここで果柄されて冷媒配雀15Wr流れる。この冷
媒配管15を流れて来た液冷媒は、毛細管6にて減圧さ
れて液あるいは二相の冷媒となり、冷媒配管14を流れ
室外イ則熱交換器5に入る。又、上記毛細管6に流入す
る前の冷媒圧力が圧力調整弁1)の許容圧力より高い場
合は、上記圧力δ4整弁1)が作動して冷媒が上記毛細
管6をバイパスする。
And the liquid cooling niece is refrigerant piping 16? After that, it passes through the distribution pipe 7, where it is separated and flows with 15Wr of refrigerant. The liquid refrigerant flowing through the refrigerant pipe 15 is depressurized in the capillary tube 6 to become a liquid or two-phase refrigerant, which flows through the refrigerant pipe 14 and enters the outdoor law heat exchanger 5 . Further, when the refrigerant pressure before flowing into the capillary tube 6 is higher than the allowable pressure of the pressure regulating valve 1), the pressure δ4 regulating valve 1) is operated and the refrigerant bypasses the capillary tube 6.

更に、室外側熱交換器5に流入した冷媒は蒸発し、冷媒
配管14及び四方弁4全通って冷媒配管18を流れ、ア
キュムレータ9へ流れ込む。このアキュムレータ9を出
たガス冷媒は、冷媒管19.受液器10.冷媒配管20
を通り、再び圧縮機3に吸入されて、一つの冷凍サイク
ルが終了する。
Further, the refrigerant that has flowed into the outdoor heat exchanger 5 evaporates, passes through the refrigerant pipe 14 and the four-way valve 4, flows through the refrigerant pipe 18, and flows into the accumulator 9. The gas refrigerant leaving the accumulator 9 is transferred to the refrigerant pipe 19. Receiver 10. Refrigerant piping 20
, and is sucked into the compressor 3 again, completing one refrigeration cycle.

又、冷房運転時は、四方弁4を冷房サイクルに切換操作
する。これによって図の実線矢印で示す方向に冷媒が流
れ、上記暖房運転時とは逆の流れで一つの冷凍サイクル
が形成される。
Also, during cooling operation, the four-way valve 4 is switched to the cooling cycle. As a result, the refrigerant flows in the direction shown by the solid arrow in the figure, and one refrigeration cycle is formed with a flow opposite to that during the heating operation.

ここで、暖房運転時に室外惧ij熱交換器5に付着した
霜を除去する場合は、一旦暖房運転を停止して冷房サイ
クルに四方弁4を切り換え、一時的に冷房運転全行う。
Here, when removing frost adhering to the outdoor heat exchanger 5 during the heating operation, the heating operation is temporarily stopped, the four-way valve 4 is switched to the cooling cycle, and the entire cooling operation is temporarily performed.

これで、除節運転が行われることになり、上記熱交換器
5に付着した霜が取り除かれる。
As a result, the moderation operation is performed, and the frost attached to the heat exchanger 5 is removed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の空気調和機の制御装置は以上のように構成されて
おり、暖房運転時に霜取動作を行う場合は、N 16 
Mにかかわらず四方弁4を切り換えて冷房サイクルにし
なければならず、このため室内ファンを停止して冷風が
室内へ吹き出さないようにすることが必要となり、又一
時に暖房運転を停止するので室温が大きく低下し、快適
性を損うなどの問題点があった。
The conventional air conditioner control device is configured as described above, and when defrosting operation is performed during heating operation, N16
Regardless of M, the four-way valve 4 must be switched to the cooling cycle, which requires stopping the indoor fan to prevent cold air from blowing into the room, and also temporarily stopping the heating operation. There were problems such as a significant drop in room temperature, impairing comfort.

