JPS62130760A - Production of metallic articles - Google Patents

Production of metallic articles

Info

Publication number
JPS62130760A
JPS62130760A JP26995885A JP26995885A JPS62130760A JP S62130760 A JPS62130760 A JP S62130760A JP 26995885 A JP26995885 A JP 26995885A JP 26995885 A JP26995885 A JP 26995885A JP S62130760 A JPS62130760 A JP S62130760A
Authority
JP
Japan
Prior art keywords
molten metal
rotating disk
metal
disk
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26995885A
Other languages
Japanese (ja)
Inventor
Nozomi Kawabe
望 河部
Teruyuki Murai
照幸 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP26995885A priority Critical patent/JPS62130760A/en
Publication of JPS62130760A publication Critical patent/JPS62130760A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain a metallic product having good quality by dropping and pressing a molten metal to the specific radial position on a smooth disk rotating horizontally at a high speed and splashing the same with the directivity given thereto by centrifugal force thereby depositing and solidifying the splashed metal to a substrate in a prescribed position. CONSTITUTION:The molten metal 6 in a tundish 3 is dropped from an aperture 4 and is contacted to the 0.3-0.7r position in the radial (r) direction on the disk 5 rotating horizontally at a high speed. The dropping melt 6 is splashed and pulverized in the specific direction by the centrifugal force so as to be deposited and solidified on the surface of the substrate in the prescribed position. The splashed fine particles concentrate within the specified spread range in the range of the above-mentioned radial direction and are normally distributed within the narrower range as the range us bearer 0.7r. The distribution is more concentrated as the surface of the disk is smoother. The pulverized molten metal is received, deposited and solidified with high efficiency if the molten metal is received to the substrate 8 having such width of the concn. range. the prescribed metallic product is thus obtd.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、金属物品の製造法に係わる。[Detailed description of the invention] [Industrial application fields] The present invention relates to a method for manufacturing metal articles.

[在来技術と問題点] 従来金属物品を作成する場合、溶解、鋳造法か、粉末冶
金法の利用によっていた。この場合、留意すべき点は、
(1)組織が微細で偏析が十分小さいこと、■酸素によ
る汚染が十分小さいこと、さらに、(3)目的の形状に
近いものが低コストで得られることである。
[Prior Art and Problems] Traditionally, metal articles have been created by melting, casting, or by using powder metallurgy. In this case, the points to keep in mind are:
(1) The structure is fine and segregation is sufficiently small; (2) Oxygen contamination is sufficiently small; and (3) a shape close to the desired shape can be obtained at low cost.

溶解、鋳造法においては、比較的工程が簡便であるとい
う長所がありながらも、冷却速度が10@” 10’ 
k/seaであり、粉末冶金法の10’ #IO’ k
/seeに比べて小さく、品出物、結晶粒等の組織の微
細化は困難であるため、強度、伸び等の機械的特性の向
上は期待しがたく、さらに添加合金元素の偏析が大きい
ため、圧延等の加工性においても問題点が多い。
Melting and casting methods have the advantage of relatively simple processes, but the cooling rate is 10@"10'
k/sea, 10'#IO' k of powder metallurgy
/see, and it is difficult to refine the structure of products, crystal grains, etc., so it is difficult to expect improvements in mechanical properties such as strength and elongation, and furthermore, the segregation of added alloying elements is large. There are also many problems in workability such as rolling.

一方、粉末冶金法においては、冷却速度が大きいため、
微細組織が得られ、偏析が十分小さいという長所はある
が、粉末原料粉の酸素による汚染が大きく、疲労特性に
問題があり、さらにCIP。
On the other hand, in the powder metallurgy method, the cooling rate is high, so
Although it has the advantage that a fine structure can be obtained and segregation is sufficiently small, the raw material powder is heavily contaminated with oxygen, and there are problems with fatigue properties, and furthermore, CIP.

HIP等の工程が多く、粉末原料粉の酸化除去を行う場
合には、還元工程も必要となり、コストが高くつくなど
の問題点が残る。
There are many steps such as HIP, and if the raw material powder is oxidized and removed, a reduction step is also required, which leaves problems such as high cost.

