JPH0730979B2 - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH0730979B2
JPH0730979B2 JP27897285A JP27897285A JPH0730979B2 JP H0730979 B2 JPH0730979 B2 JP H0730979B2 JP 27897285 A JP27897285 A JP 27897285A JP 27897285 A JP27897285 A JP 27897285A JP H0730979 B2 JPH0730979 B2 JP H0730979B2
Authority
JP
Japan
Prior art keywords
temperature
heat exchanger
discharge gas
compressor
outdoor heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27897285A
Other languages
Japanese (ja)
Other versions
JPS62138660A (en
Inventor
重昭 黒田
研作 小国
政克 林
弘 安田
久平 石羽根
浩清 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP27897285A priority Critical patent/JPH0730979B2/en
Publication of JPS62138660A publication Critical patent/JPS62138660A/en
Publication of JPH0730979B2 publication Critical patent/JPH0730979B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は冷暖房用空気調和機の除霜運転に係り、特にホ
ットガスバイパス除霜方式を用い、室内に温風を吹き出
し乍ら除霜を行う空気調和機に関するものである。
Description: FIELD OF THE INVENTION The present invention relates to a defrosting operation of an air conditioner for cooling and heating, and particularly, a hot gas bypass defrosting method is used to perform defrosting by blowing hot air into a room. It concerns an air conditioner.

〔発明の背景〕[Background of the Invention]

空気調和機の従来の除霜方式は特開昭59−14540に記載
されているように、除霜運転は冷凍サイクルを暖房運転
から冷房運転に切換え、冷凍サイクルを冷房運転の状態
にして除霜を行う為、室内へ冷風が吹出されることにな
り、この冷風吹出しをなるべく減少するため、蒸発流度
を上昇させ着霜量を少なくする等の対策がとられてい
た。
The conventional defrosting method of the air conditioner is, as described in JP-A-59-14540, the defrosting operation is such that the refrigeration cycle is switched from the heating operation to the cooling operation, and the refrigeration cycle is set to the cooling operation state. Therefore, cold air is blown into the room, and in order to reduce the cold air blowout as much as possible, measures such as increasing the evaporation flow rate and reducing the amount of frost have been taken.

また他の除霜方式としては、特開昭59−219668あるいは
実開昭60−10178に記載されているように、暖房運転モ
ードのまゝ除霜を行うホットガスバイパス除霜方式も提
案されているが、除霜後の冷媒は直接圧縮機に吸入さ
れ、除霜後の冷媒に蒸発作用を行わしめる蒸発器が設け
られていない為、圧縮機への液戻りが多く圧縮機の信頼
性が低下する等の問題点を有する。
Further, as another defrosting method, a hot gas bypass defrosting method for performing defrosting in a heating operation mode has been proposed, as described in JP-A-59-219668 or JP-A-60-10178. However, the defrosted refrigerant is directly drawn into the compressor, and since there is no evaporator that evaporates the defrosted refrigerant, there is a lot of liquid returning to the compressor and the reliability of the compressor is high. There are problems such as deterioration.

〔発明の目的〕[Object of the Invention]

本発明は上記問題点に鑑みて発明されたもので、除霜時
の快適性を維持するため、室内に温度を吹出す暖房運転
を行い乍ら除霜を行い、且つ、圧縮機への液戻りが少な
く、冷凍サイクルの信頼性を損なうことのない、ホット
ガスバイパス温風除霜方式を備えた空気調和機を提供す
ることを目的とする。
The present invention has been invented in view of the above problems, in order to maintain comfort during defrosting, defrosting is performed by performing a heating operation that blows out the temperature into the room, and liquid to the compressor. It is an object of the present invention to provide an air conditioner having a hot gas bypass hot air defrosting method that causes less returning and does not impair the reliability of a refrigeration cycle.

〔発明の概要〕[Outline of Invention]

上記目的を達成するため本発明は、圧縮機の吐出側管路
から2本のバイパス管を分岐し、上記バイパス管は、膨
張弁と室外熱交換器を結ぶ管路と、圧縮機の吸入側管路
に夫々接続され、両バイパス管には夫々電磁弁を設けて
形成され、除霜運転は、暖房運転を行い乍ら室外熱交換
器へのバイパス電磁弁を開路することにより行われ、ま
たこの除霜運転時には圧縮機の吐出ガス温度に応じ吸入
側へのバイパス電磁弁を開閉する特徴を有する。
In order to achieve the above object, the present invention branches two bypass pipes from a discharge side pipe of a compressor, and the bypass pipe connects a expansion valve and an outdoor heat exchanger, and a suction side of the compressor. The bypass pipes are connected to the respective pipes, and the bypass pipes are each provided with a solenoid valve.The defrosting operation is performed by performing the heating operation and opening the bypass solenoid valve to the outdoor heat exchanger. During this defrosting operation, the bypass solenoid valve to the suction side is opened and closed according to the temperature of the gas discharged from the compressor.