この発明は、このような問題点全解消するためになされ
たもので、暖房運転時に霜取動作を行う場合、尤霜量が
多い時Vこのみ冷房サイクルに切換えて除15に行い、
室温の低下を抑制して快適性を損うことのない空気調和
機の制御装置を提供することを目的としている。
This invention was made in order to eliminate all of these problems, and when defrosting operation is performed during heating operation, when there is a large amount of frost, the system switches to the cooling cycle and performs defrosting at 15.
It is an object of the present invention to provide a control device for an air conditioner that suppresses a decrease in room temperature and does not impair comfort.

〔問題点を解決するための手段〕[Means for solving problems]

可変周波数電源で付勢される圧縮機と、冷房と1後房の
冷凍サイクルケ切り換える切換弁とを有した空気S4和
機の制御装置において、前記圧縮機の吐出乱と切換弁と
が冷媒配管で接続され、且つその冷媒配管の途中に開閉
弁が介装され、又熱交換器の着霜量を検出する検出手段
と、暖房運転中かどうかを判定する判定手段と、これら
の両手段からの出力に基づいて除霜運転を行うことを決
定する除霜運転決定手段とが設けられ、更に除霜運転時
に前記圧縮機及び開閉弁を制御して険相を行うと共に、
除n開始後所定時間内に除霜が完了しない場合に前記切
換弁全切り換えて冷房運転にして除霜を行う除霜運転制
御装置が設けられている。
In a control device for an air S4 generator, which has a compressor energized by a variable frequency power source and a switching valve that switches between cooling and one refrigeration cycle, the discharge disturbance of the compressor and the switching valve are connected to the refrigerant piping. A switching valve is connected to the refrigerant pipe, and an on-off valve is interposed in the middle of the refrigerant piping, and a detection means for detecting the amount of frost on the heat exchanger, a determination means for determining whether heating operation is in progress, and a control valve from both of these means. a defrosting operation determining means for determining whether to perform a defrosting operation based on the output;
A defrosting operation control device is provided which switches all of the switching valves to perform cooling operation and defrost when defrosting is not completed within a predetermined time after the start of defrosting.

〔作 用〕[For production]

暖房運転時に除霜運転が必要となった場合、除霜運転制
御装置は先ず圧縮機及び開閉弁全制御し暖房運転を行い
ながら除霜を行う。その結果所定時間内に除霜が完了し
ない場合、つまり着N量が多い場合には更に四方弁を切
換え、暖房サイクルから冷房サイクルに切り換えて除f
!’に行う。
When defrosting operation is required during heating operation, the defrosting operation control device first fully controls the compressor and on-off valve to perform defrosting while performing heating operation. As a result, if defrosting is not completed within the specified time, that is, if the amount of arriving N is large, the four-way valve is further switched and the heating cycle is switched to the cooling cycle to defrost the defrost.
! ' to do.

〔実施例〕〔Example〕

以下、この発明の実施例ゲ図面について説明する。 DESCRIPTION OF THE PREFERRED EMBODIMENTS The drawings of embodiments of this invention will be described below.

第1図はこの発明の一実施例を示す概略構成図で、図中
1〜8及び10〜20は従来の第7図の同一符号のもの
と同−又(は相当部分であるので詳細説明は省略する。
FIG. 1 is a schematic configuration diagram showing one embodiment of the present invention. In the figure, 1 to 8 and 10 to 20 are the same or equivalent parts as those with the same reference numerals in FIG. 7, so a detailed explanation will be given. is omitted.