上述のような問題を解決するために、溶融金属を微細粒
子とし、未凝固状態で堆積、凝固させる方法が考えられ
る。微細粒子を作成するにあたっては、ガスを吹きつけ
てアトマイズする方法と回転ディスクを用い、衝撃力及
び遠心力を利用する方法が考えられる。
In order to solve the above-mentioned problems, a method can be considered in which the molten metal is made into fine particles and is deposited and solidified in an unsolidified state. Possible methods for creating fine particles include atomizing by blowing gas, and using a rotating disk to utilize impact force and centrifugal force.

ガスアトマイズ法においては、経験的に微細化された飛
散金属粒子が回転ディスクを用いて微細化する方法に比
べ、粒子径が大きく、経験的に冷微細組織が得にくい上
、不活性ガスを用いる場合、コストが高くつくという欠
点があげられる。
In the gas atomization method, the particle size of the scattered metal particles, which have been empirically refined, is larger than in the method of refining using a rotating disk, and it is empirically difficult to obtain a cold microstructure, and when using an inert gas, , the disadvantage is that it is expensive.

一方、回転ディスクにより溶融金属を微細化する場合、
ガスアトマイズ法に比べ、粒子径が小さいため、粒子内
でのみ偏析が起るとマイクロ・ミクロ偏析も小さく押え
られ、冷却速度が太きいため(10’ −10’ k/
5ee) 、低コストで、微細組織の金属堆積物が得ら
れるが、溶融金属を回転ディスクの回転中心に流下する
と飛散粒子の方向制御ができず、第5図(イ)、(ロ)
に示すように円環状のプリフォームしか得られないとい
う欠点がある。
On the other hand, when refining molten metal using a rotating disk,
Compared to the gas atomization method, the particle size is smaller, so if segregation occurs only within the particles, micro-micro segregation can be kept small, and the cooling rate is faster (10'-10' k/
5ee), a metal deposit with a fine structure can be obtained at low cost, but if the molten metal flows down to the center of rotation of the rotating disk, the direction of the scattered particles cannot be controlled, and as shown in Figures 5 (a) and (b).
The disadvantage is that only an annular preform can be obtained as shown in FIG.

なお図において、1は回転ディスク5を収納する容器で
あり、2は、例えば高周波誘導炉のような金属溶融炉、
3はタンディシュ、4はタンディシュの開口であり、6
は溶融金属である。上記説明のように溶融金属6を水平
方向に保持された回転ディスク5の中心に流下させると
、図に7で示すような円環状のプリフォームしか、サブ
ストレイト8上に得られない。
In the figure, 1 is a container that houses the rotating disk 5, and 2 is a metal melting furnace such as a high frequency induction furnace, for example.
3 is the tundish, 4 is the opening of the tundish, and 6
is molten metal. When the molten metal 6 is caused to flow down to the center of the rotating disk 5 held in the horizontal direction as described above, only an annular preform as shown by 7 in the figure is obtained on the substrate 8.

[発明の構成コ 本発明は上述の回転ディスクを用いる方法に普目してな
されたものであって、種々検討の結果、飛散金属粒子の
方向制御が可能であることを見出し、目的とする形状の
製品(プリフォーム)が、品質よく、かつ歩留まり良好
、低コストで得られる方法を提供するものである。
[Structure of the Invention] The present invention has been made based on the above-mentioned method using a rotating disk, and as a result of various studies, it has been discovered that it is possible to control the direction of scattered metal particles, and it has been found that it is possible to control the direction of scattered metal particles, and The present invention provides a method for obtaining products (preforms) of high quality, good yield, and low cost.

本発明において、ポイントとなるところは、回転ディス
クに対し、溶融金属を、ディスクの回転中心より偏心し
た場所に流下させることである。
In the present invention, the key point is to cause the molten metal to flow down to a location eccentric from the center of rotation of the rotating disk.

上述のような流下によって、目的とする形状のプリフォ
ームが得られることを、以下、本発明の実施を通じて説
明する。
The fact that a preform having a desired shape can be obtained by the above-described flow will be explained below through implementation of the present invention.

第1図は本発明の製造法を実施するに好適な装置の一例
を示す。第5図と同一部分は同一符号で示す。2は、例
えば高周波炉のような溶解炉であり、ここで溶融された
溶融金属6はタンディシュ3に流下する。lは回転ディ
スク5等収納容器、8は回転ディスク5の面に対応し、
上下位置を調整して、回転ディスク5の外周位置に配置
される目的形状のサブストレイト、又は受は型である。
FIG. 1 shows an example of an apparatus suitable for carrying out the manufacturing method of the present invention. The same parts as in FIG. 5 are indicated by the same reference numerals. 2 is a melting furnace such as a high frequency furnace, and the molten metal 6 melted here flows down into the tundish 3. l corresponds to a storage container for the rotating disk 5, etc., 8 corresponds to the surface of the rotating disk 5,
The target-shaped substrate or receiver, which is vertically adjusted and placed at the outer peripheral position of the rotating disk 5, is a mold.