〔発明の実施例〕Example of Invention

以下本発明の一実施例を図面に基づき説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図は冷凍サイクルを示し、圧縮機1、四方弁2、室
内熱交換器3、電動膨張弁4、室外熱交換器5を図示の
如く配管接続し、冷媒回路が形成されている。上記室内
熱交換器3にはモータを連結したファン12が、また室外
熱交換器5にはモータを連結したファン14が取付けられ
ている。また圧縮機1の吐出管1aから2本のバイパス管
6,7が分岐され、第1のバイパス管6は吐出ガスを室外
熱交換器5へ流す第1の電磁弁8を介在し、他端は電動
膨張弁4から室外熱交換器5に至る配管路4bに接続さ
れ、また第2のバイパス管7は吐出ガスを吸入管1bへ流
す第2の電磁弁9を介在し、他端は圧縮機1の吸入管1b
に接続されている。
FIG. 1 shows a refrigeration cycle, in which a compressor 1, a four-way valve 2, an indoor heat exchanger 3, an electric expansion valve 4, and an outdoor heat exchanger 5 are connected by piping as shown to form a refrigerant circuit. A fan 12 having a motor connected thereto is attached to the indoor heat exchanger 3, and a fan 14 having a motor connected thereto is attached to the outdoor heat exchanger 5. In addition, two bypass pipes from the discharge pipe 1a of the compressor 1
6, 7 are branched, the first bypass pipe 6 interposes a first electromagnetic valve 8 that allows discharge gas to flow to the outdoor heat exchanger 5, and the other end is a pipe from the electric expansion valve 4 to the outdoor heat exchanger 5. The second bypass pipe 7 is connected to the passage 4b, and the second bypass valve 7 interposes a second electromagnetic valve 9 for flowing the discharge gas to the suction pipe 1b, and the other end is the suction pipe 1b of the compressor 1.
It is connected to the.

なお、室外熱交換器5の出入口側に接続された複数の管
路5a,5bは、該熱交換器5の各伝熱管(図示せず)に接
続された分配管を示す。
The plurality of conduits 5a, 5b connected to the inlet / outlet side of the outdoor heat exchanger 5 represent distribution pipes connected to the heat transfer tubes (not shown) of the heat exchanger 5.

図中、実線矢印は暖房運転時の冷媒の流通方向、破線矢
印は冷房運転時の冷媒の流通方向を示す。
In the figure, the solid line arrow indicates the flow direction of the refrigerant during the heating operation, and the broken line arrow indicates the flow direction of the refrigerant during the cooling operation.

また、各機器には温度センサ21〜26が設けられている。
即ち、室内熱交換器3には吸込空気温度を検出するセン
サ21及び吹出空気温度を検出するセンサ22が設けられ、
圧縮機1の吐出管1aには吐出冷媒温度を検出するセンサ
23が設けられ、室外熱交換器5には暖房時の流入冷媒温
度を検出するセンサ24及び流出冷媒温度を検出するセン
サ25が設けられ、更に室外熱交換器5に流入する空気温
度(外気温度)を検出するセンサ26が夫々設けられてい
る。第2図に示すように、上記各センサの検出温度の信
号はマイクロコンピュータ20に取り込まれ、バイパス用
電磁弁8,9の開閉制御電動膨張弁4の開度制御、室内外
送風機12,14の制御及び圧縮機1の回転数制御が行われ
る。この制御については詳細に後述する。
Further, temperature sensors 21 to 26 are provided in each device.
That is, the indoor heat exchanger 3 is provided with a sensor 21 for detecting the intake air temperature and a sensor 22 for detecting the blown air temperature,
The discharge pipe 1a of the compressor 1 has a sensor for detecting the discharge refrigerant temperature.
23 is provided, the outdoor heat exchanger 5 is provided with a sensor 24 for detecting the temperature of the inflowing refrigerant and a sensor 25 for detecting the temperature of the outflowing refrigerant during heating, and the temperature of the air flowing into the outdoor heat exchanger 5 (outside air temperature ) Is provided for each of the sensors 26. As shown in FIG. 2, the signals of the temperatures detected by the respective sensors are fetched by the microcomputer 20, and the opening / closing control of the bypass solenoid valves 8 and 9 and the opening control of the electric expansion valve 4 and the indoor and outdoor blowers 12 and 14 are controlled. Control and rotation speed control of the compressor 1 are performed. This control will be described later in detail.

次に上記ヒートポンプ式冷凍サイクルの各運転時の作用
につき説明する。
Next, the operation of each operation of the heat pump type refrigeration cycle will be described.

先ず冷房運転時は、四方弁2を破線表示のように切換え
ることにより、冷媒は破線矢印のように、圧縮機1−四
方弁2−室外熱交換器5−電動膨張弁4−室内熱交換器
3−四方弁2−圧縮機1と流れ、室外熱交換器5が凝縮
器に、室内熱交換器3が蒸発器となり室内熱交換器3で
循環空気を冷却し冷房の用に供する。
First, during cooling operation, by switching the four-way valve 2 as shown by a broken line, the refrigerant is compressed as indicated by a dashed arrow, that is, compressor 1-four-way valve 2-outdoor heat exchanger 5-electric expansion valve 4-indoor heat exchanger. 3-Flowing with the four-way valve 2-compressor 1, the outdoor heat exchanger 5 serves as a condenser, the indoor heat exchanger 3 serves as an evaporator, and the indoor heat exchanger 3 cools the circulating air and provides it for cooling.

次に、暖房運転時の作用について説明する。Next, the operation during heating operation will be described.