21は電子式リニア膨張弁、22は逆止弁、23は圧縮
機3の吐出側と四方弁4との間に接続された電磁弁(開
閉弁)、24はこの電磁弁23と圧縮機3の吐出側の冷
媒配管12を連結する冷媒配管、25は毛細管6と電磁
弁23を連結する冷媒配管、26はこの冷媒配管25か
ら分岐して逆止弁22と連結された冷媒配管、27は膨
張弁21と室外側熱交換器5を連結している冷媒配管1
4と逆止弁22とを連結する冷媒配管、28は四方弁4
とアキュムレータ9を連結している冷媒配管18と毛細
管6とを連結する冷媒配管で、これらの冷媒配管により
ヒートポンプ式冷凍サイクルの冷媒回路が形成されてい
る。29は冷媒回路の所定の位置(室外側熱交換器5)
に設けられた温度検出器、30はこの温度検出器29の
検出値により室外側熱交換器5の霜の付着状態を検出す
る手段である霜取温度検出手段、31は室内機2から送
られる情報により暖房運転中かどうかを判定する暖房運
転判定手段、32は上記検出手段30の出力データによ
り除霜運転が必要かどうかを判定する除霜運転判定手段
、33は」−記者手段の出力に基づいて除脛運転を行う
こと金決定する除霜運転決定手段、34は四方弁4を制
御して暖房サイクルから冷房サイクルへ空気調和機の冷
凍サイクル全期り換える四方弁制御手段、35は圧縮機
3の運転周波数を規定周波数に設定してFE縮機3を運
転する圧縮機制御手段、36i−i除霜運転時に電磁弁
23を開く電磁弁制御手段、37は上記各手段30〜3
6からなる除霜運転制御装置で、除霜運転時に圧縮機3
及び電磁弁23を制御して除nを行うと共に、除霜開始
後所定時間内に除霜が完了しない場合には西方弁4を切
り換えて冷房運転を行い、除霜全完了させる。
21 is an electronic linear expansion valve, 22 is a check valve, 23 is a solenoid valve (on-off valve) connected between the discharge side of the compressor 3 and the four-way valve 4, and 24 is this solenoid valve 23 and the compressor 3. 25 is a refrigerant pipe that connects the capillary tube 6 and the electromagnetic valve 23, 26 is a refrigerant pipe branched from this refrigerant pipe 25 and connected to the check valve 22, and 27 is a refrigerant pipe that connects the refrigerant pipe 12 on the discharge side. Refrigerant pipe 1 connecting expansion valve 21 and outdoor heat exchanger 5
4 and the check valve 22; 28 is the four-way valve 4;
A refrigerant pipe connects the capillary tube 6 to the refrigerant pipe 18 that connects the capillary tube 6 and the accumulator 9, and these refrigerant pipes form a refrigerant circuit of a heat pump type refrigeration cycle. 29 is a predetermined position in the refrigerant circuit (outdoor heat exchanger 5)
30 is a means for detecting the frost adhesion state of the outdoor heat exchanger 5 based on the detected value of the temperature detector 29; 31 is a defrosting temperature detection means for detecting the frost adhesion state on the outdoor heat exchanger 5; and 31 is a temperature sensor sent from the indoor unit 2. Heating operation determining means for determining whether heating operation is in progress based on the information; 32 is a defrosting operation determining means for determining whether defrosting operation is necessary based on the output data of the detection means 30; 33 is an output of the reporter means; 34 is a four-way valve control means for controlling the four-way valve 4 to switch the entire refrigeration cycle of the air conditioner from the heating cycle to the cooling cycle; 35 is a compression Compressor control means for operating the FE compressor 3 by setting the operating frequency of the compressor 3 to a specified frequency; 36i-i solenoid valve control means for opening the solenoid valve 23 during defrosting operation; 37, each of the above-mentioned means 30 to 3;
A defrosting operation control device consisting of 6 compressors 3 and 3 during defrosting operation.
and the solenoid valve 23 to perform defrosting, and if defrosting is not completed within a predetermined time after the start of defrosting, the west valve 4 is switched to perform cooling operation to completely complete defrosting.