タンディシュ3の底部の開口4より流下する溶融金属6
は、回転ディスク5の中心をはずした場所に流下するよ
うに配置される。
Molten metal 6 flowing down from the opening 4 at the bottom of the tundish 3
is arranged so as to flow down to a location off the center of the rotating disk 5.

容器1内を図示していないが、排気設備によって、排気
するとともに、Arガスを導入して不活性雰囲気とした
のち、溶解炉2で、AQ−20%Si合金を溶解し、融
点より約200℃高い温度に加熱した。溶融金属6をタ
ンディシュ3に注湯し、タンディシュ3の底部の直径1
.0■會の開口4から、回転数4000rp■の回転デ
ィスク5上に流下させた。
Although the inside of the container 1 is not shown, the inside of the container 1 is evacuated using an exhaust equipment, and Ar gas is introduced to create an inert atmosphere, and then the AQ-20% Si alloy is melted in the melting furnace 2 to a temperature of about 200% above the melting point. Heated to a higher temperature. The molten metal 6 is poured into the tundish 3, and the diameter of the bottom of the tundish 3 is 1.
.. The liquid was allowed to flow down from the opening 4 of the 0.0000 mm hole onto a rotating disk 5 having a rotational speed of 4000 rpm.

回転ディスク表面が平滑なディスクを用いることが、飛
散金属粒子の方向性制御に重要であるので、まずディス
ク表面粗さと飛散金属粒子分布の関係を第2図に示す。
Since it is important to use a rotating disk with a smooth surface for controlling the directionality of the scattered metal particles, first the relationship between the disk surface roughness and the distribution of the scattered metal particles is shown in FIG.

回転ディスク表面を# 80.# 200.# 120
0の研摩ペーパーでみがいたもので調査した。溶融金属
流下位置は、第4図に示すように、回転ディスクの中心
からo、7r(r:ディスク半径)にした。
Rotating disk surface #80. #200. #120
The test was conducted using abrasive paper polished with No. 0 abrasive paper. As shown in FIG. 4, the position of the molten metal flowing down was set at o, 7r (r: disk radius) from the center of the rotating disk.

第2図グラフかられかるように、#80のペーパーでみ
がかれた程度の表面粗さにおいて、飛散金属粒子ハ3G
Oaノヒロカリヲ示スカ、#220.#1200のペー
パーでみがいた回転ディスクでは適度のひろがりしか示
さず、回転ディスクの接線方向から、それぞれ+20’
 、GO’の角度ひろがりをもって、それぞれ飛散して
いることが判った。つまりディスク面の平滑さによって
、飛散角度が、なめらかな程せまくなることが判った。
As can be seen from the graph in Figure 2, when the surface roughness is polished with #80 paper, the amount of scattered metal particles is 3G.
Oa no Hiro Kariwo Showsuka, #220. The rotating disk polished with #1200 paper shows only a moderate spread, and the width is +20' from the tangential direction of the rotating disk.
It was found that the particles were scattered with an angular spread of , GO', respectively. In other words, it was found that depending on the smoothness of the disk surface, the scattering angle becomes less smooth and narrow.

第4図は上記# 1200のペーパーでディスク表面を
みがいた場合の、サブストレイト表面における微細金属
粒子の堆積状態を示す。
FIG. 4 shows the state of deposition of fine metal particles on the substrate surface when the disk surface was polished with the #1200 paper.

回転ディスク表面に突起物がある場合は飛散粒子に方向
性を持たすことが不可能なことは明らかである。
It is clear that if there are protrusions on the surface of the rotating disk, it is impossible to give directionality to the scattered particles.

、回転ディスク表面が粗い場合に、微細粒子にこのよう
な角度広がりを生ずる理由としては、流下した溶融金属
が回転ディスク上で凝固付着し、そのまま、ディスクと
一体化回転するため、流下する溶融金属が凝固付着した
金属により打撃をうけて飛行方向に角度広がりを生じて
しまうがらである。
When the surface of the rotating disk is rough, the reason why such an angular spread occurs in the fine particles is that the flowing molten metal solidifies and adheres to the rotating disk, and then rotates as one with the disk. However, the object is struck by the solidified metal, causing an angular spread in the direction of flight.