四方弁2を実線表示のように切換えることにより、冷媒
は実線矢印のように、圧縮機1−四方弁2−室内熱交換
器3−電動膨張弁4−室外熱交換器5−四方弁2−圧縮
機1と流れ、室内熱交換器3が凝縮器として作用し、循
環空気に放熱し、該空気を加熱し暖房の用に供し、冷媒
自身は上記熱交換により冷却され凝縮し高圧の液冷媒と
なり、次いで膨張弁4に流入する。膨張弁4で減圧され
た低圧の液冷媒は室外熱交換器4に流入し、室外熱交換
器5が蒸発器として作用し、該熱交換器4を流通する外
気の熱で蒸発し低圧のガス冷媒となり、四方弁を経て圧
縮機に戻る。この暖房運転時には電磁弁8及び電磁弁9
は無通電で閉路している。
By switching the four-way valve 2 as shown by the solid line, the refrigerant is compressed as indicated by the solid-line arrow: compressor 1-four-way valve 2-indoor heat exchanger 3-electric expansion valve 4-outdoor heat exchanger 5-four-way valve 2- It flows with the compressor 1, the indoor heat exchanger 3 acts as a condenser, radiates heat to the circulating air, heats the air and uses it for heating, and the refrigerant itself is cooled and condensed by the heat exchange to condense high-pressure liquid refrigerant. And then flows into the expansion valve 4. The low-pressure liquid refrigerant decompressed by the expansion valve 4 flows into the outdoor heat exchanger 4, the outdoor heat exchanger 5 acts as an evaporator, and the low-pressure gas is evaporated by the heat of the outside air flowing through the heat exchanger 4. It becomes refrigerant and returns to the compressor via the four-way valve. During this heating operation, solenoid valve 8 and solenoid valve 9
Is closed without electricity.

外気温が低く湿度が高い場合に暖房運転を続けている
と、室外熱交換器5の蒸発温度が0℃以下になると該熱
交換器5の表面に着霜が生じて来る。着霜状態が進行す
ると、室外熱交換器5の通風量は低下し、増々霜量が増
加し、その結果、暖房能力が低下し、室内温度が低下し
て、快適性が損なわれる。その為、適当な時期に霜層を
溶かす除霜運転が必要となる。この除霜運転のフローを
第3図を参照し乍ら以下説明する。
If the heating operation is continued when the outside air temperature is low and the humidity is high, frost is formed on the surface of the outdoor heat exchanger 5 when the evaporation temperature of the outdoor heat exchanger 5 becomes 0 ° C. or lower. When the frosted state progresses, the amount of ventilation of the outdoor heat exchanger 5 decreases, and the amount of frost increases more, resulting in a decrease in heating capacity and a decrease in indoor temperature, which impairs comfort. Therefore, a defrosting operation for melting the frost layer at an appropriate time is required. The flow of this defrosting operation will be described below with reference to FIG.

室外熱交換器5に着霜すると、熱交換性能が低下し、室
外熱交換器(蒸発器として作用)5出口側での冷媒の過
熱度が小さくなる。その為膨張弁を開度を絞り、流通冷
媒量を減じ所定過熱度を保持したいが、上記流通冷媒量
の減少により室外熱交換器5の入口側圧力は低下し、そ
の対応冷媒温度(センサー24の検出温度)は低下する。
When frost forms on the outdoor heat exchanger 5, the heat exchange performance deteriorates, and the degree of superheat of the refrigerant on the outlet side of the outdoor heat exchanger (acting as an evaporator) 5 decreases. Therefore, it is desirable to reduce the opening of the expansion valve and reduce the amount of circulating refrigerant to maintain a predetermined degree of superheat, but the inlet side pressure of the outdoor heat exchanger 5 decreases due to the decrease in the amount of circulating refrigerant, and the corresponding refrigerant temperature (sensor 24 Detected temperature) decreases.

また上記室外熱交換器5の入口側冷媒温度は該熱交換器
5を流通する空気温度(外気温度)でも変化する。その
ため、着霜量の変化は、室外熱交換器5を流通する外気
温Ta(センサー26検出温度)と室外熱交換器5の入口側
冷媒温度24の差で第4図のような関係となる。第4図は
横軸に着霜量、縦軸に室外熱交換器5に流入する外気温
26と、室外熱交換器5の入口側冷媒温度24との着を示
す。両者の間には図示のように、温度差が多ければ着霜
量が多くなり、温度差が少なければ着霜量は少ない関係
にある。
The temperature of the refrigerant on the inlet side of the outdoor heat exchanger 5 also changes with the temperature of the air flowing through the heat exchanger 5 (outside air temperature). Therefore, the change in the amount of frost forms the relationship as shown in FIG. 4 due to the difference between the outside air temperature Ta (sensor 26 detected temperature) flowing through the outdoor heat exchanger 5 and the inlet side refrigerant temperature 24 of the outdoor heat exchanger 5. . In FIG. 4, the horizontal axis represents the amount of frost and the vertical axis represents the outside air temperature flowing into the outdoor heat exchanger 5.
Shown is the adhesion of 26 to the refrigerant temperature 24 on the inlet side of the outdoor heat exchanger 5. As shown in the figure, the amount of frost between the two is large, and the amount of frost is small when the temperature difference is small.

従って、室外熱交換器5に流入する空気温度Ta(外気温
度)と室外熱交換器5の入口側冷媒温度Trをセンサ26及
び24で検出し、この検出温度をマイコン20に取り込み、
その差が設定地xあるいはx以上になったとき除霜を必
要とする態勢に入る。
Therefore, the air temperature Ta (outside air temperature) flowing into the outdoor heat exchanger 5 and the inlet-side refrigerant temperature Tr of the outdoor heat exchanger 5 are detected by the sensors 26 and 24, and the detected temperature is taken into the microcomputer 20,
When the difference becomes equal to or more than the set place x, the defrosting state is required.

