JPS62130340A - Method and instrument for spectrochemical analysis of material in radioactive atmosphere - Google Patents

Method and instrument for spectrochemical analysis of material in radioactive atmosphere

Info

Publication number
JPS62130340A
JPS62130340A JP27071085A JP27071085A JPS62130340A JP S62130340 A JPS62130340 A JP S62130340A JP 27071085 A JP27071085 A JP 27071085A JP 27071085 A JP27071085 A JP 27071085A JP S62130340 A JPS62130340 A JP S62130340A
Authority
JP
Japan
Prior art keywords
fiber
light
radioactive
optical fiber
image fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27071085A
Other languages
Japanese (ja)
Inventor
Shotaro Hayashi
正太郎 林
Yukio Wada
幸男 和田
Kunio Fujiwara
藤原 国生
Yoshiki Chigusa
佳樹 千種
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Power Reactor and Nuclear Fuel Development Corp
Sumitomo Electric Industries Ltd
Original Assignee
Power Reactor and Nuclear Fuel Development Corp
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Power Reactor and Nuclear Fuel Development Corp, Sumitomo Electric Industries Ltd filed Critical Power Reactor and Nuclear Fuel Development Corp
Priority to JP27071085A priority Critical patent/JPS62130340A/en
Publication of JPS62130340A publication Critical patent/JPS62130340A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0218Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using optical fibers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/024Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using means for illuminating a slit efficiently (e.g. entrance slit of a spectrometer or entrance face of fiber)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0291Housings; Spectrometer accessories; Spatial arrangement of elements, e.g. folded path arrangements

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To extend the life of a measuring system by exciting an optical fiber with 0.2-1.4mum wavelength and 10muW-100W quantity of light during or after irradiation to the optical fiber. CONSTITUTION:A material 1 existing in radioactive environment A is made to emit light in a plasma jet 2 and the radiation light thereof is conducted to the incident slit of a spectroscope 5 existing in the isolated 4 nonradioactive environment by an image fiber 3. The intermediate part of the fiber 3 spirally penetrates the inside of a radioactive shielding member 9. The member 9 is inserted and fixed into the partition wall 4. The conduction of the light from the material 1 is executed by positioning the light emission part with an eyepiece lens 13, then measuring the emission spectra with the spectroscope 5, connecting the image receiving side of the fiber 3 to a xenon lamp 12, connecting the lamp 12 to the fiber 3 and keeping the fiber 3 excited at 0.2-1.4mum wavelength and 10muWX100W quantity of light to decrease the loss of the fiber 3. A condenser lens 14 is provided to the lamp 12 to condense the light to the spot size meeting the diameter of the fiber 3. The life of the measuring system is extended in the above-mentioned manner.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、放射線の影響を受けることなく放射性雰囲
気下物質の測定光を有効に分光分析する放射性雰囲気下
物質の分光分析方法および装置に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method and apparatus for spectroscopic analysis of radioactive atmospheric substances that effectively spectrally analyze measurement light of radioactive atmospheric substances without being affected by radiation.

〈従来の技術〉 この種の分光分析方法について、たとえば技術雑誌[計
装J  (1983年) No、 9 、第66〜第6
9頁において、大面、菅沼両氏連各の報告゛遠隔操作型
分光分析の開発”中で、第2図に示すように、放射性物
質1をプラズマジェット2により発光させると共に、そ
の発光をイメージファイバ3を介して、放射能遮できる
ことが報告されている。
<Prior art> Regarding this type of spectroscopic analysis method, for example, the technical magazine [Instrument J (1983) No. 9, No. 66-6
On page 9, in the report ``Development of remote-controlled spectroscopic analysis'' by Messrs. Omen and Suganuma, as shown in Figure 2, a radioactive substance 1 is emitted by a plasma jet 2, and the emitted light is transferred to an image fiber. It has been reported that radioactivity can be blocked through 3.

一方、放射線雰囲気下で使用するイメージファイバ3は
、コア部を純粋な石英で作り、クラッド部はフッ素をド
ープした石英ガラスで構成する乙とが放射線による伝送
損失増加を最小にできることが知られている。
On the other hand, it is known that the image fiber 3 used in a radiation atmosphere has a core made of pure quartz and a cladding made of fluorine-doped silica glass to minimize the increase in transmission loss due to radiation. There is.