次に溶融金属流下位置の偏心全と飛散金属粒子の角度広
がりの関係を第3図に示す。
Next, FIG. 3 shows the relationship between the total eccentricity of the molten metal flowing down position and the angular spread of the scattered metal particles.

試験方法はさきに説明したものと同じ装置により、回転
ディスクは4000rp麿、ディスク表面は# 120
0のペーパーでみがいたものを用いた。
The test method was to use the same equipment as previously described, the rotating disk was at 4000 rpm, and the disk surface was #120.
I used one that had been polished with No. 0 paper.

(1)回転中心に溶融金属を流下させた場合は、すでに
説明のとおり、回転ディスク外周に均一に飛散する。
(1) When molten metal is made to flow down at the center of rotation, as already explained, it is uniformly scattered around the outer periphery of the rotating disk.

(2)回転ディスク外周部に極めて近い位置に流下した
時も、角度広がりは大きくなった。
(2) The angular spread also increased when the water flowed down to a position extremely close to the outer periphery of the rotating disk.

また、溶融金属のディスクへの流下位置と飛散金属粒子
径にも関係がある。溶融金属の微細化は、流下溶融金属
と回転ディスクの衝撃力及び流下溶融金属が回転ディス
クによってうける遠心力で生じるが、回転中心に近い場
合、ディスクと溶融金属の接触時に、それぞれの力は小
さく、微細化されにり<、中心から離れる程、それぞれ
の力は大きく微細化されやすい。
It is also related to the position of the molten metal flowing down to the disk and the diameter of the scattered metal particles. The fining of molten metal is caused by the impact force between the falling molten metal and the rotating disk and the centrifugal force exerted by the rotating disk on the falling molten metal, but when the disk is close to the center of rotation, each force is small when the disk and molten metal come into contact. , Miniaturization <, The further away from the center, the larger each force becomes and the easier it is to be refined.

しかし、すでに説明したように、溶融金属の流下点がデ
ィスクの端になるに従って、飛散金属粒子の微細化はす
すむが、飛散金属粒子の角度広がりを生じ、通常角度広
がりによって、目的とする形状の製品を得ることは極め
て効率のわるいものとなるから、目的に合わせて適当な
流下位置を選ぶ必要があるが、溶融金属の落下距離、デ
ィスク形状、回転数、半径を変えることにより、基本的
には、ディスクの回転中心から、溶融金属の流下位置を
わずかでもはずすことにより飛散金属粒子の方向性は制
御できる。しかし、粒子径と方向性制御を考慮した場合
、回転ディスク半径をrして、0.3〜0.77の範囲
が好ましい。
However, as explained above, as the falling point of the molten metal moves toward the edge of the disk, the scattered metal particles become finer, but the angular spread of the scattered metal particles occurs, and the angular spread usually results in the desired shape. Obtaining the product is extremely inefficient, so it is necessary to select an appropriate downstream position depending on the purpose, but basically by changing the falling distance of the molten metal, the disk shape, the rotation speed, and the radius, In this case, the directionality of the scattered metal particles can be controlled by shifting the position of the molten metal even slightly from the center of rotation of the disk. However, in consideration of particle diameter and directionality control, the radius of the rotating disk is preferably r in the range of 0.3 to 0.77.

従って、このような方法により、溶融金属微細粒子の飛
散方向を制御し、ディスク周辺所定位置に配置したサブ
ストレイトに金属微細粒子を堆積、凝固させることがで
きる。この場合、サブストレイト位置、又は回転ディス
ク位置を上下させるようにして、堆積の均−化等をはか
ることができる。
Therefore, by such a method, the scattering direction of the molten metal fine particles can be controlled, and the metal fine particles can be deposited and solidified on the substrate placed at a predetermined position around the disk. In this case, it is possible to equalize the deposition by moving the substrate position or the rotating disk position up and down.

また、回転ディスクを常時加熱するような手段をとって
作業中、回転させるようにしてもよい。
Alternatively, the rotating disk may be rotated during work by constantly heating the rotating disk.

このようにすれば、飛散金属微粒の回転ディスク面にお
ける凝固をさけることができる。
In this way, it is possible to avoid solidification of scattered metal particles on the surface of the rotating disk.