第2図は上記除霜運転制御装置37の一例を示す′眠気
回路図である。図中、38は室内機2の制御回路で、除
霜運転制御装置37のインターフェース39と端子板4
6.41を通して接続されている。42は該制御装置3
7に設けられたマイクロコンピュータ(以下マイフンと
いう)で、上記インターフェース39を介して室内機2
0制御回路38と信号を送受信する。43はA/D (
アナログ/ディジタル)変換器29の抵抗値を温度情報
に変換してマイコン42に入力する。44,45.46
,47はそれぞれマイコン42を構成する入力回路、C
PU(中央情報処理回路)、メモリ及び出力回路、48
は出力バッファ48を通じて各制御用リレーコイル49
.50の駆動信号がマイコン42から出力される。この
リレーコイル49.50が作動すると各々の常開接点(
a接点)51.52が閉じ、これで四方弁4及び電磁弁
23は電源53が供給されて作動する。54はマイコン
42の出力回路47より出力される制御信号に従って圧
縮機3の駆動周波数を変換する可変周波数装置である。
FIG. 2 is a drowsiness circuit diagram showing an example of the defrosting operation control device 37. In the figure, 38 is a control circuit of the indoor unit 2, and an interface 39 of the defrosting operation control device 37 and a terminal board 4.
Connected through 6.41. 42 is the control device 3
A microcomputer (hereinafter referred to as "MyFun") installed in the indoor unit 2
It transmits and receives signals to and from the 0 control circuit 38. 43 is A/D (
The resistance value of the analog/digital converter 29 is converted into temperature information and input to the microcomputer 42. 44, 45.46
, 47 are input circuits constituting the microcomputer 42, and C
PU (central information processing circuit), memory and output circuit, 48
is connected to each control relay coil 49 through the output buffer 48.
.. 50 drive signals are output from the microcomputer 42. When this relay coil 49.50 is activated, each normally open contact (
A contacts) 51 and 52 are closed, and the four-way valve 4 and the solenoid valve 23 are now supplied with power 53 and operated. 54 is a variable frequency device that converts the drive frequency of the compressor 3 in accordance with a control signal output from the output circuit 47 of the microcomputer 42.

次に、上記構成の制御装置の動作を第3図のフローチャ
ートを用いて説明する。このフローチャートハ、マイコ
ン42のメモリ46に記憶され、CPU、15で実行さ
れA詮腔運転制店Iプログラムを示すフローチャートで
ある。先ずプログラムのスタートにあたり、ステップ1
01で暖房中かどうかを判定する。暖房運転中と判定さ
れると、ステップ102で四方弁4tONにして冷凍ザ
イクルを暖房サイクルに切り挨え、ステップ103でタ
イマs1セットし、ステップ104でタイマSが規定時
間茗より経過したかどうかを判別する。
Next, the operation of the control device having the above configuration will be explained using the flowchart shown in FIG. This flowchart is a flowchart showing the A-snoop operation system I program which is stored in the memory 46 of the microcomputer 42 and executed by the CPU 15. First, to start the program, step 1
01 to determine whether heating is in progress. When it is determined that the heating operation is in progress, the four-way valve 4t is turned on in step 102 to cut off the freezing cycle to the heating cycle, the timer s1 is set in step 103, and the timer S checks whether the specified time has passed in step 104. Discern.