〈発明が解決しようとする問題点〉 しかし、上述した構成のイメージファイバであっても、
高い線量の放射線に照射されると、放射線による伝送損
失が増大するからやがては伝送不能となる。したがって
、上述した従来の発光分光分析法を、そのまま放射性環
境物質の発光分光分析に適用とすると光ファイバの劣化
によゆやがては測定不能になる。
<Problems to be solved by the invention> However, even with the image fiber of the above configuration,
When exposed to a high dose of radiation, transmission loss due to the radiation increases, eventually making transmission impossible. Therefore, if the conventional emission spectrometry method described above is directly applied to the emission spectrometry analysis of radioactive environmental substances, it will eventually become impossible to measure due to deterioration of the optical fiber.

上述したイメージファイバの伝送損失増加の原因は、石
英ガラスの中、Si−・・・−8i。
The cause of the increase in transmission loss of the image fiber mentioned above is Si-...-8i in the quartz glass.

5i−0・・・にょうに・・・で表わされる結合欠陥に
、放射線によってたたき出された電子やホールが捕獲さ
れ、着色中心ができるためであると考えられる。その他
、もともと含まれていた不純物により生じる着色中心に
よってひき起される場合もある。
This is thought to be due to the fact that electrons and holes ejected by radiation are captured by the bonding defects represented by 5i-0... and colored centers are formed. In addition, it may be caused by colored centers caused by originally contained impurities.

このような着色中心による伝送損失は、イメージファイ
バを放射線雰囲気下で使用することにより増大してゆく
が、従来はイメージファイバに生じた着色中心を積極的
に減少させ、イメージファイバの有効寿命を長くしよう
とする試みは殆んどなされていなかった。
Transmission loss due to such colored centers increases when the image fiber is used in a radiation atmosphere, but in the past, colored centers occurring in the image fiber were actively reduced to extend the useful life of the image fiber. There were very few attempts to do so.

以上は第2図に示す発光分光分析について述べたが、他
の分析において光ファイバ、バンドルファイバもしくは
イメージファイバを用いる場合についても同様である。
Although the above description has been made regarding the emission spectroscopic analysis shown in FIG. 2, the same applies to cases where an optical fiber, bundle fiber, or image fiber is used in other analyses.

この発明は放射性環境物質についての従来の発光分光分
析方法の欠点を除去するためになされたものであって、
放射線照射によるイメージファイバの伝送損失増加を解
消しながら放射性環境物質の分光分析を行ないうる発光
分析方法および装置を提供しようとするものである。
This invention was made in order to eliminate the drawbacks of conventional emission spectroscopic analysis methods for radioactive environmental substances,
The present invention aims to provide an optical emission analysis method and apparatus that can perform spectroscopic analysis of radioactive environmental substances while eliminating the increase in transmission loss of an image fiber caused by radiation irradiation.

く問題点を解決するための手段〉 本発明者らは、上述の目的を達すべ(種々検討を重ねる
過程において、次の事に想到した。
Means for Solving the Problems In order to achieve the above-mentioned objectives, the inventors of the present invention came up with the following in the course of various studies.

すなわち、放射線照射により石英(又はガラス)中に生
じる着色中心は、第3図に示すように導電帯6と充満帯
7の間に捕獲準位8を作り、この捕獲準位に捉えられた
電子にエネルギーΔEを与えれば導電帯1に励起され着
色中心は消滅すると考えられる。そして、着色中心を形
成する捕獲準位8と導電帯6のエネルギー差ΔEは、通
常光エネルギー程度のものが最も有効である。特に短波
長側の0,3μm程度の紫外線が最も効果が大きい。そ
してその有効波長範囲は0.2μm〜1.4μmの範囲
のものであることを知った。さらに、光量の面では、イ
メージファイバを、上述した波長の光を10μW〜10
0W励振すると有効であることを知った。ただし、ここ
でいう光量とは、イメージファイバを励振し、当該イメ
ージファイバ内に導かれた光量をいうものとする。
That is, the colored center generated in quartz (or glass) by radiation irradiation creates a trap level 8 between the conductive band 6 and the charged zone 7, as shown in FIG. 3, and the electrons captured in this trap level It is thought that if energy ΔE is applied to the conductive band 1, the colored center will be excited and the colored center will disappear. The energy difference ΔE between the trap level 8 forming the colored center and the conductive band 6 is usually most effective when it is about the same as light energy. In particular, ultraviolet rays with a short wavelength of about 0.3 μm are most effective. It was also learned that the effective wavelength range is from 0.2 μm to 1.4 μm. Furthermore, in terms of light intensity, the image fiber can be used to emit light of the above wavelengths from 10 μW to
I learned that 0W excitation is effective. However, the amount of light here refers to the amount of light guided into the image fiber by exciting the image fiber.