なお上記実施において、ディスクは水平回転するものに
ついて説明したが、傾けて回転させても同様に実施する
ことができる。
In the above embodiment, the disk is rotated horizontally, but the disk may be rotated at an angle as well.

第6図は前記AQ−20%Si合金について、本発明を
適用してサブストレイト上に堆積、凝固させた例の、光
学顕微鏡写真(taoa倍)であるが、初晶Siが3μ
m以下という非常に微細で均一な組織ができることを示
している。
FIG. 6 is an optical micrograph (taoa magnification) of an example of the AQ-20% Si alloy deposited and solidified on a substrate by applying the present invention.
This shows that a very fine and uniform structure with a diameter of less than m can be formed.

写真でマトリックスはAl1黒い2〜3μの析出物がS
iである。
In the photograph, the matrix is Al1 black 2-3μ precipitates are S
It is i.

[効果] 以上説明のように、本発明は溶融金属を表面平滑な回転
ディスクの回転中心をはずした位置に流下させるという
手段を採ることによって、微細化された金属溶融粒子の
飛散方向に方向性を与えることができ、このため、所定
の位置にサブストレイトを置いて、このサブストレイト
に金属微粒子を堆積させ、凝固させて、金属製品を作る
ことができる。
[Effect] As explained above, the present invention uses a method of causing molten metal to flow down to a position off the center of rotation of a rotating disk with a smooth surface, thereby creating a directionality in the scattering direction of fine molten metal particles. Therefore, by placing a substrate in a predetermined position, metal fine particles can be deposited on the substrate and solidified to produce a metal product.

本発明の方法は従来広く使用されている溶解。The method of the present invention is a dissolution method that has been widely used in the past.

鋳造法、粉末合金法において生じるような欠点を除去す
ることができ、また製造法としての操作も複雑ではなく
、すぐれた品質の金属製品を得ることができる。
The disadvantages that occur in casting methods and powder alloy methods can be eliminated, and the manufacturing operations are not complicated, making it possible to obtain metal products of excellent quality.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明実施に好適な装置を示す。(イ)図は
全体図、(ロ)図は回転ディスク部分を示す。 第2図は、回転ディスクの表面粗さとこれに流下される
溶融金属の微細粒子飛散分布(堆積ff1)の関係説明
図である。 第3図は、流下される溶融金属の回転ディスク上の半径
方向における位置と溶融金属の微細粒子飛散の角度広が
り関係説明図である。 第4図は、半径rの回転ディスクにおいて溶融金属流下
点がQ、7rにあるときの微細金属粒子による堆積状態
説明図である。 第5図は、溶融金属を回転ディスクで微細粒子化する説
明図であり、(イ)図は装置全体図、(ロ)図は回転デ
ィスク部分を示す。 第6図は、本発明によって作られたAQ−20%Si合
金の光学顕微鏡による組織写真である。 1・・・容器、2・・・溶解炉、3・・・タンディシュ
、4・・・タンディシュの開口、5・・・回転ディスク
、6・・・溶融金属、8・・・サブストレイト。 υ   j龜蝕企襖流1泣fy  r 第4図 (イ)     勺し5 図
FIG. 1 shows an apparatus suitable for practicing the invention. Figure (a) shows the overall view, and figure (b) shows the rotating disk part. FIG. 2 is an explanatory diagram of the relationship between the surface roughness of the rotating disk and the fine particle scattering distribution (deposition ff1) of the molten metal flowing down thereon. FIG. 3 is an explanatory diagram of the relationship between the position of the molten metal flowing down in the radial direction on the rotating disk and the angular spread of fine particles of the molten metal. FIG. 4 is an explanatory diagram of the state of deposition of fine metal particles when the molten metal flow point is at Q, 7r on a rotating disk of radius r. FIG. 5 is an explanatory view of pulverizing molten metal into fine particles using a rotating disk, where (a) shows the entire apparatus and (b) shows the rotating disk portion. FIG. 6 is an optical microscopic photograph of the structure of the AQ-20%Si alloy produced according to the present invention. DESCRIPTION OF SYMBOLS 1... Container, 2... Melting furnace, 3... Tundish, 4... Tundish opening, 5... Rotating disk, 6... Molten metal, 8... Substrate. ν

Claims (2)