除霜運転になると、後述のように、圧縮機の蓄熱量も除
霜熱源に利用するため、圧縮機1の温度を設定温度yよ
りも高くする必要がある。そこで圧縮機の温度を吐出ガ
ス温度Tdで置き換え、この温度Tdをセンサ23で検出し、
検出温度が設定値y以下であれば、第2電磁弁9に通電
し、該電磁弁を開路し、圧縮機の吐出ガスの一部を第2
バイパス管7を介し吸入側にバイパスさせる。同時に圧
縮機回転数CHを設定回転数Zとする。即ち、圧縮機の吸
込み冷媒の過熱度を大とすると共に、圧縮機の入力も大
として、早急に圧縮機の吐出ガス温度Tdを設定温度Tr迄
上昇させる。吐出ガス温度Tdが設定温度Tr迄上昇すれば
第2電磁弁9は消電し閉路される。その後第1電磁弁8
に通電し、圧縮機の吐出側の高温高圧の冷媒ガスを室外
熱交換器5にバイパスさせ除霜を行う。同時に室内熱交
換器3用の送風機12を設定風量aとし、室外送風機14は
停止し、膨張弁4の開度は設定開度bとする。
In the defrosting operation, the heat storage amount of the compressor is also used for the defrosting heat source as described later, and therefore the temperature of the compressor 1 needs to be higher than the set temperature y. Therefore, the temperature of the compressor is replaced with the discharge gas temperature Td, and this temperature Td is detected by the sensor 23,
If the detected temperature is equal to or lower than the set value y, the second electromagnetic valve 9 is energized, the electromagnetic valve is opened, and a part of the gas discharged from the compressor is discharged to the second position.
Bypass to the suction side via the bypass pipe 7. At the same time, the compressor rotation speed CH is set to the set rotation speed Z. That is, the superheat degree of the refrigerant sucked into the compressor is increased, and the input of the compressor is also increased to quickly raise the discharge gas temperature Td of the compressor to the set temperature Tr. When the discharge gas temperature Td rises to the set temperature Tr, the second solenoid valve 9 is turned off and closed. After that, the first solenoid valve 8
The refrigerant gas of high temperature and high pressure on the discharge side of the compressor is bypassed to the outdoor heat exchanger 5 to perform defrosting. At the same time, the blower 12 for the indoor heat exchanger 3 is set to the set air volume a, the outdoor blower 14 is stopped, and the opening of the expansion valve 4 is set to the set opening b.

即ち、冷凍サイクルは、固定絞り膨張弁での暖房運転サ
イクルに、高温の吐出ガスを室外熱交換器5の入口にバ
イパスさせたサイクルとなる。その結果吐出圧力が低く
なり、凝縮温度も低下して凝縮能力が低下するが、室内
熱交換器3の送風機12の風量も設定量aに低下させるた
め室内熱交換器3の出入口空気温度ΔTa(センサ22検出
温度とセンサ21検出温度の差)は送風機12の設定風量で
調節可能であり、上記温度差ΔTaを一定に保つことがで
きる。従って、室内の快適性は保持される。
That is, the refrigeration cycle is a cycle in which the high-temperature discharge gas is bypassed to the inlet of the outdoor heat exchanger 5 in the heating operation cycle using the fixed throttle expansion valve. As a result, the discharge pressure becomes lower, the condensing temperature lowers, and the condensing capacity lowers. However, since the air volume of the blower 12 of the indoor heat exchanger 3 also decreases to the set amount a, the inlet / outlet air temperature ΔTa ( The difference between the temperature detected by the sensor 22 and the temperature detected by the sensor 21) can be adjusted by the set air volume of the blower 12, and the temperature difference ΔTa can be kept constant. Therefore, indoor comfort is maintained.

また膨張弁4の開度は、圧縮機吐出ガス温度Tdが設定温
度c以上の場合は開く方向に、また設定温度以下では閉
じる方向に作動し、圧縮機の吐出ガス温度を制御する。
Further, the opening of the expansion valve 4 operates to open when the compressor discharge gas temperature Td is equal to or higher than the set temperature c, and to close when the compressor discharge gas temperature Td is equal to or lower than the set temperature to control the discharge gas temperature of the compressor.

本除霜サイクルでは、室内熱交換器3で一部凝縮した液
冷媒と、室外熱交換器5で霜層を解かし凝縮した液冷媒
が圧縮機に吸込まれる。この吸込液量が多いと圧縮機を
損傷する恐れもあり信頼性が低下することになる。従っ
て、この液戻り量と関係の深い圧縮機吐出ガス温度を制
御する必要がある。また、室内熱交換器3の送風機12の
風量は、室内熱交換器3の出入口空気温度の温度差ΔTa
(−)が設定値dとなるように調節する。
In the present defrost cycle, the liquid refrigerant partially condensed in the indoor heat exchanger 3 and the liquid refrigerant condensed by defrosting the frost layer in the outdoor heat exchanger 5 are sucked into the compressor. If the amount of the suction liquid is large, the compressor may be damaged and the reliability will be reduced. Therefore, it is necessary to control the compressor discharge gas temperature, which is closely related to the liquid return amount. Further, the air volume of the blower 12 of the indoor heat exchanger 3 is equal to the temperature difference ΔTa between the inlet and outlet air temperatures of the indoor heat exchanger 3.
Adjust so that (-) becomes the set value d.