以上はイメージファイバを用いた分光分析装置を引用し
て述べたが、バンドル型あるいは信号伝送用の光ファイ
バを用いる分光分析装置においても同様である。
Although the above description has been made with reference to a spectroscopic analyzer using an image fiber, the same applies to a spectroscopic analyzer using a bundle type or a signal transmission optical fiber.

すなわち、この発明の一つは、放射性環境物質の発光を
、当該放射性環境からイメージファイバを通して放射性
環境外の分光器に導いて分光分析する放射線環境下物質
の発光分光分析方法において、光ファイバの放射線照射
中又は照射後に、その光ファイバを波長02μm 〜1
.4 μm 、光量10μW〜100Wで励振すること
を特徴とするものである。
That is, one aspect of the present invention is an optical emission spectroscopic analysis method for a substance in a radioactive environment, in which the luminescence of a radioactive environmental substance is guided from the radioactive environment through an image fiber to a spectrometer outside the radioactive environment for spectroscopic analysis. During or after irradiation, the optical fiber is heated to a wavelength of 02 μm to 1
.. 4 μm, and is characterized by excitation with a light intensity of 10 μW to 100 W.

放射線照射光ファイバを励振する光の波長が0.2μm
よりも短波長になると、光フアイバ中を伝送される光量
が急激に減少しくこのような短波長ではファイバ中の伝
送損失が大きいため)、また、1.4μmよりも長波長
になると、光エネルギーが小さすぎ着色中心に捕獲され
た電子を導電帯に励起することができない。
The wavelength of the light that excites the radiation irradiation optical fiber is 0.2 μm
When the wavelength becomes shorter than 1.4 μm, the amount of light transmitted in the optical fiber decreases rapidly (because the transmission loss in the fiber is large at such a short wavelength), and when the wavelength becomes longer than 1.4 μm, the amount of light transmitted through the optical fiber decreases rapidly. is too small to excite the electrons captured in the colored center to the conductive band.

また、上記励振光の光量が10μW以下のときは低すぎ
て、光フアイバ内に生じた多数の着色中心を消滅させる
ことができず、100W以上の光量を励振するためには
巨大な光源が必要になり、実用的でなくなる。
In addition, when the light intensity of the excitation light is 10 μW or less, it is too low to eliminate the many colored centers that have occurred within the optical fiber, and a huge light source is required to excite the light intensity of 100 W or more. becomes impractical.

そして、照射光ファイバを励振する光エネルギーの光源
は、単一のスペクトル線を放射するものであってもよく
、上述した波長範囲において連続スペクトルを発するも
のであってもよい。しかし、その連続スペクトルの光出
力の合計が、光ファイバに励振された光量が10μW〜
100Wであることが必要である。
The light source for the optical energy that excites the irradiation optical fiber may emit a single spectral line or may emit a continuous spectrum in the above-mentioned wavelength range. However, the total optical output of the continuous spectrum is 10μW~
It needs to be 100W.