【特許請求の範囲】[Claims] (1)溶融金属を微細金属粒子とし、未凝固状態で堆積
凝固させ、均一、かつ、微細な金属組織を得る金属物品
の製造方法であって、溶融金属を表面平滑な回転ディス
クの回転中心をはずした位置に流下させ、前記流下溶融
金属と前記回転ディスクとの衝撃力及び前記流下溶融金
属が回転ディスクによってうける遠心力によって、溶融
金属を微細金属粒子とし、かつ方向性をもたせ、所定の
サブストレートに堆積させ、凝固させることを特徴とす
る金属物品の製造方法。
(1) A method for manufacturing a metal article in which fine metal particles are formed from molten metal, deposited and solidified in an unsolidified state, and a uniform and fine metal structure is obtained. By the impact force between the falling molten metal and the rotating disk and the centrifugal force exerted on the falling molten metal by the rotating disk, the molten metal is turned into fine metal particles and given directionality, and the molten metal is turned into fine metal particles and given directionality. A method for manufacturing a metal article, characterized by straight deposition and solidification.
(2)溶融金属の回転ディスクに対する流下位置が、該
回転ディスクの半径rの0.3〜0.7rの位置にある
ことを特徴とする特許請求の範囲第1項記載の金属物品
の製造方法。
(2) The method for manufacturing a metal article according to claim 1, characterized in that the downstream position of the molten metal with respect to the rotating disk is at a position of 0.3 to 0.7 r of the radius r of the rotating disk. .
JP26995885A 1985-11-29 1985-11-29 Production of metallic articles Pending JPS62130760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26995885A JPS62130760A (en) 1985-11-29 1985-11-29 Production of metallic articles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26995885A JPS62130760A (en) 1985-11-29 1985-11-29 Production of metallic articles

Publications (1)

Publication Number Publication Date
JPS62130760A true JPS62130760A (en) 1987-06-13

Family

ID=17479584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26995885A Pending JPS62130760A (en) 1985-11-29 1985-11-29 Production of metallic articles

Country Status (1)

Country Link
JP (1) JPS62130760A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103243324A (en) * 2013-05-23 2013-08-14 沈阳航空航天大学 Preparation method and equipment for direct forming of multi-DOF (Degree of Freedom) NC (Numerical Control) metallurgy jet
CN109877299A (en) * 2019-04-16 2019-06-14 河南科技大学 One kind getting rid of casting device and gets rid of casting centrifugal pan

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103243324A (en) * 2013-05-23 2013-08-14 沈阳航空航天大学 Preparation method and equipment for direct forming of multi-DOF (Degree of Freedom) NC (Numerical Control) metallurgy jet
CN109877299A (en) * 2019-04-16 2019-06-14 河南科技大学 One kind getting rid of casting device and gets rid of casting centrifugal pan

Similar Documents

Publication Publication Date Title
US4830084A (en) Spray casting of articles
US5954112A (en) Manufacturing of large diameter spray formed components using supplemental heating
US3904344A (en) Apparatus for the formation of discontinuous filaments directly from molten material
TW461834B (en) Clean metal nucleated cast article
JP6498684B2 (en) Granulation of melted ferrochrome
JPS62130760A (en) Production of metallic articles
JPS599601B2 (en) Method for producing metal and alloy granules
JPH0754019A (en) Production of powder by multistage fissure and quenching
JPS60190503A (en) Production of metallic powder
JP2003530485A (en) Metal or metal alloy based sputter targets and processes for their production
WO1982003809A1 (en) Apparatus for spraying metal or other material
JPH06246425A (en) Method for casting large sealed steel ingot
CN113136491B (en) Metal grain refining method
US5061573A (en) Method of making a metal alloy strip and a strip made thereby
JP2001172704A (en) Method of manufacturing metallic flake
JP2914776B2 (en) Continuous dissolution and outflow control method for materials
JPH08209207A (en) Production of metal powder
KR200197013Y1 (en) Vertical continuous casting apparratus for the billet of reactor using the electromagnetic stirrer
JP2928965B2 (en) Injection molding method for ultra heat resistant and difficult to process materials
RU2141392C1 (en) Method for making metallic powder and apparatus for performing the same
CN107983921B (en) Preparation method of semi-solid slurry
JP2938215B2 (en) Continuous dissolution and outflow of materials
KR20070108600A (en) Method and device for manufacturing al alloy material included high si
JPS5891101A (en) Centrifugal spraying method
JPS60162703A (en) Production of metallic powder