上記のような制御を行い霜層を解かし、この除霜時間を
短縮するため、除霜開始後からの時間tが設定時間eよ
りも長くなり、しかも、吐出ガス温度Tdが設定温度hよ
りも高い場合に、第2バイパス弁9を開く。この弁9の
開路により、吐出ガスの一部が圧縮機の吸入配管1bに流
入し、吸入圧力も上昇させ、室外熱交換器5の凝縮圧力
も上昇させるため、該熱交換器5の温度が上昇し、霜が
早く解け、除霜時間は短縮される。しかし乍ら、もし、
吐出ガス温度Tdが低い時に第2バイパス弁9を開くと、
霜を解かした液冷媒が多量に圧縮機に戻るため、圧縮機
1の蓄熱量では蒸発し切れず、液圧縮を生じることな
り、前述のように、信頼性が低下する。また第1バイパ
ス弁8と同時に第2バイパス弁9を開けば吐出ガス温度
は急激に低下し、上記と同様に圧縮機に液冷媒が多量に
戻り信頼性が低下する。この吐出ガス温度Tdの低下の状
況と第2開閉弁9の開路の時間との関係を第5図に示
す。
In order to defrost the frost layer by performing the above control and shorten the defrosting time, the time t from the start of defrosting becomes longer than the set time e, and the discharge gas temperature Td is higher than the set temperature h. If it is higher, the second bypass valve 9 is opened. Due to the opening of the valve 9, a part of the discharge gas flows into the suction pipe 1b of the compressor, the suction pressure is also increased, and the condensation pressure of the outdoor heat exchanger 5 is also increased, so that the temperature of the heat exchanger 5 is increased. It rises, thaws quickly and defrost time is shortened. But if you
When the second bypass valve 9 is opened when the discharge gas temperature Td is low,
Since a large amount of the defrosted liquid refrigerant returns to the compressor, the amount of heat stored in the compressor 1 does not completely evaporate, and liquid compression occurs, which reduces reliability as described above. Further, if the second bypass valve 9 is opened at the same time as the first bypass valve 8, the discharge gas temperature sharply drops, and a large amount of liquid refrigerant returns to the compressor in the same manner as described above, which lowers the reliability. FIG. 5 shows the relationship between the state of decrease of the discharge gas temperature Td and the opening time of the second opening / closing valve 9.

第5図は縦軸に吐出冷媒ガス温度Td、横軸に時間tを示
す。第1電磁弁8、第2電磁弁9を同時に開くと、一点
鎖線で示すように吐出ガス温度は急激に低下し、温度上
昇に時間がかゝる。また、第1電磁弁8開路t1時間後に
第2電磁弁9を開路すれば吐出冷媒ガス温度は時間と共
に破線で示すように変化する。更に、第1電磁弁8回路
t2時間後でTdがhに回復したときに第2電磁弁9を開路
すれば、吐出冷媒ガス温度は実線で示すように変化す
る。即ち、第1電磁弁8開路t2時間後に第2電磁弁9を
開路するようにすれば、吐出冷媒ガス温度の低下は少な
い。
In FIG. 5, the vertical axis shows the discharged refrigerant gas temperature Td, and the horizontal axis shows the time t. When the first solenoid valve 8 and the second solenoid valve 9 are opened at the same time, the discharge gas temperature sharply decreases as shown by the alternate long and short dash line, and it takes time for the temperature to rise. If the second solenoid valve 9 is opened after the first solenoid valve 8 has been opened t 1 hour, the discharge refrigerant gas temperature changes with time as shown by the broken line. Furthermore, the first solenoid valve 8 circuit
If the second solenoid valve 9 is opened when Td is restored to h after t 2 hours, the discharge refrigerant gas temperature changes as shown by the solid line. That is, if the second solenoid valve 9 is opened after the first solenoid valve 8 is opened t 2 hours later, the temperature of the discharged refrigerant gas will not decrease much.

次いで、霜が解けると、室外熱交換器5の出口冷媒温度
Tr0(センサ25の検出温度)が上昇して来る。このTr0
設定値fになったとき、両バイパス弁8,9を閉じると共
に室内送風機12は通常運転gに、室外送風機14は再運転
し、通常の暖房運転に戻る。
Next, when the frost is thawed, the outlet refrigerant temperature of the outdoor heat exchanger 5
Tr0 (temperature detected by sensor 25) rises. When this Tr 0 reaches the set value f, both bypass valves 8 and 9 are closed, the indoor blower 12 is returned to the normal operation g, the outdoor blower 14 is restarted, and the normal heating operation is resumed.

尚、第3図には記載してないが、もし何んらかの理由に
より霜が解けず、室外熱交換器の出口冷媒温度Tr0が設
定時間内に設定温度fまで上昇しない場合は、室内熱交
換器用送風機12を停止し、風量をゼロとする。その結
果、室内熱交換器3での冷媒の凝縮が少なくなり、室外
熱交換器5に流入する冷媒は、霜を解かす熱量が大き
く、従って除霜作用は活発となり、室外熱交換器の出口
冷媒温度Tr0が上昇することになる。
Although not shown in FIG. 3, if the frost is not thawed for some reason and the outlet refrigerant temperature Tr 0 of the outdoor heat exchanger does not rise to the set temperature f within the set time, The blower 12 for the indoor heat exchanger is stopped to make the air volume zero. As a result, the condensation of the refrigerant in the indoor heat exchanger 3 is reduced, and the refrigerant flowing into the outdoor heat exchanger 5 has a large amount of heat for defrosting, so that the defrosting action becomes active and the outlet of the outdoor heat exchanger is activated. The refrigerant temperature Tr 0 will rise.