また、この発明のもう一つは、放射性環境外に配置した
分光器と放射性雰囲気下物質の測定光を前記分光器に導
く光ファイバとからなる放射性雰囲気下物質の分光分析
装置において、前記光ファイバの放射線照射中又は照射
後当該光ファイバを波長0,2μm〜1.4μm1光量
10μW〜100Wで励振する手段を設けたことを特徴
とする放射性雰囲気下物質の分光分析装置である。
Another aspect of the present invention is a spectroscopic analysis device for substances in a radioactive atmosphere, which includes a spectrometer placed outside a radioactive environment and an optical fiber that guides measurement light of the substance in a radioactive atmosphere to the spectrometer. This is a spectroscopic analysis device for substances in a radioactive atmosphere, characterized in that it is provided with a means for exciting the optical fiber at a wavelength of 0.2 μm to 1.4 μm and an amount of light of 10 μW to 100 W during or after radiation irradiation.

づ作   用〉 以上のように、放射線照射中又は照射後、光ファイバを
波長0.2μm = 1.4μm1光量10μW〜10
0Wで励振することにより、捕獲準位にある電子を導電
帯へ励起できるから、放射線照射による損失を低減させ
ることができ、放射性環境物質を、非放射性環境にある
分光器で有効に分光分析できる。
As described above, during or after radiation irradiation, the optical fiber is
By excitation at 0W, electrons in the capture level can be excited to the conductive band, which reduces loss due to radiation irradiation, and enables effective spectroscopic analysis of radioactive environmental substances with a spectrometer in a non-radioactive environment. .

く実 施 例〉 つぎに、実施例に基づいてこの発明を、より具体的に説
明する。
EXAMPLES Next, the present invention will be described in more detail based on examples.

第1図に示すように、放射性環境Aにある物質1を、プ
ラズマジェット2中で発光すせ、その放射光をイメージ
ファイバ3により、放射能遮断隔壁4で隔離された非放
射性環境已にある分光器5の入射スリットに導く。
As shown in FIG. 1, a substance 1 in a radioactive environment A emits light in a plasma jet 2, and the emitted light is transmitted through an image fiber 3 to a non-radioactive environment isolated by a radiation blocking barrier 4. It is guided to the entrance slit of the spectrometer 5.

イメージファイバ3の中間部分は、放射線遮断部材9中
を螺旋状に貫通させると共に、放射線遮断部材9を、放
射m遮断隔壁4中に装入・固定する。
The intermediate portion of the image fiber 3 spirally passes through the radiation blocking member 9, and the radiation blocking member 9 is inserted and fixed into the radiation blocking partition wall 4.

また、イメージファイバ3先端は光軸調整用微動台10
で支持し、図示しないモータにより放射性環境内イメー
ジファイバ3を物質1に向くように調整自在に設置され
ている。
In addition, the tip of the image fiber 3 is attached to a fine movement table 10 for adjusting the optical axis.
The image fiber 3 in the radioactive environment is supported by a motor (not shown) so as to be adjustable so as to face the substance 1.

また、イメージファイバ3先端には集光レンズ11が配
設され、物質1の発光をイメージファイバ入口に集光さ
せる構造になっている。
Further, a condensing lens 11 is disposed at the tip of the image fiber 3 to condense the light emitted from the substance 1 to the entrance of the image fiber.

さらに、イメージファイバ3の受像側に、非放射性環境
空間Bにおいて分光器5の入射スリットと接続されるか
もしくは、イメージファイバ励振用光源(たとえばキセ
ノンランプ12の光を導入できるように連結されている
Further, the image receiving side of the image fiber 3 is connected to the entrance slit of the spectrometer 5 in the non-radiative environment space B, or is connected so as to introduce light from a light source for excitation of the image fiber (for example, a xenon lamp 12). .

上記構成の装置によって、物質1の光をイメージファイ
バを通して分光器内に導くには、先ず、接眼レンズ13
を通して、発光部を位置合せした後、分光器5で発光ス
ペクトルを測定する。測定終了後、イメージファイバ受
像側をキセノンランプ12に接続し、キセノンランプ1
2をイメージファイバに接続して励振しておき、イメー
ジファイバの損失の低減をおこなう。キセノン光源装置
12には、通常、集光レンズ14が設けられており、イ
メージファイバの口径に適合したスポットサイズに集光
する。この実施例のキセノンランプ出力150W、イメ
ージファイバに励振された光量は50Wである。
In order to guide the light of the substance 1 into the spectrometer through the image fiber using the apparatus configured as described above, first, the eyepiece 13 is
After aligning the light emitting part through the light emitting device, the spectrometer 5 measures the emission spectrum. After the measurement is completed, connect the image receiving side of the image fiber to the xenon lamp 12, and
2 is connected to the image fiber and excited to reduce the loss of the image fiber. The xenon light source device 12 is usually provided with a condensing lens 14, which condenses the light into a spot size that matches the diameter of the image fiber. In this example, the xenon lamp output was 150 W, and the amount of light excited into the image fiber was 50 W.