経過していればステップ105VCで温度検出器29に
より蒸発温度(局数温度)Lを測定し、ステップ106
にて上記測定した蒸発温度tが除ね運転開始温度t0よ
り低いかどうかを判断し、低ければ除霜運転が実行され
る(ステップ107)。この除霜運転が開始されると、
まずステップ108で電磁弁23が開かれるとともに、
ステップ109で除霜運転時の圧縮機運転周波数が可変
周波数装置54から出力され、その周波数で圧縮機3が
運転される。その後、ステップ1)0にて第2のタイマ
T全セットし、ステップ1)1で再度蒸発温度を合測定
する。そして、ステップ1)2でその蒸発湿度【が除霜
迎転終了渇度t、により高いかどうかを判断し、高い場
合には通常運転に戻るが高くない場合はステップ1)3
に進み、ここで上記ステップ1)0で設定したタイマT
が所定時間T0(着霜量が多いか少ないかどうかを決定
する時間)を経過したかを判定する。経過している場合
、つまり着霜量が多いと判断すると、ステップ1)4で
四方弁4をOFFにして暖房サイクルから冷房サイクル
に冷凍サイクルを切換る。又、経過してい力い場合はス
テップ1)1に戻る。そして、ステップ1)5にて再び
蒸発温度tを測定し、ステップ1)6でこの測定温度t
が除霜運転終了温度t、より高いかどうかを判断する。
If the elapsed time has elapsed, the evaporation temperature (station temperature) L is measured by the temperature detector 29 in step 105VC, and step 106
At step 107, it is determined whether the measured evaporation temperature t is lower than the defrosting operation start temperature t0, and if it is lower, the defrosting operation is executed (step 107). When this defrosting operation starts,
First, in step 108, the solenoid valve 23 is opened, and
In step 109, the compressor operating frequency during the defrosting operation is output from the variable frequency device 54, and the compressor 3 is operated at that frequency. Thereafter, in step 1) 0, the second timer T is fully set, and in step 1) 1, the total evaporation temperature is measured again. Then, in step 1) 2, it is determined whether the evaporation humidity [is higher than the defrosting transfer end thirst t], and if it is high, normal operation is resumed, but if it is not high, step 1) 3
Proceed to step 1) and set the timer T set in step 1) 0 above.
It is determined whether or not a predetermined time T0 (time for determining whether the amount of frost formation is large or small) has elapsed. If it has passed, that is, if it is determined that there is a large amount of frost, the four-way valve 4 is turned off in step 1) 4, and the refrigeration cycle is switched from the heating cycle to the cooling cycle. Also, if it has passed and it is not strong enough, return to step 1)1. Then, in step 1)5, the evaporation temperature t is measured again, and in step 1)6, this measured temperature t
It is determined whether or not is higher than the defrosting operation end temperature t.

高い場合には四方弁4’a:ONにして通常運転に戻る
が、まだ低い場合には上記タイマTが規定除霜終了時開
−より経過しているかどうかをステップ1)7で判断し
、経過していない場合はステップ1)5(Cmるが、経
過している場合G・;ステップ1)8に移り、四方弁4
 ’k ON Kする。そして、ステップ1)9で圧銭
鴬運転1!ii波数を通常運転周波数に戻すとともに、
ステップ120で電磁弁23をOFFにし、さらにステ
ップ121でタイマTをリセットし、これで除霜運転が
終了となる(ステップ122)。
If it is high, the four-way valve 4'a: is turned ON to return to normal operation, but if it is still low, it is determined in step 1) 7 whether or not the timer T has been opened at the end of the specified defrosting. If the time has not passed, go to step 1) 5 (Cm, but if it has passed, go to step 1) 8, and turn the four-way valve 4.
'k ON K. Then, in step 1) 9, it's pressure driving 1! ii Return the wave number to the normal operating frequency,
The solenoid valve 23 is turned off in step 120, and the timer T is reset in step 121, thereby ending the defrosting operation (step 122).

そして最後にステップ123でタイマSをリセットして
初期に戻る。
Finally, in step 123, the timer S is reset and the process returns to the initial state.

第4図は、上述した制御動作において暖房運転を行いな
がら、除霜運転が完了した時、つまり着霜量が少ない時
の動作タイムチャートである。時間S0で暖房運転が開
始したとすると、規定時間Sが経過した時開S、におい
て、霜取温度tが除付運転開始湛度t。より低い時(A
点)除霜タイマT((設定(To)シて電磁弁23を開
にし、圧縮機運転周波数を通常運転周波数より高い除N
運転周波数にして除霜運転を開始する。そして、除霜運
転規定時間もの間に霜取温度が除霜運転終了温度tlよ
り高くなった時(B点)、電磁弁23を閉にするととも
に圧縮機運転周波数を通常運転周波数に戻し、これで除
霜運転が終了する。
FIG. 4 is an operation time chart when the defrosting operation is completed while performing the heating operation in the control operation described above, that is, when the amount of frost formation is small. Assuming that the heating operation starts at time S0, when the specified time S elapses, the defrosting temperature t reaches the defrosting operation start temperature t. When lower (A
Point) Set the defrost timer T ((setting (To)) to open the solenoid valve 23 and set the compressor operating frequency to
Set the operating frequency to start defrosting operation. When the defrost temperature becomes higher than the defrost operation end temperature tl during the defrost operation specified time (point B), the solenoid valve 23 is closed and the compressor operating frequency is returned to the normal operating frequency. The defrosting operation ends.

又、第5図は着霜量が多いと判断された時の動作タイム
チャートであり、除霜開始は第4図の場合と同様である
。今、除霜運転規定時間も経過後も霜取温度が除霜運転
終了温度t、より低い時(0点)、西方弁4をOFFに
して、暖房サイクルから冷房サイクルに冷凍サイクル?
切換え、霜取湿度tが除霜運転終了温度t、より高くな
る(D点)と四方弁4iONにするとともに、電磁弁2
3を閉にして圧縮機運転周波数を通常運転周波数に戻し
、これで除霜運転が終了する。
Further, FIG. 5 is an operation time chart when it is determined that the amount of frost formation is large, and the start of defrosting is the same as in the case of FIG. 4. Now, even after the defrosting operation specified time has elapsed, when the defrosting temperature is lower than the defrosting operation end temperature t (0 point), the west valve 4 is turned OFF and the heating cycle is changed to the cooling cycle.
When the defrosting humidity t becomes higher than the defrosting operation end temperature t (point D), the four-way valve 4i is turned on, and the solenoid valve 2 is turned on.
3 is closed to return the compressor operating frequency to the normal operating frequency, and this completes the defrosting operation.

第6図はこの発明の他の実施例を示す概略構成図である
。この実施例は、冷媒の圧力を検出して’M $’5 
it ”x検出するようにしたもので、室外側熱交換器
5に圧力検出器55が設けられており、又除霜運転制御
装置37には前述の霜取温度検出手段30に代えて1取
圧力検出手段56が設けられている。このような構成と
しても前述の実施例と同様の制御及び効果を得ることが
可能である。
FIG. 6 is a schematic diagram showing another embodiment of the present invention. This embodiment detects the refrigerant pressure and calculates 'M $'5
The outdoor heat exchanger 5 is equipped with a pressure detector 55, and the defrosting operation control device 37 is equipped with a pressure detector 55 in place of the defrosting temperature detecting means 30 described above. A pressure detection means 56 is provided. Even with such a configuration, it is possible to obtain the same control and effect as in the above-described embodiment.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明によれば、着霜−に応じ
1こ除霜運転を行うようにしたため、暖房運転時に除霜
を行う必要がある場合、着霜量が少とができ、着ntk
が多い時のみ冷凍サイクルに切り換えて除霜運転を行え
ば良く、冷房運転時間が少なくなり、室温の低下を抑制
することができ、快適性を損うことがないという効果が
得られる。
As explained above, according to the present invention, one defrosting operation is performed depending on the frost formation, so when it is necessary to defrost during heating operation, the amount of frost formation can be reduced and the frost formation can be reduced. ntk
It is only necessary to switch to the refrigeration cycle and perform defrosting operation when there is a large amount of air, which reduces the cooling operation time, suppresses a drop in room temperature, and provides the effect that comfort is not impaired.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す概略構成図、第2図
は第1図の除霜運転制御装置の一例全示す電気回路図、
第3図はその動作金示すフローチャート、第4図はN霜
量が少ない時の動作タイムチャート、第5図は着16量
が多い時の動作タイムチャート、第6図はこの発明の他
の実施例を示す概略構成図、第7図は従来の空気調和機
の制御装置を示す概略構成図である。 1・・・・・・・・・室外機 2・・・・・・・・・室内機 3・・・・・・・・・圧縮機 4・・・・・・・・・四方弁(切換弁)5・・・・・・
・・・室外側熱交換器 6・・・・・・・・・毛細管 22・・・・・・・・・逆止弁 23・・・・・・・・・電磁弁(開閉弁)25〜28・
・・・・・・・・冷媒配管29・・・・・・・・・温度
検出器 30・・・・・・・・・霜取温度検出手段31・・・・
・・・・・暖房運転判定手段32・・・・・・・・・除
霜運転判定手段33・・・・・・・・・除霜運転決定手
段34・・・・・・・・・四方弁制御手段35・・・・
・・・・・圧縮機制御手段36・・・・・・・・・[磁
弁制御手段37・・・・・・・・・除霜運転制御装置5
5・・・・・・・・・圧力検出器 56・・・・・・・・・霜取圧力検出手段なお、図中同
一符号に同−又は相当部分を示す。
FIG. 1 is a schematic configuration diagram showing an embodiment of the present invention, FIG. 2 is an electric circuit diagram showing an example of the defrosting operation control device of FIG. 1,
Fig. 3 is a flowchart showing its operation, Fig. 4 is an operation time chart when the amount of N frost is small, Fig. 5 is an operation time chart when the amount of N frost is large, and Fig. 6 is another embodiment of the present invention. A schematic configuration diagram showing an example. FIG. 7 is a schematic configuration diagram showing a conventional air conditioner control device. 1......Outdoor unit 2...Indoor unit 3...Compressor 4...Four-way valve (switching valve) 5...
... Outdoor heat exchanger 6 ... Capillary tube 22 ... Check valve 23 ... Solenoid valve (on-off valve) 25 ~ 28・
......Refrigerant piping 29...Temperature detector 30...Defrost temperature detection means 31...
... Heating operation determining means 32 ... Defrosting operation determining means 33 ... Defrosting operation determining means 34 ... Four directions Valve control means 35...
. . . Compressor control means 36 . . . [Magnetic valve control means 37 . . . Defrosting operation control device 5
5...Pressure detector 56...Defrost pressure detection means In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (3)

【特許請求の範囲】[Claims] (1)可変周波数電源で付勢される圧縮機と、冷房と暖
房の冷凍サイクルを切り換える切換弁とを有した空気調
和機の制御装置において、前記圧縮機の吐出側と切換弁
とを冷媒配管で接続し、且つその冷媒配管の途中に開閉
弁を介装し、熱変換器の着霜量を検出する検出手段と、
暖房運転中かどうかを判定する判定手段と、これらの両
手段からの出力に基づいて除霜運転を行うことを決定す
る除霜運転決定手段とを設け、除霜運転時に前記圧縮機
及び開閉弁を制御して除霜を行うと共に、除霜開始後所
定時間内に除霜が完了していない場合に前記切換弁を切
り換えて冷房運転にして除霜を行う除霜運転制御装置を
設けたことを特徴とする空気調和機の制御装置。
(1) In a control device for an air conditioner that has a compressor energized by a variable frequency power source and a switching valve that switches between cooling and heating refrigeration cycles, the discharge side of the compressor and the switching valve are connected to refrigerant piping. a detection means for detecting the amount of frost on the heat converter, which is connected to the refrigerant pipe and has an on-off valve interposed in the middle of the refrigerant pipe;
A determination means for determining whether the heating operation is in progress, and a defrosting operation determining means for determining whether to perform the defrosting operation based on outputs from both of these means are provided, and the compressor and the on-off valve are A defrosting operation control device is provided that controls the defrosting operation and defrosts the air conditioner, and also switches the switching valve to perform cooling operation and defrost the air if the defrosting is not completed within a predetermined time after the start of defrosting. An air conditioner control device featuring:
(2)着霜量を検出する検出手段は、冷媒回路の所定の
位置に設けた温度検出器の検出値により検出することを
特徴とする特許請求の範囲第1項記載の空気調和機の制
御装置。
(2) Control of the air conditioner according to claim 1, wherein the detection means for detecting the amount of frost is detected by a detected value of a temperature detector provided at a predetermined position in the refrigerant circuit. Device.
(3)着霜量を検出する検出手段は、冷媒の圧力を検出
する圧力検出器の検出値により検出することを特徴とす
る特許請求の範囲第1項記載の空気調和機の制御装置。
(3) The control device for an air conditioner according to claim 1, wherein the detection means for detecting the amount of frost is detected by a detected value of a pressure detector that detects the pressure of the refrigerant.
JP60274451A 1985-12-06 1985-12-06 Controller for air conditioner Pending JPS62134464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60274451A JPS62134464A (en) 1985-12-06 1985-12-06 Controller for air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60274451A JPS62134464A (en) 1985-12-06 1985-12-06 Controller for air conditioner