第6図は本発明の他の実施例を示すサイクル構成図で、
この実施例が第1図の実施例と相違するところは、吐出
配管1aから分岐した分岐管10aに第3の電磁弁10を設
け、この電磁弁10の出口側に、室外熱交換器5側へバイ
パスさせる管路6及び、吸入配管1bへバイパスさせる管
路7を夫々接続した構造で、その他の部分は第1図の実
施例と同様であるので同符号を付しその説明を省略す
る。
FIG. 6 is a cycle configuration diagram showing another embodiment of the present invention.
This embodiment is different from the embodiment of FIG. 1 in that a branch pipe 10a branched from the discharge pipe 1a is provided with a third solenoid valve 10, and the outlet side of the solenoid valve 10 is connected to the outdoor heat exchanger 5 side. The pipe line 6 for bypassing to the suction pipe 1b and the pipe line 7 for bypassing to the suction pipe 1b are connected to each other. Since other parts are the same as those in the embodiment of FIG. 1, the same reference numerals are given and the description thereof is omitted.

上記第3電磁弁10は、外気温度、室外熱交換器流入冷媒
温度、圧縮機吐出ガス温度あるいはその他の条件等を検
出し、上記検出温度または温度差あるいは他の条件を設
定値等と比較し、除霜運転が必要な状態になった場合開
路し、除霜運転が完了したら閉路される。他の各機器の
制御及び作用は第1図の実施例と同様であるからその説
明を省略する。
The third solenoid valve 10 detects the outside air temperature, the temperature of the refrigerant entering the outdoor heat exchanger, the compressor discharge gas temperature or other conditions, and compares the detected temperature or temperature difference or other conditions with a set value or the like. When the defrosting operation becomes necessary, the circuit is opened, and when the defrosting operation is completed, the circuit is closed. The control and operation of each of the other devices are the same as those in the embodiment of FIG.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明によれば、除霜運転中も暖房
運転を維持し、室内熱交換器から室内に風を吹出すた
め、除霜運転中も快適性も維持できる。
As described above, according to the present invention, the heating operation is maintained even during the defrosting operation, and the air is blown from the indoor heat exchanger into the room. Therefore, the comfort can be maintained during the defrosting operation.

また、除霜運転中に吐出冷媒ガス温度を制御しているた
め、従来のホットガスバイパス除霜方式に較べ圧縮機へ
の液戻りが少なく信頼性が大巾に向上される効果を有す
る。
Further, since the temperature of the discharged refrigerant gas is controlled during the defrosting operation, there is less liquid returning to the compressor as compared with the conventional hot gas bypass defrosting method, and the reliability is greatly improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示す冷凍サイクルの構成
図、第2図は各温度センサの検知信号をマイコンに取込
み設定値との比較を行ない、出力信号にて各制御弁を制
御する関係を示す説明図、第3図は除霜運転時のフロー
チャート図、第4図は外気と室外熱交換器の流入冷媒温
度との差と、着霜量との関係を示す線図、第5図は除霜
運転中に第2電磁弁を開路する時間と吐出ガス温度との
関係を示す線図、第6図は本発明の他の実施例を示す冷
凍サイクルの構成図である。 1……圧縮機、2……四方弁、3……室内熱交換器、4
……膨張弁、5……室外熱交換器、6,7,10a……バイパ
ス管(分岐管)、8,9,10……電磁弁、12……室内送風
機、14……室外送風機、21,22,23,24,25,26……センサ
ー。
FIG. 1 is a block diagram of a refrigerating cycle showing an embodiment of the present invention, and FIG. 2 is a diagram in which a detection signal of each temperature sensor is taken into a microcomputer and compared with a set value, and each control valve is controlled by an output signal. Explanatory diagram showing the relationship, FIG. 3 is a flow chart diagram at the time of defrosting operation, and FIG. 4 is a diagram showing the relationship between the difference between the outside air and the inflowing refrigerant temperature of the outdoor heat exchanger and the amount of frost formation. FIG. 6 is a diagram showing the relationship between the time for which the second solenoid valve is opened and the discharge gas temperature during the defrosting operation, and FIG. 6 is a block diagram of a refrigeration cycle showing another embodiment of the present invention. 1 ... Compressor, 2 ... Four-way valve, 3 ... Indoor heat exchanger, 4
...... Expansion valve, 5 ... Outdoor heat exchanger, 6,7,10a ... Bypass pipe (branch pipe), 8,9,10 ... Solenoid valve, 12 ... Indoor blower, 14 ... Outdoor blower, 21 , 22,23,24,25,26 …… Sensor.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安田 弘 静岡県清水市村松390番地 株式会社日立 製作所機械研究所内 (72)発明者 石羽根 久平 静岡県清水市村松390番地 株式会社日立 製作所機械研究所内 (72)発明者 寺田 浩清 静岡県清水市村松390番地 株式会社日立 製作所清水工場内 (56)参考文献 特開 昭55−17081(JP,A) 実開 昭54−61341(JP,U) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroshi Yasuda 390 Muramatsu, Shimizu City, Shizuoka Prefecture, Hitachi, Ltd., Mechanical Research Laboratory (72) Inventor, Kuhei Ishiba, 390 Muramatsu, Shimizu City, Hitachi, Ltd., Mechanical Laboratory, Hitachi, Ltd. (72) Inventor Hiroki Terada 390 Muramatsu, Shimizu City, Shizuoka Prefecture, Shimizu Plant, Hitachi, Ltd. (56) References JP-A-55-17081 (JP, A) JP-A-54-61341 (JP, U)