また、イメージファイバは画素数5千〜3万、長さIo
mであり、イメージファイバ3の発光部側における放射
線照射量は3レントゲン/時間である。
In addition, the image fiber has a pixel count of 5,000 to 30,000 and a length of Io.
m, and the amount of radiation irradiated on the light emitting part side of the image fiber 3 is 3 Roentgen/hour.

本実施例による励振をしない場合には、イメージファイ
バは約1年で測定できなくなるが、本実施例の装置を使
用するとイメージファイバの寿命は2年に延ばすことが
できる。
If the excitation according to this embodiment is not performed, the image fiber becomes unmeasurable in about one year, but when the apparatus of this embodiment is used, the life of the image fiber can be extended to two years.

上述の実施例では、イメージファイバの励振用光源とし
て、キセノンランプを使用した例を示したが、キセノン
ランプに限らず、Xe−Cjレーザ、He−Neガスレ
ーザ、YAGレーザ、He−Cdレーザ、重水素ランプ
なども使用できる。
In the above embodiment, an example was shown in which a xenon lamp was used as a light source for excitation of the image fiber, but it is not limited to a xenon lamp. Hydrogen lamps can also be used.

また、上述の実施例では分光測定後、イメージファイバ
を放射性環境外の励振用光源につなぎ替えて励振する方
法にしたがったが、このように分光測定終了後−々光フ
ァイバにつなぎ替える必要はなく、放射性雰囲気内に配
置した励振用光源から放射される励振光を放射性雰囲気
下の伝送損失イメージファイバの外周から励振させても
よい。
In addition, in the above embodiment, after spectroscopic measurement, the image fiber was connected to an excitation light source outside the radioactive environment to excite it, but in this way, there is no need to reconnect it to the optical fiber after spectroscopic measurement. Alternatively, excitation light emitted from an excitation light source placed in a radioactive atmosphere may be excited from the outer periphery of the transmission loss image fiber in the radioactive atmosphere.

次に、励振されたイメージファイバの伝送損失の回復状
態を確かめるための測定結果について示す。
Next, we will show the results of measurements to confirm the state of recovery of transmission loss in the excited image fiber.

測定対象にしたイメージファイバは300レントゲン/
時間のγ線を、3時間照射したものを使用した。
The image fiber used for measurement is 300 Roentgen/
One that had been irradiated with gamma rays for 3 hours was used.

励振光源はキセノンランプおよびHe−Cdレーザ照射
しない場合の伝送損失回復状態を表−1に示した。ただ
し、励振した光の波長は02μmであった。
Table 1 shows the transmission loss recovery state when the excitation light source was a xenon lamp and a He-Cd laser was not used. However, the wavelength of the excited light was 02 μm.

表−1 この測定結果によると、二種の励振用光源(キセノンラ
ンプおよびHe−Cdレーザ〕のうち、キセノンランプ
を用いたものの効果が著るしく、励振しない場合に比べ
伝送損失は約μ程度に減少することが判る。また、励振
する光量は、試みた二水準では大きな差は認められない
ことが判る。
Table 1 According to the measurement results, of the two types of excitation light sources (xenon lamp and He-Cd laser), the effect of the one using the xenon lamp is remarkable, and the transmission loss is about μ compared to the case without excitation. It can be seen that there is no significant difference in the amount of excited light between the two levels tested.

また、本実施例ではイメージファイバを用いた発光分光
分析について説明したが、イメージファイバに限定され
るものではな(、いわゆるバンドル型光ファイバあるい
は信号伝送用光ファイバであってもよい。また発光分光
分析理外の分光分析にも同様に適用できる。
Furthermore, in this example, emission spectroscopic analysis using an image fiber was explained, but it is not limited to image fibers (so-called bundle type optical fibers or optical fibers for signal transmission may also be used. It can be similarly applied to spectroscopic analysis outside of analytical theory.

〈発明の効果〉 以上の説明から明らかなごとく、この発明にかかる発光
分光分析方法によれば、放射性環境下における物質の発
光分光分析を光ファイバを用いて遠隔で実施するに際し
、光源装置を用意して測定後に、接ぎ替えるという簡単
な操作をおこなうだけで、測定系の寿命を大巾に延ばす
ことが出来、経済性に優れた測定系を実現出来る。
<Effects of the Invention> As is clear from the above description, according to the emission spectroscopic analysis method according to the present invention, when performing emission spectroscopic analysis of a substance in a radioactive environment remotely using an optical fiber, it is possible to prepare a light source device. The life of the measurement system can be greatly extended by simply performing the simple operation of replacing it after measurement, making it possible to realize a measurement system with excellent economic efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明にかかる放射性雰囲気下物質又は放射
性物質の発光分光分析装置の葭用状V−一 も田 図     中、 1・・・放射性雰囲気下物質(又は放射性物質)、2・
・プラズマジェット、 3・・・イメージファイバ、 5・・・分光器、 9・・・放射能遮断部材、 10・・・光軸調整装置、 11.14・・・集光レンズ、 12・・イメージファイバ励振用光源、13・・・接眼
レンズ。
FIG. 1 shows a letter for use in the emission spectroscopic analysis device for substances in a radioactive atmosphere or radioactive substances according to the present invention.
- Plasma jet, 3... Image fiber, 5... Spectroscope, 9... Radiation blocking member, 10... Optical axis adjustment device, 11.14... Condensing lens, 12... Image Fiber excitation light source, 13... eyepiece.

Claims (2)

【特許請求の範囲】[Claims] (1)放射性雰囲気下物質の測定光を、光ファイバを通
して放射性環境外の分光器に導いて分光分析する放射性
雰囲気下物質の分光分析方法において、光ファイバの照
射中又は照射後に、当該光ファイバを波長0.2μm〜
1.4μm、光量10μW〜100Wで励振することを
特徴とする放射性雰囲気下物質の分光分析方法。
(1) In a method for spectroscopic analysis of substances in a radioactive atmosphere, in which measurement light for substances in a radioactive atmosphere is guided through an optical fiber to a spectrometer outside the radioactive environment for spectroscopic analysis, the optical fiber is Wavelength 0.2 μm ~
1. A method for spectroscopic analysis of substances in a radioactive atmosphere, characterized by excitation at a wavelength of 1.4 μm and a light intensity of 10 μW to 100 W.
(2)放射性環境外に配置した分光器と、放射性雰囲気
下物質の測定光を前記分光器に導く光ファイバとからな
る放射性雰囲気下物質の分光分析装置において、前記光
ファイバの放射線照射中又は照射後当該光ファイバを波
長0.2μm〜1.4μm、光量10μW〜100Wの
光で励振する手段を設けたことを特徴とする放射性雰囲
気下物質の分光分析装置。
(2) In a spectroscopic analysis device for substances in a radioactive atmosphere, which comprises a spectrometer placed outside a radioactive environment and an optical fiber that guides measurement light of the substance in a radioactive atmosphere to the spectrometer, the optical fiber is irradiated with radiation or is irradiated. 1. A spectroscopic analysis device for substances in a radioactive atmosphere, characterized in that a means for exciting the optical fiber with light having a wavelength of 0.2 μm to 1.4 μm and a light amount of 10 μW to 100 W is provided.
JP27071085A 1985-12-03 1985-12-03 Method and instrument for spectrochemical analysis of material in radioactive atmosphere Pending JPS62130340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27071085A JPS62130340A (en) 1985-12-03 1985-12-03 Method and instrument for spectrochemical analysis of material in radioactive atmosphere

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27071085A JPS62130340A (en) 1985-12-03 1985-12-03 Method and instrument for spectrochemical analysis of material in radioactive atmosphere

Publications (1)

Publication Number Publication Date
JPS62130340A true JPS62130340A (en) 1987-06-12

Family

ID=17489882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27071085A Pending JPS62130340A (en) 1985-12-03 1985-12-03 Method and instrument for spectrochemical analysis of material in radioactive atmosphere

Country Status (1)

Country Link
JP (1) JPS62130340A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63294730A (en) * 1987-05-27 1988-12-01 伊藤 禎美 Heat-processed food material
JPH02156136A (en) * 1988-12-07 1990-06-15 Power Reactor & Nuclear Fuel Dev Corp Spectral analyzer
JPH02293647A (en) * 1989-05-08 1990-12-04 Hitachi Ltd Spectral analysis apparatus of radioactive liquid
JPH02293651A (en) * 1989-05-08 1990-12-04 Hitachi Ltd Spectrochemical analysis of radioactive liquid
US6452717B1 (en) 1999-02-05 2002-09-17 Sumitomo Electric Industries, Ltd. Fiber optic amplifier

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57192535A (en) * 1981-05-22 1982-11-26 Fuji Photo Optical Co Ltd Light permeation ratio restoring apparatus of image transmitting optical glass fiber bundle for endoscope
JPS58184106A (en) * 1981-12-07 1983-10-27 Olympus Optical Co Ltd Reproducing method of fiber optical system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57192535A (en) * 1981-05-22 1982-11-26 Fuji Photo Optical Co Ltd Light permeation ratio restoring apparatus of image transmitting optical glass fiber bundle for endoscope
JPS58184106A (en) * 1981-12-07 1983-10-27 Olympus Optical Co Ltd Reproducing method of fiber optical system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63294730A (en) * 1987-05-27 1988-12-01 伊藤 禎美 Heat-processed food material
JPH02156136A (en) * 1988-12-07 1990-06-15 Power Reactor & Nuclear Fuel Dev Corp Spectral analyzer
JPH02293647A (en) * 1989-05-08 1990-12-04 Hitachi Ltd Spectral analysis apparatus of radioactive liquid
JPH02293651A (en) * 1989-05-08 1990-12-04 Hitachi Ltd Spectrochemical analysis of radioactive liquid
US6452717B1 (en) 1999-02-05 2002-09-17 Sumitomo Electric Industries, Ltd. Fiber optic amplifier

Similar Documents

Publication Publication Date Title
US3556659A (en) Laser-excited raman spectrometer
Winefordner et al. Determination of Zinc, Cadmium, and Mercury by Atomic Fluorescence Flame Spectormetry.
Fassel et al. Evaluation of spectral continua as primary sources in atomic absorption spectroscopy
Marrone Radiation‐induced luminescence in silica core optical fibers
JPH10300671A (en) Equipment for measuring micro particle
KR20120079941A (en) The method of quantitative analysis for uranium in an aqueous solution
US7700929B2 (en) Remote laser assisted biological aerosol standoff detection in atmosphere
JPS62130340A (en) Method and instrument for spectrochemical analysis of material in radioactive atmosphere
US20190041336A1 (en) Isotopic measuring device
Moulin et al. Uranium determination by remote time-resolved laser-induced fluorescence
CN107631796B (en) A kind of fibre optic rediation monitoring device and monitoring method
TW480332B (en) Contaminant identification and concentration determination by monitoring the wavelength, or intensity at a specific wavelength, of the output of an intracavity laser
Whitten et al. Fiber optic waveguides for time-of-flight optical spectrometry
Hercher et al. An efficient intracavity laser Raman spectrometer
Rojas et al. Thermal lens spectroscopy using a diode laser and optical fibers
US4359641A (en) Liquid scintillators for optical fiber applications
JPS6329211B2 (en)
JPH0915145A (en) Multiplex measurement analyzer
JP2719257B2 (en) Spectrometer
US3503686A (en) Atomic absorption spectrophotometer
Roberts et al. Spectroradiometer–Luminometer for Chemiluminescence and Fluorescence Quantum-Yield Studies
Akent'ev et al. Spectral diagnostics for plasma research at the GOL-3 facility
Miyabe et al. Identification of single-colour multiphoton ionization transitions of atomic gadolinium
JPS58174832A (en) Analyzing device
Carraro et al. A wide wavelength range spectrometer (1150–8000 Å) for the RFX reversed field pinch experiment