Publications (1)

Publication Number Publication Date
JPS62134464A true JPS62134464A (en) 1987-06-17

Family

ID=17541872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60274451A Pending JPS62134464A (en) 1985-12-06 1985-12-06 Controller for air conditioner

Country Status (1)

Country Link
JP (1) JPS62134464A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5060768A (en) * 1988-11-30 1991-10-29 Suzuki Jidosha Kogyo Kabushiki Kaisha Creep control for a continuously variable transmission
JPH07186710A (en) * 1993-12-27 1995-07-25 Nippondenso Co Ltd Air conditioner for electric vehicle
JP2007051805A (en) * 2005-08-17 2007-03-01 Matsushita Electric Ind Co Ltd Air conditioner
WO2017042912A1 (en) * 2015-09-09 2017-03-16 三菱電機株式会社 Air conditioner
WO2019008742A1 (en) * 2017-07-07 2019-01-10 三菱電機株式会社 Refrigeration cycle device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5060768A (en) * 1988-11-30 1991-10-29 Suzuki Jidosha Kogyo Kabushiki Kaisha Creep control for a continuously variable transmission
JPH07186710A (en) * 1993-12-27 1995-07-25 Nippondenso Co Ltd Air conditioner for electric vehicle
JP2007051805A (en) * 2005-08-17 2007-03-01 Matsushita Electric Ind Co Ltd Air conditioner
JP4654828B2 (en) * 2005-08-17 2011-03-23 パナソニック株式会社 Air conditioner
WO2017042912A1 (en) * 2015-09-09 2017-03-16 三菱電機株式会社 Air conditioner
JPWO2017042912A1 (en) * 2015-09-09 2018-03-01 三菱電機株式会社 Air conditioner
WO2019008742A1 (en) * 2017-07-07 2019-01-10 三菱電機株式会社 Refrigeration cycle device
JPWO2019008742A1 (en) * 2017-07-07 2020-05-21 三菱電機株式会社 Refrigeration cycle equipment

Similar Documents

Publication Publication Date Title
JP4654828B2 (en) Air conditioner
JPH11182995A (en) Method and device for controlling air conditioner
JPS6334459A (en) Air conditioner
JP2993180B2 (en) Air conditioner
JPH04270876A (en) Defrosting controller for heat pump type air-conditioning machine
US4869074A (en) Regenerative refrigeration cycle apparatus and control method therefor
JPS62134464A (en) Controller for air conditioner
JPH0730979B2 (en) Air conditioner
JP2526716B2 (en) Air conditioner
JPH04356647A (en) Control device for air conditioner
JPS63213765A (en) Refrigerator
JP3343916B2 (en) Refrigeration equipment
JPH1038422A (en) Air conditioner
JPH06317360A (en) Multi-chamber type air conditioner
JP3337264B2 (en) Air conditioner defroster
JPH0849931A (en) Controlling device of motor operated expansion valve of branch unit
KR880000935B1 (en) Control device for refrigeration cycle
JPS60181557A (en) Controller for defrostation operation of air conditioner
JPS5946438A (en) Defrosting operation control device for air conditioner
JPS61184350A (en) Defrost method for air conditioner
JPS6191439A (en) Defrosting control system of heat pump type air conditioner
JPS62129659A (en) Air conditioner
JPS62158951A (en) Heat pump type air conditioner
JPS59145455A (en) Defroster
JPS6030965A (en) Method of defrosting air conditioner