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】圧縮機、四方弁、室内熱交換器、膨張弁、
室外熱交換器を順次配管接続してヒートポンプ式冷凍サ
イクルを形成し、四方弁を切換えることによって暖房運
転または冷房運転を行う空気調和機において、圧縮機の
吐出側管側から分岐管を設け、この分岐管は、膨張弁と
室外熱交換器を結ぶ管路と接続されるバイパス管と、圧
縮機の吸入側管路に接続されるバイパス管を形成し、上
記両バイパス管には夫々開閉弁を設け、除霜運転は、暖
房運転を継続し乍ら室外熱交換器へ吐出ガスを流通させ
るよう開閉弁を開路する手段と、吸入側へ吐出ガスを流
通させるよう開閉弁を圧縮機の吐出ガス温度に応じ選択
的に開閉し、吐出ガス温度が低いとき、吐出ガスを吸入
側へ流通させる手段とを設けてなることを特徴とする空
気調和機。
1. A compressor, a four-way valve, an indoor heat exchanger, an expansion valve,
In an air conditioner that sequentially performs outdoor heat exchanger piping connection to form a heat pump type refrigeration cycle and performs heating operation or cooling operation by switching four-way valves, a branch pipe is provided from the discharge side pipe side of the compressor. The branch pipe forms a bypass pipe connected to a pipe line connecting the expansion valve and the outdoor heat exchanger, and a bypass pipe connected to a suction side pipe line of the compressor, and an opening / closing valve is provided in each of the bypass pipes. In the defrosting operation, the means for opening the on-off valve to allow the discharge gas to flow to the outdoor heat exchanger while continuing the heating operation and the on-off valve to allow the discharge gas to flow to the suction side are connected to the discharge gas of the compressor. An air conditioner, which is selectively opened / closed according to the temperature and has means for circulating the discharge gas to the suction side when the discharge gas temperature is low.
【請求項2】開閉弁が電磁弁である特許請求の範囲第1
項記載の空気調和機。
2. The invention according to claim 1, wherein the on-off valve is a solenoid valve.
The air conditioner according to the item.
【請求項3】室外熱交換器側へ吐出ガスを流す電磁弁を
開路する手段が、外気温度検出するセンサーと、室外熱
交換器流入冷媒温度を検出するセンサーと、圧縮機の吐
出ガス温度を検出するセンサーを備え、上記各センサー
で検出した外気温度と冷媒温度の差と設定値を比較し、
且つ、吐出ガス温度と設定値とを比較し、上記電磁弁に
開路信号を出力するものである特許請求の範囲第2項記
載の空気調和機。
3. A means for opening a solenoid valve for flowing a discharge gas to the outdoor heat exchanger side, a sensor for detecting an outside air temperature, a sensor for detecting a temperature of a refrigerant flowing into the outdoor heat exchanger, and a discharge gas temperature of a compressor. Equipped with a sensor to detect, comparing the difference between the outside air temperature detected by each sensor and the refrigerant temperature and the set value,
The air conditioner according to claim 2, wherein the discharge gas temperature is compared with a set value and an open circuit signal is output to the solenoid valve.
【請求項4】室外熱交換器側へ吐出ガスを流す電磁弁を
閉路する手段が、室外熱交換器流出冷媒温度を検出する
センサーを備え、上記各センサーで検出した冷媒温度と
設定値とを比較し、上記電磁弁に閉路信号を出力するも
のである特許請求の範囲第3項記載の空気調和機。
4. A means for closing a solenoid valve for flowing a discharge gas to the outdoor heat exchanger side comprises a sensor for detecting the temperature of the refrigerant flowing out of the outdoor heat exchanger, and the refrigerant temperature and the set value detected by the respective sensors are The air conditioner according to claim 3, which compares and outputs a closing signal to the solenoid valve.
【請求項5】吸入側へ吐出ガスを流す電磁弁を選択的に
開閉する手段が、圧縮機の吐出ガス温度を検出するセン
サーを備え、除霜前に、このセンサで検出した冷媒温度
と設定値を比較し、設定値より低ければ開路し、設定値
に上昇すれば閉路する信号を出力するものである特許請
求の範囲第2項記載の空気調和機。
5. A means for selectively opening and closing a solenoid valve for flowing a discharge gas to a suction side is provided with a sensor for detecting a discharge gas temperature of a compressor, and a refrigerant temperature detected by the sensor and a setting are set before defrosting. The air conditioner according to claim 2, which compares the values and outputs a signal that opens when the value is lower than the set value and closes when the value rises to the set value.
【請求項6】吸入側へ吐出ガスを流す電磁弁を選択的に
開閉する手段が、除霜中に、除霜運転が除霜設定時間を
超過し、且つ、圧縮機の吐出ガス冷媒温度と設定値とを
比較し、設定値より高ければ上記電磁弁を開路し、室外
熱交換器流出冷温度を検出するセンサーを備え、上記セ
ンサーで検出した冷媒温度と設定値とを比較した設定値
より高ければ、上記電磁弁を閉路する信号を出力するも
のである特許請求の範囲第2項または第3項記載の空気
調和機。
6. A means for selectively opening and closing a solenoid valve for flowing a discharge gas to a suction side is such that during defrosting, the defrosting operation exceeds a defrosting set time, and the discharge gas refrigerant temperature of the compressor is Compared with the set value, if it is higher than the set value, open the solenoid valve, equipped with a sensor to detect the outflow cold temperature of the outdoor heat exchanger, than the set value comparing the refrigerant temperature and the set value detected by the sensor The air conditioner according to claim 2 or 3, which outputs a signal that closes the electromagnetic valve if it is higher.
【請求項7】室内熱交換器が送風機を備え、除霜運転中
は送風機を低風量になす手段を設けてなる特許請求の範
囲第1項乃至第6項のいずれか一つの記載の空気調和
機。
7. The air conditioner according to any one of claims 1 to 6, wherein the indoor heat exchanger is provided with a blower, and means for making the blower have a low air volume during defrosting operation is provided. Machine.
【請求項8】室内送風機が、除霜異常時には停止する手
段を設けてなる特許請求の範囲第7項記載の空気調和
機。
8. The air conditioner according to claim 7, wherein the indoor blower is provided with means for stopping when the defrosting is abnormal.
【請求項9】室外熱交換器が送風機を備え、除霜運転中
は送風機を停止する手段を設けてなる特許請求の範囲第
1項乃至第8項のいずれか一つに記載の空気調和機。
9. The air conditioner according to claim 1, wherein the outdoor heat exchanger includes a blower, and means for stopping the blower during defrosting operation is provided. .
【請求項10】膨張弁が、除霜中は設定開度を維持する
手段に加え、圧縮機吐出冷媒温度と設定値を比較し、冷
媒温度が設定値より低ければ閉方向に、高ければ開方向
に開度制御する手段を備えてなる特許請求の範囲第1項
乃至第9項のいずれか一つに記載の空気調和機。
10. An expansion valve, in addition to a means for maintaining a set opening during defrosting, compares the compressor discharge refrigerant temperature with a set value, and opens it if the refrigerant temperature is lower than the set value, and opens it if it is higher. The air conditioner according to any one of claims 1 to 9, further comprising means for controlling an opening in a direction.
【請求項11】暖房運転復帰時には、室内送風機を通常
の風量にすると共に室外送風機を再起動する手段を設け
てなる特許請求の範囲第1項乃至第10項のいずれか一つ
に記載の空気調和機。
11. The air according to any one of claims 1 to 10, further comprising means for returning the indoor blower to a normal air volume and restarting the outdoor blower when returning to the heating operation. Harmony machine.
JP27897285A 1985-12-13 1985-12-13 Air conditioner Expired - Fee Related JPH0730979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27897285A JPH0730979B2 (en) 1985-12-13 1985-12-13 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27897285A JPH0730979B2 (en) 1985-12-13 1985-12-13 Air conditioner

Publications (2)

Publication Number Publication Date
JPS62138660A JPS62138660A (en) 1987-06-22
JPH0730979B2 true JPH0730979B2 (en) 1995-04-10

Family

ID=17604630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27897285A Expired - Fee Related JPH0730979B2 (en) 1985-12-13 1985-12-13 Air conditioner

Country Status (1)

Country Link
JP (1) JPH0730979B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021167337A1 (en) * 2020-02-17 2021-08-26 Lg Electronics Inc. Air conditioner

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07117323B2 (en) * 1989-03-17 1995-12-18 三菱電機株式会社 Air conditioner
JP5976576B2 (en) * 2013-03-21 2016-08-23 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Air conditioner
JP5786914B2 (en) * 2013-09-30 2015-09-30 ダイキン工業株式会社 Air conditioner
JP2015068569A (en) * 2013-09-30 2015-04-13 ダイキン工業株式会社 Air conditioner
JP5929862B2 (en) * 2013-09-30 2016-06-08 ダイキン工業株式会社 Air conditioner
JP5783215B2 (en) * 2013-09-30 2015-09-24 ダイキン工業株式会社 Air conditioner
JP5737353B2 (en) * 2013-09-30 2015-06-17 ダイキン工業株式会社 Air conditioner
JP6926460B2 (en) * 2016-12-09 2021-08-25 ダイキン工業株式会社 Refrigerator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021167337A1 (en) * 2020-02-17 2021-08-26 Lg Electronics Inc. Air conditioner

Also Published As

Publication number Publication date
JPS62138660A (en) 1987-06-22

Similar Documents

Publication Publication Date Title
JPH0799297B2 (en) Air conditioner
CN112050399B (en) Air conditioner
JPH09310927A (en) Device for controlling refrigerant of air conditioner
JPH0730979B2 (en) Air conditioner
JP4622901B2 (en) Air conditioner
JPH043865A (en) Freezing cycle device
JP2523534B2 (en) Air conditioner
JPH07332795A (en) Multiroom type air-conditioning system
JP3021987B2 (en) Refrigeration equipment
JPH0620039Y2 (en) Air conditioner
JP3303689B2 (en) Binary refrigeration equipment
JPH04217754A (en) Air conditioner
JPH10288427A (en) Refrigerating device
JP3373904B2 (en) Engine driven air conditioner
JPH07243726A (en) Two-stage cooler
CN108592440A (en) A kind of Efficient track heat pump air conditioning system and its Defrost method
JP2001280768A (en) Refrigerator
JPH04324048A (en) Air conditioner
JP2582320B2 (en) Operation stop device in environmental test equipment
JPH04363536A (en) Operation control method for air-conditioner
JP2024053324A (en) Air conditioners
JPH0611201A (en) Air conditioning apparatus
JPH08128763A (en) Operation controller for air conditioner
JP4023385B2 (en) Refrigeration equipment
JPH01127870A (en) Air conditioner

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees